Microalgae Cultivation and Industrial Waste: New Biotechnologies for Obtaining Silver Nanoparticles

Author(s): Jorge Alberto Vieira Costa, Ana Luiza Machado Terra, Nidria Dias Cruz, Igor Severo Gonçalves, Juliana Botelho Moreira, Suelen Goettems Kuntzler, Michele Greque de Morais*

Journal Name: Mini-Reviews in Organic Chemistry

Volume 16 , Issue 4 , 2019


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Industrial effluents containing heavy metals can have harmful effects on organisms and the ecosystem. Silver is a waste from textile, galvanic and photographic industries, and when released into the environment, it can harm human health and cause biological modification. Removal of metals, such as silver, has been traditionally carried out using physicochemical methods that produce a high concentration of sludge and expend a significant amount of energy. Researchers are seeking innovative technologies for more efficient removal of silver or for using this heavy metal to obtain new products. The use of microalgae is a promising alternative to traditional remediation methods because several species can absorb and assimilate heavy metals. When exposed to toxic substances, microalgae excrete molecules in the medium that induce the reduction of silver particles to nanoparticles. Biosynthesized silver nanoparticles (AgNPs) can be used in medicine, food packaging, the production of cosmetics and pharmaceuticals, civil engineering, sensors and water purification. Thus, microalgal biosynthesis of metal nanoparticles has the capacity to bioremediate metals and subsequently convert them into non-toxic forms in the cell. In this context, this review addresses the use of microalgal biotechnology for industrial waste remediation of silver, which includes the simultaneous biosynthesis of AgNPs. We also discuss the potential applications of these nanoparticles.

Keywords: Bioremediation, biosorption, heavy metal, industrial effluent, microalgae biosynthesis, wastewater.

[1]
De Aguiar, M.R.M.P.; Novaes, A.C. Removal of heavy metals from wastewaters by aluminosilicate. Quim. Nova, 2002, 25, 1145-1154.
[2]
Barakat, M.A. New trends in removing heavy metals from industrial wastewater. Arab. J. Chem., 2011, 4, 361-377.
[3]
Kurniawan, T.A.; Chan, G.Y.S.; Lo, W.H.; Babel, S. Physico-chemical treatment techniques for wastewater laden with heavy metals. Chem. Eng. J., 2006, 118, 83-98.
[4]
Kadirvelu, K.; Thamaraiselvi, K.; Namasivayam, C. Removal of heavy metal from industrial wastewaters by adsorption onto activated carbon prepared from an agricultural solid waste. Bioresour. Technol., 2001, 76, 63-65.
[5]
Qdais, H.A.; Moussa, H. Removal of heavy metals from wastewater by membrane processes: A comparative study. Desalination, 2004, 164, 105-110.
[6]
Patel, V.; Berthold, D.; Puranik, P.; Gantar, M. Screening of cyanobacteria and microalgae for their ability to synthesize silver nanoparticles with antibacterial activity. Biotechnol. Rep. , 2015, 5, 112-119.
[7]
Guzman, M.; Dille, J.; Godet, S. Synthesis and antibacterial activity of silver nanoparticles against gram-positive and gram-negative bacteria. Nanomedicine: NBM, 2012, 8, 37-45.
[8]
Mallmann, E.J.J.; Cunha, F.A.; Castro, B.N.M.F.; Maciel, A.M.; Menezes, E.A.; Fechine, P.B.A. Antifungal activity of silver nanoparticles obtained by green synthesis. Rev. Inst. Med. Trop., 2015, 57, 165-167.
[9]
Castro-Mayorga, J.L.; Randazzo, W.; Fabra, M.J.; Lagaron, J.M.; Aznar, R.; Sánchez, G. Antiviral properties of silver nanoparticles against norovirus surrogates and their efficacy in coated polyhydroxyalkanoates systems. LWT - Food Sci. Technol., 2017, 79, 503-510.
[10]
Kumar, K.S.; Dahms, H.U.; Won, E.J.; Lee, J.S.; Shin, K.H. Microalgae. A promising tool for heavy metal remediation. Ecotox. Environ. Saf., 2015, 113, 329-352.
[11]
Zeraatkar, A.K.; Ahmadzadeh, H.; Talebi, A.F.; Moheimani, N.R.; McHenry, M.P. Potential use of algae for heavy metal bioremediation, a critical review. J. Environ. Manage., 2016, 181, 817-831.
[12]
Chary, N.S.; Kamala, C.T.; Raj, D.S.S. Assessing risk of heavy metals from consuming food grown on sewage irrigated soils and food chain transfer. Ecotox. Environ. Safe., 2008, 69, 513-524.
[13]
De-Bashan, L.E.; Bashan, Y. Immobilized microalgae for removing pollutants: Review of practical aspects. Bioresour. Technol., 2010, 101, 1611-1627.
[14]
Folens, K.; Huysman, S.; Hulle, S.V.; Laing, G.D. Chemical and economic optimization of the coagulation-flocculation process for silver removal and recovery from industrial wastewater. Sep. Purif. Technol., 2017, 179, 145-151.
[15]
Cumberland, S.A.; Lead, J.R. Particle size distributions of silver nanoparticles at environmentally relevant conditions. J. Chromatogr. A, 2009, 1216, 9099-9105.
[16]
Pohl, P.; Schimmack, W. Adsorption of radionuclides (134Cs, 85Sr, 226Ra, 241Am) by extracted biomasses of cyanobacteria (Nostoc carneum, N. insulare, Oscillatoria geminata and Spirulina laxissima) and Phaeophyceae (Laminaria digitata and L. japonica; waste products from alginate production) at different pH. J. Appl. Phycol., 2006, 18, 135-143.
[17]
Prabhu, S.; Poulose, E.K. Silver nanoparticles: Mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int. Nano Lett., 2012, 2, 32-42.
[18]
Lansdown, A.B.G. A pharmacological and toxicological profile of silver as an antimicrobial agent in medical devices. Adv. Pharmacol. Sci., 2010, 2010, 1-16.
[19]
IRIS/USEPA - Integrated Risk Information System/United States Envir. http://www.epa.gov/iris/subst/0099.htm (Accessed on April 17, 2017).
[20]
Throbäck, I.N.; Johansson, M.; Rosenquist, M.; Pell, M.; Hansson, M.; Hallin, S. Silver (Ag+) reduces denitrification and induces enrichment of novel nirK genotypes in soil. FEMS Microbiol. Lett., 2007, 207, 189-194.
[21]
Ratte, H.T. Bioaccumulation and toxicity of silver compounds: A review. Environ. Toxicol. Chem., 1999, 18, 89-108.
[22]
Bianchini, A.; Bowles, K.C.; Brauner, C.J.; Gorsuch, J.W.; Kramer, J.R.; Wood, C.M. Evaluation of the effect of reactive sulfide on the acute toxicity of silver (I) to Daphnia magna. Part 2: Toxicity results. Environ. Toxicol. Chem., 2002, 21, 1294-1300.
[23]
Luoma, N.S. Silver nanotechnologies and the environment: Old problems or new challenges? Project on Emerging Nanotechnologies, http://www.nanotechproject.org/process/assets/files/7036/nano_ pen_15_final.pdf (Accessed on April 21, 2017).
[24]
Choi, M.; Chung, H.; Choi, W.; Yoon, J. Linear correlation between in activation of E. coli and OH radical concentration in TiO2 photocatalytic disinfection. Water Res., 2004, 38, 1069-1077.
[25]
Wijnhoven, S.W.P.; Peijnenburg, W.J.G.M.; Herberts, C.A.; Hagens, W.I.; Oomen, A.G.; Heugens, E.H.W.; Roszek, B.; Bisschops, J.; Gosens, I.; Van De Meent, D.; Dekkers, S.; De Jong, W.H.; Van Zijverden, M.; Sips, A.J.A.M.; Geertsma, R.E. Nano-silver. A review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology, 2009, 2, 109-138.
[26]
Sis, H.; Uysal, T. Removal of heavy metal ions from aqueous medium using Kuluncak (Malatya) vermiculites and effect of precipitation on removal. Appl. Clay Sci., 2014, 95, 1-8.
[27]
El Samrani, A.G.; Lartiges, B.S.; Villiéras, F. Chemical coagulation of combined sewer overflow: Heavy metal removal and treatment optimization. Water Res., 2008, 42, 951-960.
[28]
Dabrowski, A.; Hubicki, Z.; Podkoscielny, P.; Robens, E. Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method. Chemosphere, 2004, 56, 91-106.
[29]
Llanos, J.; Williams, P.M.; Cheng, S.; Rogers, D.; Wright, C.; Perez, A.; Cañizares, P. Characterization of a ceramic ultrafiltration membrane in different operational states after its use in a heavy-metal ion removal process. Water Res., 2010, 44, 3522-3530.
[30]
Frioui, S.; Oumeddour, R.; Lacour, S. Highly selective extraction of metal ions from dilute solutions by hybrid electrodialysis technology. Sep. Purif. Technol., 2017, 174, 264-274.
[31]
Karnib, M.; Kabbani, A.; Holail, H.; Olama, Z. Heavy metals removal using activated carbon, silica and silica activated carbon composite. Energ. Proc., 2014, 50, 113-120.
[32]
Ricci, B.C.; Ferreira, C.D.; Aguiar, A.O.; Amaral, M.C.S. Integration of nanofiltration and reverse osmosis for metal separation and sulfuric acid recovery from gold mining effluent. Sep. Purif. Technol., 2015, 154, 11-21.
[33]
Das, N. Recovery of precious metals through biosorption. A review. Hydrometallurgy, 2010, 103, 180-189.
[34]
Jeon, C. Adsorption behavior of silver ions from industrial wastewater onto immobilized crab shell beads. J. Ind. Eng. Chem., 2015, 32, 195-200.
[35]
Chen, X.; Wu, F.; Jin, J. Precision machining based on elastic waves in solids. Adv. Mat. Res., 2013, 669, 161-170.
[36]
Ersoz, M.; Barrott, L.; Tor, A.; Ozcan, S.; Lazarova, Z. In: Best Practice Guide on Metals Removal From Drinking Water by Treatment; Ersoz, M.; Barrott, L., Eds.; IWA: London, 2012; pp. 29-35.
[37]
Sun, Q.; Li, Y.; Tang, T.; Yuan, Z.; Yu, C.P. Removal of silver nanoparticles by coagulation processes. J. Hazard. Mater., 2013, 261, 414-420.
[38]
Fu, F.; Wang, Q. Removal of heavy metal ions from wastewaters: A review. J. Environ. Manage., 2011, 92, 407-418.
[39]
Gavrilescu, M. Removal of heavy metals from the environment by biosorption. Eng. Life Sci., 2004, 3, 219-232.
[40]
Bulgariu, L.; Gavrilescu, M. In: Handbook of marine microalgae: Biotechnology advances; Kim, S.K., Ed.; Elsevier Science: Amsterdam, 2015; pp. 457-469.
[41]
Xiong, J.Q.; Kurade, M.B.; Abou-Shanab, R.A.I.; Ji, M.K.; Choi, J.; Kim, J.O.; Jeon, B.H. Biodegradation of carbamazepine using freshwater microalgae Chlamydomonas mexicana and Scenedesmus obliquus and the determination of its metabolic fate. Bioresour. Technol., 2016, 205, 183-190.
[42]
Kim, H.C.; Choi, W.J.; Chae, A.N.; Park, J.; Kim, H.J.; Song, K.G. Evaluating integrated strategies for robust treatment of high saline piggery wastewater. Water Res., 2016, 89, 222-231.
[43]
Wang, Y.; Guo, W.; Yen, H.W.; Ho, S.H.; Lo, Y.C.; Cheng, C.L.; Ren, N.; Chang, J.S. Cultivation of Chlorella vulgaris JSC-6 with swine wastewater for simultaneous nutrient/COD removal and carbohydrate production. Bioresour. Technol., 2015, 198, 619-625.
[44]
Lourenço, S.O. Cultivo de Microalgas Marinhas. Princípios e Aplicações, 11th ed; RiMa: São Carlos, 2006.
[45]
Radmann, E.M.; Reinehr, C.O.; Costa, J.A.V. Optimization of the repeated batch cultivation of microalga Spirulina platensis in open raceway ponds. Aquaculture, 2007, 265, 118-126.
[46]
Morais, M.G.; Costa, J.A.V. Biofixation of carbon dioxide by Spirulina sp. and Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor. J. Biotechnol., 2007, 129, 439-445.
[47]
Vaz, B.S.; Costa, J.A.V.; Morais, M.G. CO2 Biofixation by the cyanobacterium Spirulina sp. LEB 18 and the green alga Chlorella fusca LEB 111 grown using gas effluents and solid residues of thermoelectric origin. Appl. Biochem. Biotechnol., 2016, 178, 418-429.
[48]
Moreira, J.B.; Terra, A.L.M.; Costa, J.A.V.; Morais, M.G. Utilization of CO2 in semi-continuous cultivation of Spirulina sp. and Chlorella fusca and evaluation of biomass composition. Braz. J. Chem. Eng., 2016, 33, 691-698.
[49]
Costa, J.A.V.; Morais, M.G. The role of biochemical engineering in the production of biofuels from microalgae. Bioresour. Technol., 2011, 102, 2-9.
[50]
Lyon, S.; Ahmadzadeh, H.; Murry, M. In: Biomass and Biofuels from Microalgae; Moheimani, N.R.; McHenry, M.P.; Boer, K.; Bahri, P.A., Eds.; Springer International Publishing: Switzerland, 2015; pp. 95-115.
[51]
Park, J.B.K.; Craggs, R.J.; Shilton, A.N. Wastewater treatment high rate algal ponds for biofuel production. Bioresour. Technol., 2011, 102, 35-42.
[52]
Matamoros, V.; Uggetti, E.; Garcia, J.; Bayona, J.M. Assessment of the mechanisms involved in the removal of emerging contaminants by microalgae from wastewater: A laboratory scale study. J. Hazard. Mater., 2016, 301, 197-205.
[53]
Zhou, W.; Li, Y.; Min, M.; Hu, B.; Chen, P.; Ruan, R. Local bioprospecting for high-lipid producing microalgal strains to be grown on concentrated municipal wastewater for biofuel production. Bioresour. Technol., 2011, 102, 6909-6919.
[54]
Franchino, M.; Comino, E.; Bona, F.; Riggio, V.A. Growth of three microalgae strains and nutrient removal from an agro-zootechnical digestate. Chemosphere, 2013, 92, 738-744.
[55]
Khalaf, M.A. Biosorption of reactive dye from textile wastewater by nonviable biomass of Aspergillus niger and Spirogyra sp. Bioresour. Technol., 2008, 99, 6631-6634.
[56]
Gurbuz, F.; Karahan, A.; Akcil, A.; Ciftci, H. In: Degradation of cyanide by natural algae species; In Extended Abstracts of the Third International Congress Environmental, Micropaleontology, Microbiology and Metobentholog, Vienna, 2002; pp. 1-6.
[57]
Adams, D.J.; Komen, J.V.; Pickett, T.M. In: Cyanide: Social, Industrial and Economic Aspects; Young, C., Ed.; The Metals Society: Warrendale, 2001; pp. 203-213.
[58]
Zhang, S.; Qiu, C.B.; Zhou, Y.; Jin, Z.P.; Yang, H. Bioaccumulation and degradation of pesticide fluroxypyr are associated with toxic tolerance in green alga Chlamydomonas reinhardtii. Ecotoxicology, 2011, 20, 337-347.
[59]
Perron, M.C.; Juneau, P. Effect of endocrine disrupters on photosystem II energy fluxes of green algae and cyanobacteria. Environ. Res., 2011, 111, 520-529.
[60]
Hom-Diaz, A.; Llorca, M.; Rodríguez-Mozaz, S.; Vicent, T.; Barceló, D.; Blánquez, P. Microalgae cultivation on wastewater digestate: β-estradiol and 17α-ethynylestradiol degradation and transformation products identification. J. Environ. Manag., 2015, 155, 106-113.
[61]
Chekroun, K.B.; Sánchez, E.; Baghour, M. The role of algae in bioremediation of organic pollutants. Int. Res. J. Pub. Environ. Health, 2014, 1, 19-32.
[62]
Dotto, G.L.; Esquerdo, V.M.; Vieira, M.L.G.; Pinto, L.A.A. Optimization and kinetic analysis of food dyes biosorption by Spirulina platensis. Coll. Surf. B Biointerf., 2012, 91, 234-241.
[63]
Chu, W.L.; See, Y.C.; Phang, S.M. Use of immobilised Chlorella vulgaris for the removal of colour from textile dyes. J. Appl. Phycol., 2009, 2, 641-648.
[64]
Munoz, R.; Alvarez, M.T.; Munoz, A.; Terrazas, E.; Guieysse, B.; Mattiasson, B. Sequential removal of heavy metal ions and organic pollutants using an algal-bacterial consortium. Chemosphere, 2006, 63, 903-911.
[65]
Han, X.; Wong, Y.S.; Tam, N.F. Surface complexation mechanism and modeling in Cr(III) biosorption by a microalgal isolate, Chlorella miniata. J. Coll. Interf. Sci., 2006, 303, 365-371.
[66]
Solisio, C.; Lodi, A.; Soletto, D.; Converti, A. Cadmium biosorption on Spirulina platensis biomass. Bioresour. Technol., 2008, 99, 5933-5937.
[67]
Lee, J.Y.; Knon, T.S.; Baek, K.; Yang, J.W. Adsorption characteristics of metal ions by CO2-fixing Chlorella sp. HA-1. J. Ind. Eng. Chem., 2009, 15, 354-358.
[68]
Maznah, W.O.W.; Al-Fawwaz, A.T.; Surif, M. Biosorption of copper and zinc by immobilised and free algal biomass, and the effects of metal biosorption on the growth and cellular structure of Chlorella sp. and Chlamydomonas sp. isolated from rivers in Penang, Malaysia. J. Environ. Sci., 2012, 24, 1386-1393.
[69]
Gokhale, S.V.; Jyoti, K.K.; Lele, S.S. Kinetic and equilibrium modeling of chromium (VI) biosorption on fresh and spent Spirulina platensis/Chlorella vulgaris biomass. Bioresour. Technol., 2008, 99, 3600-3608.
[70]
Inthorn, D.; Sidtitoon, N.; Silapanuntakul, S.; Incharoensakdi, A. Sorption of mercury, cadmium and lead by microalgae. Sci. Asia, 2002, 28, 253-261.
[71]
Ferreira, L.S.; Rodrigues, M.S.; De Carvalho, J.C.M.; Lodi, A.; Finocchio, E.; Perego, P.; Converti, A. Adsorption of Ni2+, Zn2+ and Pb2+ onto dry biomass of Arthrospira (Spirulina) platensis and Chlorella vulgaris. I. single metal systems. Chem. Eng. J., 2011, 173, 326-333.
[72]
Jácome-Pilco, C.R.; Cristiani-Urbina, E.; Flores-Cotera, L.B.; Velasco-García, R.; Ponce-Noyola, T.; Cañizares-Villanueva, R.O. Continuous Cr(VI) removal by Scenedesmus incrassatulus in an airlift photobioreactor. Bioresour. Technol., 2009, 100, 2388-2391.
[73]
Monteiro, C.M.; Castro, P.M.L.; Malcata, F.X. Biosorption of zinc ions from aqueous solution by the microalga Scenedesmus obliquus. Environ. Chem. Lett., 2011, 9, 169-176.
[74]
Dönmez, G.Ç.; Aksu, Z.; Öztürk, A.; Kutsal, T. A comparative study on heavy metal biosorption characteristics of some algae. Process Biochem., 1999, 34, 885-892.
[75]
Monteiro, C.M.; Castro, P.M.L.; Malcata, F.X. Capacity of simultaneous removal of zinc and cadmium from contaminated media, by two microalgae isolated from a polluted site. Environ. Chem. Lett., 2011, 9, 511-517.
[76]
Schmitt, D.; Müller, A.; Csögör, Z.; Frimmel, F.H.; Posten, C. The adsorption kinetics of metal ions onto different microalgae and siliceous earth. Water Res., 2001, 35, 779-785.
[77]
Tüzün, I.; Bayramoglu, G.; Yalçın, E.; Basaran, G.; Çelik, G.; Arıca, M.Y. Equilibrium and kinetic studies on biosorption of Hg (II), Cd (II) and Pb (II) ions onto microalgae Chlamydomonas reinhardtii. J. Environ. Manage., 2005, 77, 85-92.
[78]
Arica, M.Y.; Tüzün, I.; Yalçin, E.; Ince, Ö.; Bayramoğlu, G. Utilisation of native, heat and acid-treated microalgae Chlamydomonas reinhardtii preparations for biosorption of Cr(VI) ions. Process Biochem., 2005, 40, 2351-2358.
[79]
Macfie, S.M.; Welbourn, P.M. The cell wall as a barrier to uptake of metal ions in the unicellular green alga Chlamydomonas reinhardtii (Chlorophyceae). Arch. Environ. Contam. Toxicol., 2000, 39, 413-419.
[80]
Arunakumara, K.K.I.U.; Zhang, X.; Song, X. Bioaccumulation of Pb2+ and its effects on growth, morphology and pigment contents of Spirulina (Arthrospira) platensis. J. Ocean Univ. China, 2008, 7, 397-403.
[81]
Doshi, H.; Ray, A.; Kothari, I.L. Bioremediation potential of live and dead Spirulina: Spectroscopic, kinetics and SEM studies. Biotechnol. Bioeng., 2007, 96, 1051-1063.
[82]
Mohanpuria, P.; Rana, N.K.; Yadav, S.K. Biosynthesis of nanoparticles: Technological concepts and future applications. J. Nanopart. Res., 2008, 10, 507-517.
[83]
Antunes, F.S.; Dal’Acquan, N.; Bergmann, C.P.; Giovanela, M. Synthesis, characterization and application of silver nanoparticles as antimicrobial agents. Estudos Tecnol. Eng., 2013, 9, 20-26.
[84]
Saifuddin, N.; Wong, C.W.; Yasumira, A.A.N. Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation. E-J. Chem., 2009, 6, 61-70.
[85]
Suganya, K.S.U.; Govindaraju, K.; Kumar, V.G.; Dhas, T.S.; Karthick, V.; Singaravelu, G.; Elanchezhiyan, M. Size controlled biogenic silver nanoparticles as antibacterial agent against isolates from HIV infected patients. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 144, 266-272.
[86]
Govindaraju, K.; Krishnamoorthy, K.; Alsagaby, S.A.; Singaravelu, G.; Premanathan, M. Green synthesis of silver nanoparticles for selective toxicity towards cancer cells. IET Nanobiotechnol., 2015, 9, 325-330.
[87]
Eby, D.M.; Luckarift, H.R.; Johnson, G.R. Hybrid antimicrobial enzyme and silver nanoparticle coatings for medical instruments. ACS Appl. Mater. Interf, 2009, 1, 1553-1560.
[88]
Benyettou, F.; Rezgui, R.; Ravaux, F.; Jaber, T.; Blumer, K.; Jouiad, M.; Motte, L.; Olsen, J.C.; Platas-Iglesias, C.; Magzoub, M.; Trabolsi, A. Synthesis of silver nanoparticles for the dual delivery of doxorubicin and alendronate to cancer cells. J. Mater. Chem. B., 2015, 3, 7237-7245.
[89]
Becaro, A.A.; Puti, F.C.; Correa, D.S.; Paris, E.C.; Marconcini, J.M.; Ferreira, M.D. Polyethylene films containing silver nanoparticles for applications in food packaging: Characterization of physico-chemical and anti-microbial properties. J. Nanosci. Nanotechnol., 2015, 15, 2148-2156.
[90]
Benn, T.; Cavanagh, B.; Hristovski, K.; Posner, J.D.; Westerhoff, P. The release of nanosilver from consumer products used in the home. J. Environ. Qual., 2010, 39, 1875-1882.
[91]
Rigo, C.; Ferroni, L.; Tocco, I.; Roman, M.; Munivrana, I.; Gardin, C.; Cairns, W.R.L.; Vindigni, V.; Azzena, B.; Barbante, C.; Zavan, B. Active silver nanoparticles for wound healing. Int. J. Mol. Sci., 2013, 14, 4817-4840.
[92]
Dankovich, T.A.; Gray, D.G. Bactericidal paper impregnated with silver nanoparticles for point-of-use water treatment. Environ. Sci. Technol., 2011, 45, 1992-1998.
[93]
Fabrega, J.; Luoma, S.N.; Tyler, C.R.; Galloway, T.S.; Lead, J.R. Silver nanoparticles: Behaviour and effects in the aquatic environment. Environ. Int., 2011, 37, 517-531.
[94]
Zhang, C.; Hu, Z.; Deng, B. Silver nanoparticles in aquatic environments: Physiochemical behavior and antimicrobial mechanisms. Water Res., 2016, 88, 403-427.
[95]
Selvam, K.; Sudhakar, C.; Govarthanan, M.; Thiyagarajan, P.; Sengottaiyan, A.; Senthilkumar, B.; Selvankumar, T. Eco-friendly biosynthesis and characterization of silver nanoparticles using Tinospora cordifolia (Thunb.) Miers and evaluate its antibacterial, antioxidant potential. J. Radiat. Res. Appl. Sci., 2017, 10, 6-12.
[96]
Fernández, J.G.; Fernández-Baldo, M.A.; Berni, E.; Camí, G.; Durán, N.; Raba, J.; Sanz, M.I. Production of silver nanoparticles using yeasts and evaluation of their antifungal activity against phytopathogenic fungi. Process Biochem., 2016, 51, 1306-1313.
[97]
Venugopal, K.; Rather, H.A.; Rajagopal, K.; Shanthi, M.P.; Sheriff, K.; Illiyas, M.; Rather, R.A.; Manikandan, E.; Uvarajan, S.; Bhaskar, M.; Maaza, M. Synthesis of Silver Nanoparticles (AgNPs) for anticancer activities (MCF 7 breast and A549 lung cell lines) of the crude extract of Syzygium aromaticum. J. Photochem. Photobiol. B, 2016, 167, 282-289.
[98]
Jacob, J.A.; Shanmugam, A. Silver nanoparticles provoke apoptosis of Dalton’s ascites lymphoma in vivo by mitochondria dependent and independent pathways. Coll. Surf. B Biointerf., 2015, 136, 1011-1016.
[99]
Ganesh, M.; Aziz, A.S.; Ubaidulla, U.; Hemalatha, P.; Saravanakumar, A.; Ravikumar, R.; Peng, M.M.; Choi, E.Y.; Jang, H.T. Sulfanilamide and silver nanoparticles-loaded polyvinyl alcohol-chitosan composite electrospun nanofibers: Synthesis and evaluation on synergism in wound healing. J. Ind. Eng. Chem., 2016, 39, 127-135.
[100]
Rath, G.; Hussain, T.; Chauhan, G.; Garg, T.; Goyal, A.K. Collagen nanofiber containing silver nanoparticles for improved wound-healing applications. J. Drug Target., 2015, 24, 520-529.
[101]
Sarkheil, M.; Sourinejad, I.; Mirbakhsh, M.; Kordestani, D.; Johari, S.A. Application of silver nanoparticles immobilized on TEPA-Den-SiO2 as water filter media for bacterial disinfection in culture of Penaeid shrimp larvae. Aquacult. Eng., 2016, 74, 17-29.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 4
Year: 2019
Published on: 19 March, 2019
Page: [369 - 376]
Pages: 8
DOI: 10.2174/1570193X15666180626141922
Price: $65

Article Metrics

PDF: 48
HTML: 3