Nucleophilic Vinyl/Allyl, CF3 and CF2α Perfluoroalkyl Groups Substitution and/or E1CB Elimination Reactions of Fluorine Atom(s) in Organofluorinated Compounds

Author(s): Nejib Hussein Mekni*

Journal Name: Mini-Reviews in Organic Chemistry

Volume 16 , Issue 5 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Direct substitution and elimination reactions of the fluorine atoms of difluoromethylene CF2α groups of nonspaced perfluoroalkyl chains, CF3 groups are very difficult to achieve. But, they become feasible with fluoro-alkenes, alkynes, imines or carbonyl derivatives, for which vinylic substitution and related carbanion-mediated pathways are available. In this review, we classify the major and unique fluorine substitution/elimination and rearrangement reactions and discuss their contribution to the synthesis of heterocyclic compounds.

Keywords: Fluorine elimination/substitution, perfluoroalkyl chain, trifluoromethyl, vinylic fluorine, allylic fluorine, organofluorinated compounds.

[1]
Kirsch, P. Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications. 2nd Ed.; Wiley-VCH: Weinheim, 2013; Maienfisch, P.; Hall, R.G. Chimia; , 2004, 58, p. 93-99.
[2]
Chambers, R.D. Organofluorine Chemistry: Fluorinated Alkenes and Reactive Intermediates; Springer: New York, 1997.
[3]
Zhang, X.; Wang, Z.; Chen, S.; Zhao, Z.; Yuan, W.; Wang, H.; Gao, X. Tuning the charge transport the charge transport property of naphthalene diimide derivatives by changing the substituted position of fluorine atom on molecular backbone. Chin. J. Chem., 2014, 32(10), 1057-1064.
[4]
Rybalova, T.V.; Bagryanskaya, I.Y. C-F…□, F…H. and F…F intermolecular interactions and F-aggregation: Role in crystal engineering of fluoroorganic compounds. J. Struct. Chem., 2009, 50(4), 741-753.
[5]
Dul, M.C.; Braibant, B.; Dourdain, S.; Pellet-Rostaing, S.; Bourgeois, D.; Meyer, D. Perfluoroalkyl vs. alkyl substituted malonamides: Supramolecular effects and consequences for extraction of metals. J. Fluor. Chem., 2017, 200, 59-65.
[6]
Purser, S.; Moore, P.R.; Swallow, S.; Gouverneur, V. Fluorine in medicinal chemistry. Chem. Soc. Rev., 2008, 37, 320-330.
[7]
Zhang, X.J.; Lai, T.B.; Kong, R.Y.C. Biology of fluoro-organic compounds. Top. Curr. Chem., 2012, 308, 365-404.
[8]
Babudri, F.; Farinola, G.M.; Naso, F.; Ragni, R. Fluorinated organic materials for electronic and optoelectronic applications: The role of the fluorine atom. Chem. Commun., 2007, 10, 1003-1022.
[9]
Zhao, Z.H.; Jin, H.; Zhang, Y.X.; Shen, Z.H.; Zou, D.C.; Fan, X.H. Synthesis and properties of dendritic emitters with fluorinated starburst oxadiazole core and twisted carbazole dendrons. Macromolecules, 2011, 44(6), 1405-1413.
[10]
Xu, J.; Cole, D.C.; Chang, C.P.B.; Ayyad, R.; Asselin, M.; Hao, W.; Gibbons, J.; Jelinsky, S.A.; Saraf, K.A.; Park, K. Inhibition of the Signal Transducer and Activator of Transcription-3 (STAT3) signaling pathway by 4-Oxo-1-Phenyl-1,4-Dihydroquinoline-3-carboxylic acid esters. J. Med. Chem., 2008, 51(14), 4115-4121.
[11]
Yang, W.Y.; Marrone, S.A.; Minors, N.; Zorio, D.A.R.; Alabugin, I.V. Fine-tuning alkyne cycloadditions: Insights into photochemistry responsible for the double-strand DNA cleavage via structural perturbations in diaryl alkyne conjugates. Beilstein J. Org. Chem., 2011, 7, 813-823.
[12]
O’Leary, E.M.; Jones, D.J.; O’Donovan, F.P.; O’Sullivan, T.P. Synthesis of fluorinated oxygen- and sulfur-containing heteroatomics. J. Fluor. Chem., 2015, 176, 93-120.
[13]
Dunitz, J.D. Organic fluorine: Odd man out. ChemBioChem, 2004, 5(5), 614-621.
[14]
Welch, J.T.; Eswarakrishman, S. Fluorine in Bioorganic Chemistry; Wiley: New York, 1990.
[15]
Schmitt, E.; Bouvet, S.; Pegot, B.; Panossian, A.; Vors, J.P.; Pazenok, S.; Magnier, E.; Leroux, F.R. Fluoroalkyl amino reagents for the introduction of the fluoro(trifluoromethoxy)methyl group onto arenes and heterocycles. Org. Lett., 2017, 19(18), 4960-4963.
[16]
Filler, R.; Kobayashi, Y.; Yagupolskii, L.M. Organofluorine compounds in medicinal chemistry and biomedical applications; Elsevier: Amsterdam, 1993.
[17]
Mekni, N.; Baklouti, A. Synthesis of new 1-substituted 4-perfluoro-alkyl tetrazol-5-ones. J. Fluor. Chem., 2008, 129(11), 1073-1075.
[18]
Rondestvedt, C.S. Jr.; Thayer, G.L.Jr. Nucleophilic displacements on β-(Perfluoroalkyl)ethyl iodides. Synthesis of acrylates containing heteroatoms. J. Org. Chem., 1977, 42(16), 2680-2683.
[19]
Mekni, N.H. Synthesis of new bis(3-perfluoroalkyl-1H-pyrazole) polyoxyethylene. J. Fluor. Chem., 2014, 168, 75-80.
[20]
Mekni, N.; Hedhli, A.; Baklouti, A. F-alkylation of bis(allyl) polyoxyethylene ethers. J. Fluor. Chem., 2002, 114(1), 43-46.
[21]
Brace, N.O. Syntheses with perfluoroalkyl radicals from perfluoroalkyl iodides. A rapid survey of synthetic possibilities with emphasis on practical applications. Part one: Alkenes, alkynes and allylic compounds. J. Fluor. Chem., 1999, 93(1), 1-25.
[22]
Barata-Vallejo, S.; Yerien, D.E.; Postigo, A. Benign perfluoroalkylation of aniline derivatives through photoredox organocatalysis under visible-light irradiation. Eur. J. Org. Chem., 2015, 36, 7869-7875.
[23]
Leclerc, M.C.; Bayne, J.M.; Lee, G.M.; Gorelsky, S.I.; Vasiliu, M.; Korobkov, I.; Harrison, D.J.; Dixon, D.A.; Baker, R.T. Perfluoroalkyl Cobalt(III) Fluoride and Bis(perfluoroalkyl) Complexes: Catalytic fluorination and selective difluorocarbene formation. J. Am. Chem. Soc., 2015, 137(51), 16064-16073.
[24]
Barata-Vallejo, S.; Flesia, M.M.; Lantano, B.; Arguello, J.E.; Penenory, A.B.; Postigo, A. Heterogeneous photoinduced homolytic aromatic substitution of electron-rich arenes with perfluoroalkyl groups in water and aqueous media. A radical-iron reaction. Eur. J. Org. Chem., 2013, 5, 998-1008.
[25]
Muller, K.; Faeh, C.; Diederich, F. Fluorine in pharmaceuticals: Looking beyond intuitions. Science, 2007, 317(5846), 1881-1886.
[26]
Kirk, K.L. Fluorination in medicinal chemistry: Methods, strategies, and recent developments. Org. Process Res. Dev., 2008, 12(2), 305-321.
[27]
Jeschke, P.; Baston, E.; Leroux, F.R. α-Fluorinated ethers as “exotic” entity in medicinal chemistry. Mini Rev. Med. Chem., 2007, 7(10), 1027-1034.
[28]
Kirk, K.L. Fluorine in medicinal chemistry: Recent therapeutic applications of fluorinated small molecules. J. Fluor. Chem., 2006, 127(8), 1013-1029.
[29]
Park, B.K.; Kitteringham, N.R.; O’Neill, P.M. Metabolism of fluorine-containing drugs. Annu. Rev. Pharmacol. Toxicol., 2001, 41, 443-470.
[30]
Leroux, F.R.; Manteau, B.; Vors, J.P.; Pazenok, S. Trifluoromethyl ethers-synthesis and properties of an unusual substituent. Beilstein J. Org. Chem., 2008, 4(13), 1-15.
[31]
Giornal, F.; Pazenok, S.; Rodefeld, L.; Lui, N.; Vors, J.P.; Leroux, F.R. Synthesis of diversely fluorinated pyrazoles as novel active agrochemical ingradients. J. Fluor. Chem., 2013, 152, 2-11.
[32]
Barata-Vallejo, S.; Postigo, A. Metal-mediated radical perfluoroalkylation of organic compounds. Coord. Chem. Rev., 2013, 257(21-22), 3051-3059.
[33]
Oka, N.; Murakami, R.; Kondo, T.; Wada, T. Stereocontrolled synthesis of dinucleoside phosphothiates using a fluorous tag. J. Fluor. Chem., 2013, 150, 85-91.
[34]
Geiger, S.D.; Xiao, J.; Shankar, A. Positive association between perfluoroalkyl chemicals and hyperuricemia in children. Am. J. Epidemiol., 2013, 177(11), 1255-1262.
[35]
Wang, Z.; Sun, T.; Chen, J.; Deng, H.; Shao, M.; Zhang, H.; Cao, W. Convient synthesis of perfluoroalkyl substituted 2-oxopyridine-fused 1,3-diazaheterocycles via a one-pot three-component reaction. Tetrahedron, 2013, 69(21), 4270-4275.
[36]
Wang, J.; Sanchez-Rosello, M.; Acena, J.L.; del Pozo, C.; Sorochinsky, A.E.; Fustero, S.; Soloshonok, V.A.; Liu, H. Fluorine in pharmaceutical industry: Fluorine-containing drugs introduction to the market in the last decade (2001-2011). Chem. Rev., 2014, 114(4), 2432-2506.
[37]
Vorob’ev, S.I. First- and second-generation perfluorocarbon emulsion. Pharm. Chem. J., 2009, 43(4), 209-218.
[38]
Furuya, T.; Machiya, K.; Fujioka, S.; Nakano, M.; Inagaki, K. Development of a novel acaricide, pyflubumide. J. Pestic. Sci., 2017, 42(3), 132-136.
[39]
Liu, C.; Cui, Z.; Yan, X.; Qi, Z.; Ji, M.; Li, X. Synthesis, fungicidal activity and mode of action of 4-phenyl-6-trifluoromethyl-2-aminopyrimidines against Botrytis cinerea. Molecules, 2016, 21(7), 828-843.
[40]
Sandmann, G. Bleaching activities of substituted pyrimidines and structure-activity comparison to related heterocyclic derivatives. Pestic. Biochem. Physiol., 2001, 70(2), 86-91.
[41]
Leroux, P. Chemical control of Botrytis and its resistance to chemical fungicides; Springer Neth, 2007, pp. 195-222.
[42]
Georgalas, I.; Ladas, I.; Tservakis, I.; Taliantzis, S.; Gotzaridis, E.; Papaconstantinou, D.; Koutsandrea, C. Perfluorocarbon liquids in vitreoretinal surgery: A review of applications and toxicity. Cutan. Ocul. Toxicol., 2011, 30(4), 251-262.
[43]
Kannan, K.; Tao, L.; Sinclair, E.; Pastva, S.D.; Jude, D.J.; Giesy, J.P. Perfluorinated compounds in aquatic organism at various trophic levels in great lakes food chain. Arch. Environ. Contam. Toxicol., 2005, 48(4), 559-566.
[44]
Banks, R.E.; Tatlow, J.C.; Smart, B.E. Organofluorine Chemistry: Principles and Commercial Applications; Plenum Press: New York, 1994.
[45]
Cambon, A.; Edwards, C.M.; Franke, R.P.; Lowe, K.C.; Reuter, P.; Rohlke, W.; Trabelsi, H.; Gambaretto, G.P.; Napoli, M.; Conte, L. Per(poly)fluorinated polyoxyethylated carbamates WO9749675. 1997.
[46]
Taxvig, C.; Rosenmai, A.K.; Vinggaard, A.M. Polyfluorinated alkyl phosphate ester surfactants-current knowledge and knowledge gaps. Basic Clin. Pharmacol. Toxicol., 2014, 115(1), 41-44.
[47]
Kissa, E. Fluorinated surfactants and repellents 2nd Ed, Surfactant science series 97. Marcel Dekker: New York. , 2001; p. pp. 640.
[48]
Taylor, C.K. Fluorinated surfactants in practice.Design and selection of performance surfactants: Annual surfactants review; Karsa, D., Ed.; John Wiley & Sons: New York, NY, 1999, pp. 271-316.
[49]
Kissa, E. Fluorinated surfactants: Synthesis-Properties-Applications (Surfactant science series 50); Marcel Dekker: New York, 1994, p. 469.
[50]
Wu, W.; Olesen, K.R.; Miner, A.R., II; Schneider, J.A. Blending vinyl acetate-ethylene and acrylic latexes to achieve targeted performance properties. JCT Coatingstech, 2008, 5(5), 44-52.
[51]
Hougham, G.; Cassidy, P.E.; Johns, K.; Davidson, T. Fluoropolymers 1: Synthesis in Topics in Applied Chemistry; Eds.; Kluwer Academic/Plenum Publishers: New York , 2002.
[52]
Amii, H.; Uneyama, K. C-F bond activation in organic synthesis. Chem. Rev., 2009, 109(5), 2119-2183.
[53]
Liu, C.; Zhang, B. Facile access to fluoroaromatic molecules by transition-metal-free C-F bond cleavage of polyfluoroarenes: An efficient, green, and sustainable protocol. Chem. Rec., 2016, 16(2), 667-687.
[54]
Chelucci, G. Synthesis and metal-catalyzed reactions of gem-dihalovinyl systems. Chem. Rev., 2012, 112(3), 1344-1462.
[55]
Furin, G.G.; Krysin, A.P.; Protsuk, N.I.; Lopyrev, V.A. Reaction of perfluoro(2-methylpent-2-ene) and perfluoro(5-azanon-4-ene) with primary amines containing a 2,6-di-tert-butylphenol fragment. Russ. J. Org. Chem., 2006, 42(10), 1429-1434.
[56]
Lecea, M.; Grassin, A.; Ferreiro-Mederos, L.; Choppin, S.; Urbano, A.; Carreno, M.C.; Colobert, F. One-step stereoselective synthesis of trisubstituted monofluoroalkenes from 3,3,3-trifluoropro-pionates. Eur. J. Org. Chem., 2013, 21, 4486-4489.
[57]
Zell, D.; Meller, V.; Dhawa, U.; Bursch, M.; Presa, R.R.; Grimme, S.; Ackermannm, L. Mild cobalt(III)-catalyzed allylative C-F/C-H functionalizations at room temperature. Chem. Eur. J, 2017, 23(50), 12145-12148.
[58]
Liu, Y.; Zhou, Y.; Zhao, Y.; Qu, J. Synthesis of gem-difluoroallylboranates via FeCl2-catalyzed boration/β-Fluorine elimination of trifluoromethyl alkenes. Org. Lett., 2017, 19(4), 946-949.
[59]
Sakaguchi, H.; Uetake, Y.; Ohashi, M.; Niwa, T.; Ogoshi, S.; Hosoya, T. Copper-catalyzed regioselective monodefluoroborylation of polyfluoroalkenes en route to diverse fluoroalkenes. J. Am. Chem. Soc., 2017, 139(36), 12855-12862.
[60]
Fuchibe, K.; Hatta, H.; Oh, K.; Oki, R.; Ichikawa, J. Lewis acid promoted single C-F bond activation of the CF3 group: SN1′-type 3,3-Difluoroallylation of arenes with 2-Trifluoromethyl-1-alkenes. Angew. Chem., 2017, 129(21), 5984-5987.
[61]
Fuchibe, K.; Takahashi, M.; Ichikawa, J. Substitution of two fluorine atoms in a trifluoromethyl group: Regioselective synthesis of 3-Fluoropyrazoles. Angew. Chem., 2012, 124(48), 12225-12228.
[62]
Tang, X.Q.; Hu, C.M. Synthesis of 3-perfluoroalkyl-, including 3-trifluoromethyl-, substituted pyrazoles from perfluoroalkylacetylenes. J. Fluor. Chem., 1995, 73(2), 129-131.
[63]
Zhang, B.; Zhang, X.; Hao, J.; Yang, C. Direct approach to N-substituted-2-fluoroindoles by sequential construction of C-N bond from gem-difluorostyrenes. Org. Lett., 2017, 19(7), 1780-1783.
[64]
Ohashi, M.; Ogoshi, S. Palladium-catalyzed cross-coupling reactions of perfluoro organic compounds. Catalysts, 2014, 4(3), 321-345.
[65]
Jedidi Yaich, B.; Amanatoullah, A.O.; Mekni, N.H.; Romdhani-Younes, M. Strudy of the zinc action on the 2-chloroethyl 2-bromo-2-perfluoroalkylethanoates. J. Taibah Univ. Sci., 2018, 12(3), 241-246.
[66]
Bourgeois, C.J.; Hughes, R.P.; Yuan, J.; DiPasquale, A.G.; Rheingold, A.L. α- and β-Fluorine elimination reactions induced by reduction of iridium-fluoroalkyl complexes. Selective formation of fluoroalkylidene and hydrofluoroalkene ligands. Organometallics, 2006, 25(12), 2908-2910.
[67]
Mykhailiuk, P.K.; Ishchenko, A.Y.; Stepanenko, V.; Cossy, J. Synthesis of fluoroalkyl pyrazoles from in situ generated C2F5CHN2 and electron-deficient alkenes. Eur. J. Org. Chem., 2016, 25, 5485-5499.
[68]
Charrada, B.; Ayach, W.; Hedhli, A.; Baklouti, A. Synthesis of unsaturated F-Alkyl sulfoxides. Synth. Commun., 2000, 30(15), 2813-2818.
[69]
Cochrane, A.; Kerr, W.J.; Sandella, J. Preparation of [3H]fluoroethyl tosylate and its use in the lbelling of dopamine transporter radioligand [3H]FE-PE2I. J. Labelled Comp. Radiopharm., 2013, 56(9-10), 447-450.
[70]
Fujita, T.; Arita, T.; Ichitsuka, T.; Ichikawa, J. Catalytic defluorinative [3+2]cycloaddition of trifluoromethylalkenes with alkynes via reduction of nickel(II) fluoride species. Dalton Trans., 2015, 44, 19460-19463.
[71]
Ichitsuka, T.; Fujita, T.; Arita, T.; Ichikawa, J. Double C-F bond activation through β-fluorine elimination: Nickel-mediated [3+2] cycloaddition of 2-trifluoromethyl-1-alkenes with alkynes. Angew. Chem, 2014, 126(29), 7694-7698.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 5
Year: 2019
Page: [453 - 462]
Pages: 10
DOI: 10.2174/1570193X15666180626130042
Price: $65

Article Metrics

PDF: 44
HTML: 3