Liver Radioembolization: An Analysis of Parameters that Influence the Catheter-Based Particle-Delivery via CFD

Author(s): Jorge Aramburu, Raúl Antón*, Alejandro Rivas, Juan C. Ramos, Bruno Sangro, José I. Bilbao

Journal Name: Current Medicinal Chemistry

Volume 27 , Issue 10 , 2020


  Journal Home
Translate in Chinese
Become EABM
Become Reviewer
Call for Editor

Abstract:

Radioembolization (RE) is a valuable treatment for liver cancer. It consists of administering radioactive microspheres by an intra-arterially placed catheter with the aim of lodging these microspheres, which are driven by the bloodstream, in the tumoral bed. Even though it is a safe treatment, some radiation-induced complications may arise. In trying to detect or solve the possible incidences that cause nontarget irradiation, simulating the particle- hemodynamics in hepatic arteries during RE by computational fluid dynamics (CFD) tools has become a valuable approach. This paper reviews the parameters that influence the outcome of RE and that have been studied via numerical simulations. In this numerical approach, the outcome of RE is regarded as successful if particles reach the artery branches that feed tumor-bearing liver segments. Up to 10 parameters have been reviewed. The variation of each parameter actually alters the hemodynamic pattern in the vicinities of the catheter tip and locally alters the incorporation of the particles into the bloodstream. Therefore, in general, the local influences of these parameters should result in global differences in terms of particle distribution in the hepatic artery branches. However, it has been observed that under some (qualitatively described) appropriate conditions where particles align with blood streamlines, the local influence resulting from a variation of a given parameter vanishes and no global differences are observed. Furthermore, the increasing number of CFD studies on RE suggests that numerical simulations have become an invaluable research tool in the study of RE.

Keywords: Radioembolization, hemodynamics, computational fluid-particle dynamics, liver cancer, hepatic artery, particle delivery.

[1]
Sangro, B.; Iñarrairaegui, M.; Bilbao, J.I. Radioembolization for hepatocellular carcinoma. J. Hepatol., 2012, 56(2), 464-473.
[http://dx.doi.org/10.1016/j.jhep.2011.07.012] [PMID: 21816126]
[2]
Saxena, A.; Bester, L.; Shan, L.; Perera, M.; Gibbs, P.; Meteling, B.; Morris, D.L. A systematic review on the safety and efficacy of yttrium-90 radioembolization for unresectable, chemorefractory colorectal cancer liver metastases. J. Cancer Res. Clin. Oncol., 2014, 140(4), 537-547.
[http://dx.doi.org/10.1007/s00432-013-1564-4] [PMID: 24318568]
[3]
Kennedy, A.; Nag, S.; Salem, R.; Murthy, R.; McEwan, A.J.; Nutting, C.; Benson, A., III; Espat, J.; Bilbao, J.I.; Sharma, R.A.; Thomas, J.P.; Coldwell, D. Recommendations for radioembolization of hepatic malignancies using yttrium-90 microsphere brachytherapy: a consensus panel report from the radioembolization brachytherapy oncology consortium. Int. J. Radiat. Oncol. Biol. Phys., 2007, 68(1), 13-23.
[http://dx.doi.org/10.1016/j.ijrobp.2006.11.060] [PMID: 17448867]
[4]
Bester, L.; Meteling, B.; Boshell, D.; Chua, T.C.; Morris, D.L. Transarterial chemoembolisation and radioembolisation for the treatment of primary liver cancer and secondary liver cancer: a review of the literature. J. Med. Imaging Radiat. Oncol., 2014, 58(3), 341-352.
[http://dx.doi.org/10.1111/1754-9485.12163] [PMID: 24589204]
[5]
Ariel, I.M. Treatment of inoperable primary pancreatic and liver cancer by the intra-arterial administration of radioactive isotopes (Y90 radiating microspheres). Ann. Surg., 1965, 162(2), 267-278.
[http://dx.doi.org/10.1097/00000658-196508000-00018] [PMID: 14327011]
[6]
Gaba, R.C.; Lewandowski, R.J.; Hickey, R.; Baerlocher, M.O.; Cohen, E.I.; Dariushnia, S.R.; Janne d’Othée, B.; Padia, S.A.; Salem, R.; Wang, D.S.; Nikolic, B.; Brown, D.B. Transcatheter therapy for hepatic malignancy: standardization of terminology and reporting criteria. J. Vasc. Interv. Radiol., 2016, 27(4), 457-473.
[http://dx.doi.org/10.1016/j.jvir.2015.12.752] [PMID: 26851158]
[7]
Llovet, J.M.; Zucman-Rossi, J.; Pikarsky, E.; Sangro, B.; Schwartz, M.; Sherman, M.; Gores, G. Hepatocellular carcinoma. Nat. Rev. Dis. Primers, 2016, 2(3), 16018.
[http://dx.doi.org/10.1038/nrdp.2016.18] [PMID: 27158749]
[8]
Bilbao, J.I.; Reiser, M.F. Liver Radioembolization with 90Y Microspheres, 2nd ed; Springer Berlin Heidelberg: Berlin, Heidelberg, 2014.
[http://dx.doi.org/10.1007/978-3-642-36473-0]
[9]
Breedis, C.; Young, G. The blood supply of neoplasms in the liver. Am. J. Pathol., 1954, 30(5), 969-977.
[PMID: 13197542]
[10]
Ahmadzadehfar, H.; Biersack, H-J.; Ezziddin, S. Radioembolization of liver tumors with yttrium-90 microspheres. Semin. Nucl. Med., 2010, 40(2), 105-121.
[http://dx.doi.org/10.1053/j.semnuclmed.2009.11.001] [PMID: 20113679]
[11]
Murthy, R.; Kamat, P.; Nuñez, R.; Salem, R. Radioembolization of yttrium-90 microspheres for hepatic malignancy. Semin. Intervent. Radiol., 2008, 25(1), 48-57.
[http://dx.doi.org/10.1055/s-2008-1052306] [PMID: 21326493]
[12]
Vesselle, G.; Petit, I.; Boucebci, S.; Rocher, T.; Velasco, S.; Tasu, J-P. Radioembolization with yttrium-90 microspheres work up: Practical approach and literature review. Diagn. Interv. Imaging, 2015, 96(6), 547-562.
[http://dx.doi.org/10.1016/j.diii.2014.03.014] [PMID: 24776810]
[13]
Denys, A.; Pracht, M.; Duran, R.; Guiu, B.; Adib, S.; Boubaker, A.; Bize, P. How to prepare a patient for transarterial radioembolization? A practical guide. Cardiovasc. Intervent. Radiol., 2015, 38(4), 794-805.
[http://dx.doi.org/10.1007/s00270-015-1071-x] [PMID: 25828724]
[14]
Chiesa, C.; Mira, M.; Maccauro, M.; Spreafico, C.; Romito, R.; Morosi, C.; Camerini, T.; Carrara, M.; Pellizzari, S.; Negri, A.; Aliberti, G.; Sposito, C.; Bhoori, S.; Facciorusso, A.; Civelli, E.; Lanocita, R.; Padovano, B.; Migliorisi, M.; De Nile, M.C.; Seregni, E.; Marchianò, A.; Crippa, F.; Mazzaferro, V. Radioembolization of hepatocarcinoma with (90)Y glass microspheres: development of an individualized treatment planning strategy based on dosimetry and radiobiology. Eur. J. Nucl. Med. Mol. Imaging, 2015, 42(11), 1718-1738.
[http://dx.doi.org/10.1007/s00259-015-3068-8] [PMID: 26112387]
[15]
Kumar, Y.; Sharma, P.; Bhatt, N.; Hooda, K. Transarterial therapies for hepatocellular carcinoma: A comprehensive review with current updates and future directions. Asian Pac. J. Cancer Prev., 2016, 17(2), 473-478.
[http://dx.doi.org/10.7314/APJCP.2016.17.2.473] [PMID: 26925630]
[16]
Riaz, A.; Lewandowski, R.J.; Kulik, L.M.; Mulcahy, M.F.; Sato, K.T.; Ryu, R.K.; Omary, R.A.; Salem, R. Complications following radioembolization with yttrium-90 microspheres: a comprehensive literature review. J. Vasc. Interv. Radiol., 2009, 20(9), 1121-1130.
[http://dx.doi.org/10.1016/j.jvir.2009.05.030] [PMID: 19640737]
[17]
Couinaud, C. [The anatomy of the liver]. Ann. Ital. Chir., 1992, 63(6), 693-697.
[PMID: 1305370]
[18]
Jiang, M.; Fischman, A.; Nowakowski, F.S.; Heiba, S.; Zhang, Z.; Knesaurek, K.; Weintraub, J.; Machac, J. Segmental perfusion differences on paired Tc-99m macroaggregated albumin (MAA) hepatic perfusion imaging and yttrium-90 (Y-90) bremsstrahlung imaging studies in SIR-sphere radioembolization: Associations with angiography. J. Nucl. Med. Radiat. Ther., 2012, 3(122)
[http://dx.doi.org/10.4172/2155-9619.1000122]
[19]
Wondergem, M.; Smits, M.L.J.; Elschot, M.; de Jong, H.W.A.M.; Verkooijen, H.M.; van den Bosch, M.A.A.J.; Nijsen, J.F.W.; Lam, M.G.E.H. 99mTc-macroaggregated albumin poorly predicts the intrahepatic distribution of 90Y resin microspheres in hepatic radioembolization. J. Nucl. Med., 2013, 54(8), 1294-1301.
[http://dx.doi.org/10.2967/jnumed.112.117614] [PMID: 23749996]
[20]
Kao, Y.H. A clinical dosimetric perspective uncovers new evidence and offers new insight in favor of 99mTc-macroaggregated albumin for predictive dosimetry in 90Y resin microsphere radioembolization. J. Nucl. Med., 2013, 54(12), 2191-2192.
[http://dx.doi.org/10.2967/jnumed.113.128553] [PMID: 24198389]
[21]
Lam, M.G.E.H.; Wondergem, M.; Elschot, M.; Smits, M.L.J. Reply: A clinical dosimetric perspective uncovers new evidence and offers new insight in favor of 99mTc-macroaggregated albumin for predictive dosimetry in 90Y resin microsphere radioembolization. J. Nucl. Med., 2013, 54(12), 2192-2193.
[http://dx.doi.org/10.2967/jnumed.113.132852] [PMID: 24198388]
[22]
Ulrich, G.; Dudeck, O.; Furth, C.; Ruf, J.; Grosser, O.S.; Adolf, D.; Stiebler, M.; Ricke, J.; Amthauer, H. Predictive value of intratumoral 99mTc-macroaggregated albumin uptake in patients with colorectal liver metastases scheduled for radioembolization with 90Y-microspheres. J. Nucl. Med., 2013, 54(4), 516-522.
[http://dx.doi.org/10.2967/jnumed.112.112508] [PMID: 23447653]
[23]
Eisenhauer, E.A.; Therasse, P.; Bogaerts, J.; Schwartz, L.H.; Sargent, D.; Ford, R.; Dancey, J.; Arbuck, S.; Gwyther, S.; Mooney, M.; Rubinstein, L.; Shankar, L.; Dodd, L.; Kaplan, R.; Lacombe, D.; Verweij, J. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur. J. Cancer, 2009, 45(2), 228-247.
[http://dx.doi.org/10.1016/j.ejca.2008.10.026] [PMID: 19097774]
[24]
Dhabuwala, A.; Lamerton, P.; Stubbs, R.S. Relationship of 99mtechnetium labelled macroaggregated albumin (99mTc-MAA) uptake by colorectal liver metastases to response following Selective Internal Radiation Therapy (SIRT). BMC Nucl. Med., 2005, 5(1), 7.
[http://dx.doi.org/10.1186/1471-2385-5-7] [PMID: 16375764]
[25]
Lam, M.G.E.H.; Smits, M.L.J. Value of 99mTc-macroaggregated albumin SPECT for radioembolization treatment planning. J. Nucl. Med., 2013, 54(9), 1681-1682.
[http://dx.doi.org/10.2967/jnumed.113.123281] [PMID: 23781011]
[26]
Ulrich, G.; Dudeck, O.; Grosser, O.S.; Amthauer, H. Reply: Value of 99mTc-macroaggregated albumin SPECT for radioembolization treatment planning. J. Nucl. Med., 2013, 54(9), 1682-1682.
[http://dx.doi.org/10.2967/jnumed.113.123349] [PMID: 23918732]
[27]
Chiesa, C.; Lambert, B.; Maccauro, M.; Ezziddin, S.; Ahmadzadehfar, H.; Dieudonné, A.; Cremonesi, M.; Konijnenberg, M.; Lassmann, M.; Pettinato, C.; Strigari, L.; Vanderlinden, B.; Crippa, F.; Flamen, P.; Garin, E. Pretreatment dosimetry in HCC radioembolization with 90Y glass microspheres cannot Be invalidated with a bare visual evaluation of 99mTc-MAA uptake of colorectal metastases treated with resin microspheres. J. Nucl. Med., 2014, 55(7), 1215-1216.
[http://dx.doi.org/10.2967/jnumed.113.129361] [PMID: 24898027]
[28]
Amthauer, H.; Ulrich, G.; Grosser, O.S.; Ricke, J. Reply: pretreatment dosimetry in HCC radioembolization with 90Y glass microspheres cannot be invalidated with a bare visual evaluation of 99mTc-MAA uptake of colorectal metastases treated with resin microspheres. J. Nucl. Med., 2014, 55(7), 1216-1218.
[http://dx.doi.org/10.2967/jnumed.114.138198] [PMID: 24898024]
[29]
Morshedi, M.M.; Bauman, M.; Rose, S.C.; Kikolski, S.G. Yttrium-90 resin microsphere radioembolization using an antireflux catheter: an alternative to traditional coil embolization for nontarget protection. Cardiovasc. Intervent. Radiol., 2015, 38(2), 381-388.
[http://dx.doi.org/10.1007/s00270-014-0941-y] [PMID: 24989143]
[30]
Rose, S.C.; Kikolski, S.G.; Chomas, J.E. Downstream hepatic arterial blood pressure changes caused by deployment of the surefire antireflux expandable tip. Cardiovasc. Intervent. Radiol., 2013, 36(5), 1262-1269.
[http://dx.doi.org/10.1007/s00270-012-0538-2] [PMID: 23250493]
[31]
Arepally, A.; Chomas, J.; Kraitchman, D.; Hong, K. Quantification and reduction of reflux during embolotherapy using an antireflux catheter and tantalum microspheres: ex vivo analysis. J. Vasc. Interv. Radiol., 2013, 24(4), 575-580.
[http://dx.doi.org/10.1016/j.jvir.2012.12.018] [PMID: 23462064]
[32]
van den Hoven, A.F.; Prince, J.F.; Samim, M.; Arepally, A.; Zonnenberg, B.A.; Lam, M.G.E.H.; van den Bosch, M.A.A.J. Posttreatment PET-CT-confirmed intrahepatic radioembolization performed without coil embolization, by using the antireflux Surefire Infusion System. Cardiovasc. Intervent. Radiol., 2014, 37(2), 523-528.
[http://dx.doi.org/10.1007/s00270-013-0674-3] [PMID: 23756882]
[33]
Pasciak, A.S.; McElmurray, J.H.; Bourgeois, A.C.; Heidel, R.E.; Bradley, Y.C. The impact of an antireflux catheter on target volume particulate distribution in liver-directed embolotherapy: a pilot study. J. Vasc. Interv. Radiol., 2015, 26(5), 660-669.
[http://dx.doi.org/10.1016/j.jvir.2015.01.029] [PMID: 25801854]
[34]
van den Hoven, A.F.; Lam, M.G.E.H.; Jernigan, S.; van den Bosch, M.A.A.J.; Buckner, G.D. Innovation in catheter design for intra-arterial liver cancer treatments results in favorable particle-fluid dynamics. J. Exp. Clin. Cancer Res., 2015, 34(1), 74.
[http://dx.doi.org/10.1186/s13046-015-0188-8] [PMID: 26231929]
[35]
Kleinstreuer, C.; Feng, Y.; Childress, E. Drug-targeting methodologies with applications: A review. World J. Clin. Cases, 2014, 2(12), 742-756.
[http://dx.doi.org/10.12998/wjcc.v2.i12.742] [PMID: 25516850]
[36]
Kleinstreuer, C. Methods and devices for targeted injection of microspheres. US 2012/0190976 A1, 2012.
[37]
Aramburu, J.; Antón, R.; Rivas, A.; Ramos, J.C.; Sangro, B.; Bilbao, J.I. Computational particle-haemodynamics analysis of liver radioembolization pretreatment as an actual treatment surrogate. Int. J. Numer. Methods Biomed. Eng., 2017, 33(2), e02791
[http://dx.doi.org/10.1002/cnm.2791] [PMID: 27038438]
[38]
Aramburu, J.; Antón, R.; Rivas, A.; Ramos, J.C.; Sangro, B.; Bilbao, J.I. Computational assessment of the effects of the catheter type on particle-hemodynamics during liver radioembolization. J. Biomech., 2016, 49(15), 3705-3713.
[http://dx.doi.org/10.1016/j.jbiomech.2016.09.035] [PMID: 27751570]
[39]
Anderson, J.D. Computational Fluid Dynamics: The Basics with Applications; McGraw-Hill: Singapore, 1995.
[40]
Batchelor, G.K. An introduction to fluid dynamics; Cambridge University Press: Cambridge, 2000.
[http://dx.doi.org/10.1017/CBO9780511800955]
[41]
Kenner, T. The measurement of blood density and its meaning. Basic Res. Cardiol., 1989, 84(2), 111-124.
[http://dx.doi.org/10.1007/BF01907921] [PMID: 2658951]
[42]
Buchanan, J.R.; Kleinstreuer, C.; Comer, J.K. Rheological effects on pulsatile hemodynamics in a stenosed tube. Comput. Fluids, 2000, 29(6), 695-724.
[http://dx.doi.org/10.1016/S0045-7930(99)00019-5]
[43]
Basciano, C.A.; Kleinstreuer, C.; Kennedy, A.S.; Dezarn, W.A.; Childress, E. Computer modeling of controlled microsphere release and targeting in a representative hepatic artery system. Ann. Biomed. Eng., 2010, 38(5), 1862-1879.
[http://dx.doi.org/10.1007/s10439-010-9955-z] [PMID: 20162358]
[44]
Richards, A.L.; Kleinstreuer, C.; Kennedy, A.S.; Childress, E.; Buckner, G.D. Experimental microsphere targeting in a representative hepatic artery system. IEEE Trans. Biomed. Eng., 2012, 59(1), 198-204.
[http://dx.doi.org/10.1109/TBME.2011.2170195] [PMID: 21965193]
[45]
Grinberg, L.; Karniadakis, G.E. Outflow boundary conditions for arterial networks with multiple outlets. Ann. Biomed. Eng., 2008, 36(9), 1496-1514.
[http://dx.doi.org/10.1007/s10439-008-9527-7] [PMID: 18612828]
[46]
Basciano, C.A. PhD Thesis: Computational particlehemodynamics analysis applied to an abdominal aortic aneurysm with thrombus and microsphere-targeting of liver tumors, North Carolina State University, Raleigh, North Carolina. 2010.
[47]
Aramburu, J.; Antón, R.; Bernal, N.; Rivas, A.; Ramos, J.C.; Sangro, B.; Bilbao, J.I. Physiological outflow boundary conditions methodology for small arteries with multiple outlets: a patient-specific hepatic artery haemodynamics case study. Proc. Inst. Mech. Eng. H, 2015, 229(4), 291-306.
[http://dx.doi.org/10.1177/0954411915578549] [PMID: 25934258]
[48]
Aramburu, J.; Antón, R.; Rivas, A.; Ramos, J.C.; Sangro, B.; Bilbao, J.I. Liver cancer arterial perfusion modelling and CFD boundary conditions methodology: a case study of the haemodynamics of a patient-specific hepatic artery in literature-based healthy and tumour-bearing liver scenarios. Int. J. Numer. Methods Biomed. Eng., 2016, 32(11), e02764
[http://dx.doi.org/10.1002/cnm.2764] [PMID: 26727946]
[49]
Childress, E.M.; Kleinstreuer, C.; Kennedy, A.S. A new catheter for tumor-targeting with radioactive microspheres in representative hepatic artery systems--part II: solid tumor-targeting in a patient-inspired hepatic artery system. J. Biomech. Eng., 2012, 134(5), 051005
[http://dx.doi.org/10.1115/1.4006685] [PMID: 22757493]
[50]
Van de Wiele, C.; Maes, A.; Brugman, E.; D’Asseler, Y.; De Spiegeleer, B.; Mees, G.; Stellamans, K. SIRT of liver metastases: physiological and pathophysiological considerations. Eur. J. Nucl. Med. Mol. Imaging, 2012, 39(10), 1646-1655.
[http://dx.doi.org/10.1007/s00259-012-2189-6] [PMID: 22801733]
[51]
Caine, M.; McCafferty, M.S.; McGhee, S.; Garcia, P.; Mullett, W.M.; Zhang, X.; Hill, M.; Dreher, M.R.; Lewis, A.L. Impact of yttrium-90 microsphere density, flow dynamics, and administration technique on spatial pistribution: analysis using an in vitro model. J. Vasc. Interv. Radiol., 2017, 28(2), 260-268.e2.
[http://dx.doi.org/10.1016/j.jvir.2016.07.001] [PMID: 27641675]
[52]
Kleinstreuer, C.; Basciano, C.A.; Childress, E.M.; Kennedy, A.S. A new catheter for tumor targeting with radioactive microspheres in representative hepatic artery systems. Part I: impact of catheter presence on local blood flow and microsphere delivery. J. Biomech. Eng., 2012, 134(5), 051004
[http://dx.doi.org/10.1115/1.4006684] [PMID: 22757492]
[53]
Aramburu, J.; Antón, R.; Rivas, A.; Ramos, J.C.; Sangro, B.; Bilbao, J.I. Numerical investigation of liver radioembolization via computational particle-hemodynamics: The role of the microcatheter distal direction and microsphere injection point and velocity. J. Biomech., 2016, 49(15), 3714-3721.
[http://dx.doi.org/10.1016/j.jbiomech.2016.09.034] [PMID: 27751569]
[54]
Aramburu, J.; Antón, R.; Rivas, A.; Ramos, J.C.; Sangro, B.; Bilbao, J.I. The role of angled-tip microcatheter and microsphere injection velocity in liver radioembolization: A computational particle-hemodynamics study. Int. J. Numer. Methods Biomed. Eng., 2017, 33(12), e2895
[http://dx.doi.org/10.1002/cnm.2895] [PMID: 28474382]
[55]
Basciano, C.A.; Kleinstreuer, C.; Kennedy, A.S. Computational fluid dynamics modeling of 90Y microspheres in human hepatic tumors. J. Nucl. Med. Radiat. Ther., 2011, 1(1)
[http://dx.doi.org/10.4172/2155-9619.1000112]
[56]
Childress, E.M.; Kleinstreuer, C. Computationally efficient particle release map determination for direct tumor-targeting in a representative hepatic artery system. J. Biomech. Eng., 2014, 136(1), 011012
[http://dx.doi.org/10.1115/1.4025881] [PMID: 24190601]
[57]
Childress, E.M.; Kleinstreuer, C. Impact of fluid-structure interaction on direct tumor-targeting in a representative hepatic artery system. Ann. Biomed. Eng., 2014, 42(3), 461-474.
[http://dx.doi.org/10.1007/s10439-013-0910-7] [PMID: 24048712]
[58]
Michels, N.A. Newer anatomy of the liver and its variant blood supply and collateral circulation. Am. J. Surg., 1966, 112(3), 337-347.
[http://dx.doi.org/10.1016/0002-9610(66)90201-7] [PMID: 5917302]
[59]
Hiatt, J.R.; Gabbay, J.; Busuttil, R.W. Surgical anatomy of the hepatic arteries in 1000 cases. Ann. Surg., 1994, 220(1), 50-52.
[http://dx.doi.org/10.1097/00000658-199407000-00008] [PMID: 8024358]
[60]
Kennedy, A.S.; Kleinstreuer, C.; Basciano, C.A.; Dezarn, W.A. Computer modeling of yttrium-90-microsphere transport in the hepatic arterial tree to improve clinical outcomes. Int. J. Radiat. Oncol. Biol. Phys., 2010, 76(2), 631-637.
[http://dx.doi.org/10.1016/j.ijrobp.2009.06.069] [PMID: 19910131]
[61]
Sznitman, J.; Steinman, D.A. Relevance and challenges of computational fluid dynamics in the biomedical sciences. J. Biomech., 2016, 49(11), 2101.
[http://dx.doi.org/10.1016/j.jbiomech.2016.07.017] [PMID: 27481635]
[62]
Ballyk, P.D. Numerical/experimental synergy: more than just a reality check. J. Vasc. Interv. Radiol., 2015, 26(2), 259-261.
[http://dx.doi.org/10.1016/j.jvir.2014.12.003] [PMID: 25645415]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 27
ISSUE: 10
Year: 2020
Published on: 26 March, 2020
Page: [1600 - 1615]
Pages: 16
DOI: 10.2174/0929867325666180622145647
Price: $65

Article Metrics

PDF: 34
HTML: 5
EPUB: 1
PRC: 2