Isolation of Natural Compounds from Syzygium densiflorum Fruits and Exploring its Chemical Property, Therapeutic Role in Diabetic Management

Author(s): Krishnasamy Gopinath, Nagarajan Subbiah, Muthusamy Karthikeyan*

Journal Name: The Natural Products Journal

Volume 10 , Issue 2 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Syzygium densiflorum Wall. ex Wight & Arn (Myrtaceae) has been traditionally used by the local tribes of the Nilgiris, Tamil Nadu, India, for the treatment of diabetes.

Objective: This study aimed to isolate the major phytoconstituents from the S. densiflorum fruits and to perform computational studies for chemical reactivity and biological activity of the isolated compound.

Materials and Methods: Two different compounds were isolated from ethanolic extract of S. densiflorum fruits and purified using HPLC. The structures of the compounds were elucidated on the basis of their 1H NMR, 13C NMR, 1H-1H COSY, HMBC, HRESIMS, and FT-IR data. Further, the chemical reactivity of the compounds was analyzed by density functional theory calculations and its therapeutic role in diabetic management was examined by comparing the structure of isolated compounds with previously reported bioactive compounds.

Results: Of the two compounds ((6,6 & 1-kestopentaose (1) and 6-(hydroxymethyl)-3-[3,4,5- trihydroxy- 6-[(3,4,5-trihydroxyoxan-2-yl)oxymethyl]oxan-2-yl]oxyoxane-2,4,5-triol)(2)). β-glucosidase, β-galactosidase, α-glucosidase and β-amylase inhibition activity of the compounds were predicted by structure activity relationship.

Conclusion: Structure-activity relationship analysis was performed to predict the therapeutic role of isolated compounds. These computational studies may be performed to minimize the efforts to determine the therapeutic role of natural compounds.

Keywords: Density functional theory calculation, pharmacokinetics, structure-activity relationship, Syzygium densiflorum, HPLC, NMR.

[1]
Kaiser, D.; Oetjen, E. Something old, something new, and something very old - drugs for treating type 2 diabetes. Br. J. Pharmacol., 2014, 171, 2940-2950.
[2]
Lacroix, M.E.; Li-Chan, E.C.Y. Overview of food products and dietary constituents with antidiabetic properties and their putative mechanisms of action: A natural approach to complement pharmacotherapy in the management of diabetes. Mol. Nutr. Food. Res, 2014, 58, 61-78.
[3]
Egan, A.G.; Hummer, B.T. Pancreatic safety of incretin-based drugs - FDA and EMA Assessment. N. Engl. J. Med., 2014, 370, 794-797.
[4]
Christensen, M.L.; Franklin, B.E.; Momper, J.D.; Reed, M.D. Pediatric drug development programs for type 2 diabetes: A review. J. Clin. Pharmacol., 2015, 55, 731-738.
[5]
Rutter, G.A.; Hodson, D.J. Beta cell connectivity in pancreatic islets: A type 2 diabetes target? Cell. Mol. Life Sci., 2014, 72, 453-467.
[6]
Vetere, A.; Choudhary, A.; Burns, S.M.; Wagner, B.K. Targeting the pancreatic β-cell to treat diabetes. Nat. Rev. Drug Discov., 2014, 13, 278-289.
[7]
Hui, H.; Tang, G.; Go, V.L.W. Hypoglycemic herbs and their action mechanisms. Chin. Med., 2009, 4, 1-11.
[8]
Arif, T.; Sharma, B.; Gahlaut, A.; Vijay, K.; Rajesh, D. LETTERS Anti-diabetic agents from medicinal plants: A review. Chem. Biol. Lett., 2014, 1, 1-13.
[9]
Annadurai, T.; Muralidharan, A.R.; Joseph, T.; Hsu, M.J.; Thomas, P.A.; Geraldine, P. Antihyperglycemic and antioxidant effects of a flavanone, naringenin, in streptozotocin-nicotinamide-induced experimental diabetic rats. J. Physiol. Biochem., 2012, 68, 307-318.
[10]
Patel, D.K.; Prasad, S.K.; Kumar, R.; Hemalatha, S. An overview on antidiabetic medicinal plants having insulin mimetic property. Asian Pac. J. Trop. Biomed., 2012, 2, 320-330.
[11]
Pumthong, G.; Nathason, A.; Tuseewan, M.; Pinthong, P.; Klangprapun, S.; Thepsuriyanon, D.; Kotta, P. Complementary and alternative medicines for diabetes mellitus management in ASEAN countries. Complement. Ther. Med., 2015, 23, 617-625.
[12]
Pepato, M.T.; Mori, D.M.; Baviera, A.M.; Harami, J.B.; Vendramini, R.C.; Brunetti, I.L. Fruit of the jambolan tree (Eugenia jambolana Lam.) and experimental diabetes. J. Ethnopharmacol., 2005, 96, 43-48.
[13]
Bala, S.; Nasir, A.; Madhava, K. Antihyperglycemic effect of the fruit-pulp of Eugenia jambolana in experimental diabetes mellitus. J. Ethnopharmacol., 2006, 104, 367-373.
[14]
Helmstädter, A. Syzygium cumini (L.) Skeels (Myrtaceae) against diabetes - 125 Years of research. Pharmazie, 2008, 63, 91-101.
[15]
Prabhakar, P.K. Doble. M. A target based therapeutic approach towards diabetes mellitus using medicinal plants. Curr. Diabetes Rev., 2008, 4, 291-308.
[16]
Dusane, M.B.; Joshi, B.N. Seeds of Syzygium cumini (L.) skeels: Potential for islet regeneration in experimental diabetes. J. Chin. Integr. Med., 2011, 9, 1380-1387.
[17]
Kumar, S.; Kumar, V.; Rana, M.; Kumar, D. Enzymes inhibitors from plants: An alternate approach to treat diabetes. Pharmacogn. Commun., 2012, 2, 18-33.
[18]
Mohan Maruga Raja, M.; Agilandeswari, D.; Dhanabal, S. Pharmacognostical, antidiabetic and antioxidant studies on Syzygium densiflorum leaves. Contemp. Investig. Obs. Pharm., 2012, 2, 43-51.
[19]
Gopinath, K.; David Raj, C.; Nagarajan, S. Karthikeyan. M. Antidiabetic, antihyperlipidemic and antioxidant activity of Syzygium densiflorum fruits in streptozotocin and nicotinamide induced diabetic rats. Pharm. Biol., 2015, 9, 1716-1726.
[20]
Kingston, D.G.I. Modern natural products drug discovery and its relevance to biodiversity conservation. J. Nat. Prod., 2011, 74, 496-511.
[21]
Bochevarov, D.; Harder, E.; Hughes, T.F.; Jeremy, R.G.; Dale, A.B.; Dean, M.P.; David, R.; Mathew, D.H.; Jing, Z.; Richard, A.F. Jaguar: A high-performance quantum chemistry software program with strengths in life and materials sciences. Int. J. Quantum Chem., 2013, 113, 2110-2142.
[22]
Liao, C.; Sitzmann, M.; Pugliese, A.; Nicklaus, M.C. Software and resources for computational medicinal chemistry. Future Med. Chem., 2011, 3, 1057-1085.
[23]
Basanagouda, M.; Jadhav, V.B.; Kulkarni, M.V.; Rao, R.N. Computer aided prediction of biological activity spectra: Study of correlation between predicted and observed activities for coumarin-4-acetic acids. Indian J. Pharm. Sci., 2011, 73, 88-92.
[24]
Cohen, A.J.; Mori-Sánchez, P.; Yang, W. Challenges for density functional theory. Chem. Rev., 2012, 112, 289-320.
[25]
Lukovits, I.; Bakó, I.; Shaban, A.; Kálmán, E. Polynomial model of the inhibition mechanism of thiourea derivatives. Electrochim. Acta, 1998, 43, 131-136.
[26]
Larabi, L.; Harek, Y.; Benali, O.; Ghalem, S. Erratum to Hydrazide derivatives as corrosion inhibitors for mild steel in 1M HCl. Prog. Org. Coat., 2006, 57, 170.
[27]
Özdemir, M.; Sönmez, M.; Şen, F.; Dinçer, M.; Özdemir, N. A novel one-pot synthesis of heterocyclic compound (4-benzoyl-5-phenyl-2-(pyridin-2-yl)-3,3a-dihydropyrazolo[1,5- c]pyrimidin-7(6H)- one): Structural (X-ray and DFT) and spectroscopic (FT-IR, NMR, UV- Vis and Mass) characterization Studies. Spectrochim Acta Part A. Mol. Biomol. Spectrosc, 2015, 137, 1304-1314.
[28]
Parr, R.G.; Szentpály, L.V.; Liu, S. Electrophilicity index. J. Am. Chem. Soc., 1999, 121, 1922-1924.
[29]
Mahalakshmi, G.; Balachandran, V. Molecular structure, vibrational spectra (FTIR and FT Raman) and natural bond orbital analysis of 4-Aminomethylpiperidine: DFT study. Spectrochim Acta - Part A. Mol. Biomol. Spectrosc, 2014, 131, 587-598.
[30]
Srivastava, K.; Pandey, A.K.; Jain, S.; Misra, N. FT-IR spectroscopy, intra-molecular C−H⋯ O interactions, HOMO, LUMO, MESP analysis and biological activity of two natural products, triclisine and rufescine: DFT and QTAIM approaches. Spectrochim Acta Part A. Mol. Biomol. Spectrosc, 2015, 136, 682-689.
[31]
Filimonov, D.A.; Lagunin, A.A.; Gloriozova, T.A.; Rudik, A.V.; Druzhilovskii, D.S.; Pogodin, P.V.; Poroikov, V.V. Prediction of the biological activity spectra of organic compounds using the pass online web resource. Chem. Heterocycl. Compd., 2014, 50, 444-457.
[32]
Poroikov, V.V.; Filimonov, D.A.; Ihlenfeldt, W.D.; Tatyana, A.G.; Alexey, A.L.; Yulia, V.B.; Alla, V.S.; Marc, C.N. PASS biological activity spectrum predictions in the enhanced open NCI Database Browser. J. Chem. Inf. Comput. Sci., 2003, 43, 228-236.
[33]
Kalariya, P.D.; Raju, B.; Borkar, R.M.; Namdev, D.; Gananadhamu, S.; Nandekar, P.P.; Sangamwar, A.T.; Srinivas, R. Characterization of forced degradation products of ketorolac tromethamine using LC/ESI/Q/TOF/MS/MS and in silico toxicity prediction. J. Mass Spectrom., 2014, 49, 380-391.
[34]
Tungland, B.C. Fructooligosaccharides and other fructans: Structures and occurrence, production, regulatory aspects, food applications, and nutritional health significance.In: Oligosaccharides in Food and Agriculture; Eggleston, G.; Côté, G.L., Eds.; American Chemical Society: Washington, 2003, pp. 135-152.
[35]
Caspi, R.; Billington, R.; Ferrer, L.; Foerster, H.; Fulcher, C.A.; Keseler, I.M.; Kothari, A.; Krummenacker, M.; Latendresse, M.; Mueller, L.A.; Ong, Q.; Paley, S.; Subhraveti, P.; Weaver, D.S.; Karp, P.D. The MetaCyc database of metabolic pathways and enzymes and the biocyc collection of pathway/genome databases. Nucleic Acids Res., 2008, 36, D623-D631.
[36]
Jeeva Jasmine, N.; Thomas Muthiah, P.; Arunagiri, C.; Subashini, A. Vibrational spectra (experimental and theoretical), molecular structure, natural bond orbital, HOMO–LUMO energy, Mulliken charge and thermodynamic analysis of N′-hydroxy-pyrimidine-2-carboximidamide by DFT approach. Spectrochim Acta Part A. Mol. Biomol. Spectrosc, 2015, 144, 215-225.
[37]
Suresh, D.M.; Amalanathan, M.; Sebastian, S.; Sajan, D.; Hubert Joe, I.; Bena Jothy, V.; Nemec, I. Vibrational spectral investigation and natural bond orbital analysis of pharmaceutical compound 7-Amino-2,4-dimethylquinolinium formate - DFT approach. Spectrochim Acta - Part A. Mol. Biomol. Spectrosc, 2013, 115, 595-602.
[38]
Gopalakrishnan, S.B.; Kalaiarasi, T.; Subramanian, R. Comparative DFT study of phytochemical constituents of the fruits of Cucumis trigonus Roxb. and Cucumis sativus Linn. J. Comput. Methods. Phys, 2014, 1-6.
[39]
Mahendiran, D.; Gurumoorthy, P.; Gunasekaran, K.; Raju, S.K.; Aziz, K.R. Structural modeling, in vitro antiproliferative activity, and the effect of substituents on the DNA fastening and scission actions of heteroleptic copper (ii) complexes with terpyridines and naproxen. New J. Chem., 2015, 39, 7895-7911.
[40]
Haid, S.; Marszalek, M.; Mishra, A.; Wielopolski, M.; Teuscher, J.; Moser, J-E.; Humphry-Baker, R.; Zakeeruddin, S.M.; Grätzel, M.; Bäuerle, P. Significant improvement of dye-sensitized solar cell performance by small structural modification in π-conjugated donor-acceptor dyes. Adv. Funct. Mater., 2012, 22, 1291-1302.
[41]
Adane, L.; Bharatam, P.V. Computer-aided molecular design of 1H-imidazole-2,4-diamine derivatives as potential inhibitors of Plasmodium falciparum DHFR enzyme. J. Mol. Model., 2011, 17, 657-667.
[42]
Khanna, V.; Ranganathan, S. Structural diversity of biologically interesting datasets: A scaffold analysis approach. J. Cheminform., 2011, 3, 1-14.
[43]
Bickerton, G.R.; Paolini, G.V.; Besnard, J.; Muresan, S.; Hopkins, A.L. Quantifying the chemical beauty of drugs. Nat. Chem., 2012, 4, 90-98.
[44]
Choy, Y.B.; Prausnitz, M.R. The rule of five for non-oral routes of drug delivery: Ophthalmic, inhalation and transdermal. Pharm. Res., 2011, 28, 943-948.
[45]
Xu, P.; Chien, Y.W. Enhanced skin permeability for transdermal drug delivery: Physiopathological and physicochemical considerations. Crit. Rev. Ther. Drug Carrier Syst., 1991, 8, 211-236.
[46]
Atta-ur-Rahman; Chaudhary, M. I; Structure-activity relationship studies in drug development by NMR Spectroscopy, 1st Ed.; Bentham Science Publishers: Sharjah, UAE. 2012.
[47]
Kenakin, T.P.; Pharmacokinetics, I. Pharmacology in Drug Discovery; Kenakin, T., Ed.; Elsevier: Netherlands, 2012, pp. 125-153.
[48]
Kerns, E.H.; Di, L. Drug-like properties: Concepts, structure design and method, from ADME to toxicity optimization, 1st ed; Academic Press: Burlington, MA, USA, 2008.
[49]
Lemke, T.L.; Williams, D.A. Foye’s principles of medicinal chemistry, 7th ed; Lippincott Williams & Wilkins: Philadelphia, USA, 2012.
[50]
Tsakovska, I.; Lessigiarska, I.; Netzeva, T.; Worth, A.P. A mini review of mammalian toxicity (Q)SAR models. QSAR Comb. Sci., 2008, 27, 41-48.
[51]
Ruiz, P.; Begluitti, G.; Tincher, T.; Pinthong, P.; Klangprapun, S.; Thepsuriyanon, D.; Kotta, P. Prediction of acute mammalian toxicity using QSAR methods: A case study of sulfur mustard and its breakdown products. Molecules, 2012, 17, 8982-9001.
[52]
Zheng, M.; Liu, Z.; Xue, C.; Zhu, W.; Chen, K.; Luo, X.; Jiang, H. Mutagenic probability estimation of chemical compounds by a novel molecular electrophilicity vector and support vector machine. Bioinformatics, 2006, 22, 2099-2106.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 10
ISSUE: 2
Year: 2020
Published on: 24 March, 2020
Page: [168 - 176]
Pages: 9
DOI: 10.2174/2210315508666180622113414
Price: $25

Article Metrics

PDF: 10
HTML: 2