Generic placeholder image

Current Medical Imaging

Editor-in-Chief

ISSN (Print): 1573-4056
ISSN (Online): 1875-6603

Review Article

Cardiovascular Imaging for Guiding Interventional Therapy in Structural Heart Diseases

Author(s): Nora Rat, Iolanda Muntean*, Diana Opincariu, Liliana Gozar, Rodica Togănel and Monica Chițu

Volume 16, Issue 2, 2020

Page: [111 - 122] Pages: 12

DOI: 10.2174/1573405614666180612081736

Price: $65

Abstract

Development of interventional methods has revolutionized the treatment of structural cardiac diseases. Given the complexity of structural interventions and the anatomical variability of various structural defects, novel imaging techniques have been implemented in the current clinical practice for guiding the interventional procedure and for selection of the device to be used. Three– dimensional echocardiography is the most used imaging method that has improved the threedimensional assessment of cardiac structures, and it has considerably reduced the cost of complications derived from malalignment of interventional devices. Assessment of cardiac structures with the use of angiography holds the advantage of providing images in real time, but it does not allow an anatomical description. Transesophageal Echocardiography (TEE) and intracardiac ultrasonography play major roles in guiding Atrial Septal Defect (ASD) or Patent Foramen Ovale (PFO) closure and device follow-up, while TEE is the procedure of choice to assess the flow in the Left Atrial Appendage (LAA) and the embolic risk associated with a decreased flow. On the other hand, contrast CT and MRI have high specificity for providing a detailed description of structure, but cannot assess the flow through the shunt or the valvular mobility. This review aims to present the role of modern imaging techniques in pre-procedural assessment and intraprocedural guiding of structural percutaneous interventions performed to close an ASD, a PFO, an LAA or a patent ductus arteriosus.

Keywords: Structural cardiac disorders, interventional treatment, occluder devices, 3D echocardiography, MRI, CT angiography.

Graphical Abstract
[1]
Benedek T. CardioIMAGE-the image of a cardio team. J Interdiscipl Med 2017; 2(2): 109-11.
[http://dx.doi.org/10.1515/jim-2017-0056]
[2]
Warnes CA, Williams RG, Bashore TM, et al. ACC/AHA 2008 guidelines for the management of adults with congenital heart disease: executive summary: a report of the American college of cardiology/American heart association task force on practice guidelines (writing committee to develop guidelines for the management of adults with congenital heart disease). Circulation 2008; 118(23): 2395-451.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.108.190811] [PMID: 18997168]
[3]
Muntean I, Togănel R, Benedek T. Genetics of congenital heart disease: past and present. Biochem Genet 2017; 55(2): 105-23.
[http://dx.doi.org/10.1007/s10528-016-9780-7] [PMID: 27807680]
[4]
Loukanov T, Hoss K, Tonchev P, et al. Endothelial nitric oxide synthase gene polymorphism (Glu298Asp) and acute pulmonary hypertension post cardiopulmonary bypass in children with congenital cardiac diseases. Cardiol Young 2011; 21(2): 161-9.
[http://dx.doi.org/10.1017/S1047951110001630] [PMID: 21144100]
[5]
Togănel R, Muntean I, Duicu C, Făgărăşan A, Gozar L, Bănescu C. The role of eNOS and AGT gene polymorphisms in secondary pulmonary arterial hypertension in Romanian children with congenital heart disease. Rev Rom Med Lab 2013; 21(3): 267-74.
[http://dx.doi.org/10.2478/rrlm-2013-0031]
[6]
Hahn RT, Abraham T, Adams MS, et al. Guidelines for performing a comprehensive transesophageal echocardiographic examination: recommendations from the American society of echocardiography and the society of cardiovascular anesthesiologists. J Am Soc Echocardiogr 2013; 26(9): 921-64.
[http://dx.doi.org/10.1016/j.echo.2013.07.009] [PMID: 23998692]
[7]
Rastogi N, Smeeton NC, Qureshi SA. Factors related to successful transcatheter closure of atrial septal defects using the Amplatzer septal occluder. Pediatr Cardiol 2009; 30(7): 888-92.
[http://dx.doi.org/10.1007/s00246-009-9452-z] [PMID: 19484172]
[8]
Fu YC, Hijazi ZM. The Amplatzer Septal Occluder, a transcatheter device for atrial septal defect closure. Expert Rev Med Devices 2008; 5(1): 25-31.
[http://dx.doi.org/10.1586/17434440.5.1.25] [PMID: 18095893]
[9]
Bartel T, Müller S. Device closure of interatrial communications: peri-interventional echocardiographic assessment. Eur Heart J Cardiovasc Imaging 2013; 14(7): 618-24.
[http://dx.doi.org/10.1093/ehjci/jet048] [PMID: 23598422]
[10]
Harper RW, Mottram PM, McGaw DJ. Closure of secundum atrial septal defects with the Amplatzer septal occluder device: techniques and problems. Catheter Cardiovasc Interv 2002; 57(4): 508-24.
[http://dx.doi.org/10.1002/ccd.10353] [PMID: 12455087]
[11]
Scaffa R, Spaziani C, Leporace M, et al. Voluminous atrial septal aneurysm may mask a large double atrial septal defect. Ann Thorac Surg 2012; 93(2) e41
[http://dx.doi.org/10.1016/j.athoracsur.2011.10.029] [PMID: 22269768]
[12]
Togănel R. Critical congenital heart diseases as life-threatening conditions in the emergency room. J Cardiovasc Emerg 2016; 2(1): 7-10.
[http://dx.doi.org/10.1515/jce-2016-0002]
[13]
Vaidyanathan B, Simpson JM, Kumar RK. Transesophageal echocardiography for device closure of atrial septal defects: case selection, planning, and procedural guidance. JACC Cardiovasc Imaging 2009; 2(10): 1238-42.
[http://dx.doi.org/10.1016/j.jcmg.2009.08.003] [PMID: 19833315]
[14]
Sobrino A, Basmadjian AJ, Ducharme A, et al. Multiplanar transesophageal echocardiography for the evaluation and percutaneous management of ostium secundum atrial septal defects in the adult. Arch Cardiol Mex 2012; 82(1): 37-47.
[PMID: 22452865]
[15]
Rao PS. Atrial septal defect - a review. Croatia: In Tech 2012.
[http://dx.doi.org/10.5772/1588]
[16]
Van De Bruaene A, Buys R, Vanhees L, Delcroix M, Voigt JU, Budts W. Regional right ventricular deformation in patients with open and closed atrial septal defect. Eur J Echocardiogr 2011; 12(3): 206-13.
[http://dx.doi.org/10.1093/ejechocard/jeq169] [PMID: 21149289]
[17]
Muntean I, Benedek T, Melinte M, Suteu C, Togãnel R. Deformation pattern and predictive value of right ventricular longitudinal strain in children with pulmonary arterial hypertension. Cardiovasc Ultrasound 2016; 14(1): 27.
[http://dx.doi.org/10.1186/s12947-016-0074-3] [PMID: 27473461]
[18]
Johri AM, Witzke C, Solis J, et al. Real-time three-dimensional transesophageal echocardiography in patients with secundum atrial septal defects: outcomes following transcatheter closure. J Am Soc Echocardiogr 2011; 24(4): 431-7.
[http://dx.doi.org/10.1016/j.echo.2010.12.011] [PMID: 21262563]
[19]
Rana BS, Shapiro LM, McCarthy KP, Ho SY. Three-dimensional imaging of the atrial septum and patent foramen ovale anatomy: defining the morphological phenotypes of patent foramen ovale. Eur J Echocardiogr 2010; 11(10): i19-25.
[http://dx.doi.org/10.1093/ejechocard/jeq122] [PMID: 21078835]
[20]
van den Bosch AE, Ten Harkel DJ, McGhie JS, et al. Characterization of atrial septal defect assessed by real-time 3-dimensional echocardiography. J Am Soc Echocardiogr 2006; 19(6): 815-21.
[http://dx.doi.org/10.1016/j.echo.2006.01.016] [PMID: 16762762]
[21]
Roberson DA, Cui W, Patel D, et al. Three-dimensional transesophageal echocardiography of atrial septal defect: a qualitative and quantitative anatomic study. J Am Soc Echocardiogr 2011; 24(6): 600-10.
[http://dx.doi.org/10.1016/j.echo.2011.02.008] [PMID: 21477991]
[22]
Marx GR, Fulton DR, Pandian NG, et al. Delineation of site, relative size and dynamic geometry of atrial septal defects by real-time three-dimensional echocardiography. J Am Coll Cardiol 1995; 25(2): 482-90.
[http://dx.doi.org/10.1016/0735-1097(94)00372-W] [PMID: 7829804]
[23]
Franke A, Kühl HP, Rulands D, et al. Quantitative analysis of the morphology of secundum-type atrial septal defects and their dynamic change using transesophageal three-dimensional echocardiography. Circulation 1997; 96(9): II-323-7.
[PMID: 9386118]
[24]
Lange A, Walayat M, Turnbull CM, et al. Assessment of atrial septal defect morphology by transthoracic three dimensional echocardiography using standard grey scale and Doppler myocardial imaging techniques: comparison with magnetic resonance imaging and intraoperative findings. Heart 1997; 78(4): 382-9.
[http://dx.doi.org/10.1136/hrt.78.4.382] [PMID: 9404256]
[25]
Demkow M, Ruzyllo W, Konka M, et al. Transvenous closure of moderate and large secundum atrial septal defects in adults using the Amplatzer septal occluder. Catheter Cardiovasc Interv 2001; 52(2): 188-93.
[http://dx.doi.org/10.1002/1522-726X(200102)52:2<188:AID-CCD1045>3.0.CO;2-6] [PMID: 11170326]
[26]
Huang X, Shen J, Huang Y, et al. En face view of atrial septal defect by two-dimensional transthoracic echocardiography: comparison to real-time three-dimensional transesophageal echocardiography. J Am Soc Echocardiogr 2010; 23(7): 714-21.
[http://dx.doi.org/10.1016/j.echo.2010.04.016] [PMID: 20605402]
[27]
Jeong-Sook S, Jong-Min S. Effect of atrial septal defect shape evaluated using three-dimensional transesophageal echocardiograpy on size measurements for percutaneous closure. J Am Soc Echocardiogr 2012; 23(7): 1031-40.
[28]
Abdel-Massih T, Dulac Y, Taktak A, et al. Assessment of atrial septal defect size with 3D-transesophageal echocardiography: comparison with balloon method. Echocardiography 2005; 22(2): 121-7.
[http://dx.doi.org/10.1111/j.0742-2822.2005.03153.x] [PMID: 15693777]
[29]
Zhu W, Cao QL, Rhodes J, Hijazi ZM. Measurement of atrial septal defect size: a comparative study between three-dimensional transesophageal echocardiography and the standard balloon sizing methods. Pediatr Cardiol 2000; 21(5): 465-9.
[http://dx.doi.org/10.1007/s002460010111] [PMID: 10982709]
[30]
Taniguchi M, Akagi T, Watanabe N, et al. Application of real-time three-dimensional transesophageal echocardiography using a matrix array probe for transcatheter closure of atrial septal defect. J Am Soc Echocardiogr 2009; 22(10): 1114-20.
[http://dx.doi.org/10.1016/j.echo.2009.06.008] [PMID: 19647397]
[31]
White HD, Halpern EJ, Savage MP. Imaging of adult atrial septal defects with CT angiography. JACC Cardiovasc Imaging 2013; 6(12): 1342-5.
[http://dx.doi.org/10.1016/j.jcmg.2013.07.011] [PMID: 24332286]
[32]
O’Brien JP, Srichai MB, Hecht EM, Kim DC, Jacobs JE. Anatomy of the heart at multidetector CT: what the radiologist needs to know. Radiographics 2007; 27(6): 1569-82.
[http://dx.doi.org/10.1148/rg.276065747] [PMID: 18025503]
[33]
Balli O, Aytemir K, Karcaaltincaba M. Multidetector CT of left atrium. Eur J Radiol 2012; 81(1): e37-46.
[http://dx.doi.org/10.1016/j.ejrad.2010.11.017] [PMID: 21123014]
[34]
Kim YJ, Hur J, Choe KO, et al. Interatrial shunt detected in coronary computed tomography angiography: differential features of a patent foramen ovale and an atrial septal defect. J Comput Assist Tomogr 2008; 32(5): 663-7.
[http://dx.doi.org/10.1097/RCT.0b013e31815b6421] [PMID: 18830093]
[35]
Kosehan D, Akin K, Koktener A, Cakir B, Aktas A, Teksam M. Interatrial shunt: diagnosis of patent foramen ovale and atrial septal defect with 64-row coronary computed tomography angiography. Jpn J Radiol 2011; 29(8): 576-82.
[http://dx.doi.org/10.1007/s11604-011-0602-x] [PMID: 21928000]
[36]
Lembcke A, Razek V, Kivelitz D, Rogalla N, Rogalla P. Sinus venosus atrial septal defect with partial anomalous pulmonary venous return: diagnosis with 64-slice spiral computed tomography at low radiation dose. J Pediatr Surg 2008; 43(2): 410-1.
[http://dx.doi.org/10.1016/j.jpedsurg.2007.10.056] [PMID: 18280303]
[37]
Prompona M, Muehling O, Naebauer M, Schoenberg SO, Reiser M, Huber A. MRI for detection of anomalous pulmonary venous drainage in patients with sinus venosus atrial septal defects. Int J Cardiovasc Imaging 2011; 27(3): 403-12.
[http://dx.doi.org/10.1007/s10554-010-9675-3] [PMID: 20686854]
[38]
Ganigara M, Tanous D, Celermajer D, Puranik R. The role of cardiac MRI in the diagnosis and management of sinus venosus atrial septal defect. Ann Pediatr Cardiol 2014; 7(2): 160-2.
[http://dx.doi.org/10.4103/0974-2069.132509] [PMID: 24987269]
[39]
Muthurangu V, Taylor A, Andriantsimiavona R, et al. Novel method of quantifying pulmonary vascular resistance by use of simultaneous invasive pressure monitoring and phase-contrast magnetic resonance flow. Circulation 2004; 110(7): 826-34.
[http://dx.doi.org/10.1161/01.CIR.0000138741.72946.84] [PMID: 15302793]
[40]
Puvaneswary M, Leitch J, Chard RB. MRI of partial anomalous pulmonary venous return (scimitar syndrome). Australas Radiol 2003; 47(1): 92-3.
[http://dx.doi.org/10.1046/j.1440-1673.2003.01115.x] [PMID: 12581067]
[41]
de Koning WB, van Osch-Gevers LM, Robbers-Visser D, van Domburg RT, Bogers AJ, Helbing WA. Enlarged right ventricular size at 11 years’ follow-up after closure of secundum-type atrial septal defect in children. Cardiol Young 2013; 23(1): 7-13.
[http://dx.doi.org/10.1017/S1047951112000480] [PMID: 22717259]
[42]
Masura J, Gavora P, Podnar T. Long-term outcome of transcatheter secundum-type atrial septal defect closure using Amplatzer septal occluders. J Am Coll Cardiol 2005; 45(4): 505-7.
[http://dx.doi.org/10.1016/j.jacc.2004.10.066] [PMID: 15708695]
[43]
Majunke N, Bialkowski J, Wilson N, et al. Closure of atrial septal defect with the Amplatzer septal occluder in adults. Am J Cardiol 2009; 103(4): 550-4.
[http://dx.doi.org/10.1016/j.amjcard.2008.10.018] [PMID: 19195519]
[44]
Wang JK, Tsai SK, Lin SM, Chiu SN, Lin MT, Wu MH. Transcatheter closure of atrial septal defect without balloon sizing. Catheter Cardiovasc Interv 2008; 71(2): 214-21.
[http://dx.doi.org/10.1002/ccd.21308] [PMID: 17985381]
[45]
Bergersen L, Giroud JM, Jacobs JP, et al. Report from The international society for nomenclature of paediatric and congenital heart disease: cardiovascular catheterisation for congenital and paediatric cardiac disease (Part 2 - Nomenclature of complications associated with interventional cardiology). Cardiol Young 2011; 21(3): 260-5.
[http://dx.doi.org/10.1017/S1047951110001861] [PMID: 21310094]
[46]
Akkaya E, Vuruşkan E, Aksoy I, Ardıç I, Küçükosmanoğlu M, Ozer O. Intracardiac echocardiography-guided device closure of atrial septal defects: our initial experience. Turk Kardiyol Dern Ars 2011; 39(6): 474-8.
[http://dx.doi.org/10.5543/tkda.2011.01576] [PMID: 21918317]
[47]
Medford BA, Taggart NW, Cabalka AK, et al. Intracardiac echocardiography during atrial septal defect and patent foramen ovale device closure in pediatric and adolescent patients. J Am Soc Echocardiogr 2014; 27(9): 984-90.
[http://dx.doi.org/10.1016/j.echo.2014.05.017] [PMID: 24998516]
[48]
Anzola GP, Magoni M, Guindani M, Rozzini L, Dalla Volta G. Potential source of cerebral embolism in migraine with aura: a transcranial Doppler study. Neurology 1999; 52(8): 1622-5.
[http://dx.doi.org/10.1212/WNL.52.8.1622] [PMID: 10331688]
[49]
Di Tullio MR, Sacco RL, Sciacca RR, Jin Z, Homma S. Patent foramen ovale and the risk of ischemic stroke in a multiethnic population. J Am Coll Cardiol 2007; 49(7): 797-802.
[http://dx.doi.org/10.1016/j.jacc.2006.08.063] [PMID: 17306710]
[50]
Soliman OI, Geleijnse ML, Meijboom FJ, et al. The use of contrast echocardiography for the detection of cardiac shunts. Eur J Echocardiogr 2007; 8(3): S2-S12.
[http://dx.doi.org/10.1016/j.euje.2007.03.006] [PMID: 17462958]
[51]
Ha JW, Shin MS, Kang S, et al. Enhanced detection of right-to-left shunt through patent foramen ovale by transthoracic contrast echocardiography using harmonic imaging. Am J Cardiol 2001; 87(5): 669-71.
[http://dx.doi.org/10.1016/S0002-9149(00)01455-7] [PMID: 11230864]
[52]
Jauss M, Zanette E. Detection of right-to-left shunt with ultrasound contrast agent and transcranial Doppler sonography. Cerebrovasc Dis 2000; 10(6): 490-6.
[http://dx.doi.org/10.1159/000016119] [PMID: 11070388]
[53]
Hernández-Enríquez M, Freixa X. Current indications for percutaneous closure of patent foramen ovale. Rev Esp Cardiol (Engl Ed) 2014; 67(8): 603-7.
[http://dx.doi.org/10.1016/j.rec.2014.01.008] [PMID: 25037538]
[54]
Carroll JD, Saver JL, Thaler DE, et al. RESPECT Investigators. Closure of patent foramen ovale versus medical therapy after cryptogenic stroke. N Engl J Med 2013; 368(12): 1092-100.
[http://dx.doi.org/10.1056/NEJMoa1301440] [PMID: 23514286]
[55]
Rana BS, Thomas MR, Calvert PA, Monaghan MJ, Hildick-Smith D. State of art papers echocardiographic evaluation of patent foramen ovale prior to device closure. J Am Coll Cardiol 2010; 7(3): 749-60.
[http://dx.doi.org/10.1016/j.jcmg.2010.01.007]
[56]
Goel SS, Tuzcu EM, Shishehbor MH, et al. Morphology of the patent foramen ovale in asymptomatic versus symptomatic (stroke or transient ischemic attack) patients. Am J Cardiol 2009; 103(1): 124-9.
[http://dx.doi.org/10.1016/j.amjcard.2008.08.036] [PMID: 19101242]
[57]
Ren JF, Callans DJ, Marchlinski FE. What is the natural relationship between left atrial appendage morphology and history of stroke? J Am Coll Cardiol 2013; 61(6): 689-90.
[http://dx.doi.org/10.1016/j.jacc.2012.09.061] [PMID: 23391204]
[58]
Zabalgoitia M, Halperin JL, Pearce LA, Blackshear JL, Asinger RW, Hart RG. Stroke prevention in atrial fibrillation III investigators. Transesophageal echocardiographic correlates of clinical risk of thromboembolism in nonvalvular atrial fibrillation. J Am Coll Cardiol 1998; 31(7): 1622-6.
[http://dx.doi.org/10.1016/S0735-1097(98)00146-6] [PMID: 9626843]
[59]
Transesophageal echocardiographic correlates of thromboembolism in high-risk patients with nonvalvular atrial fibrillation. The stroke prevention in atrial fibrillation investigators committee on echocardiography. Ann Intern Med 1998; 128(8): 639-47.
[http://dx.doi.org/10.7326/0003-4819-128-8-199804150-00005] [PMID: 9537937]
[60]
Noda T, Arakawa M, Miwa H, et al. Effects of heart rate on flow velocity of the left atrial appendage in patients with nonvalvular atrial fibrillation. Clin Cardiol 1996; 19(4): 295-300.
[http://dx.doi.org/10.1002/clc.4960190404] [PMID: 8706369]
[61]
Seward JB, Khandheria BK, Freeman WK, et al. Multiplane transesophageal echocardiography: image orientation, examination technique, anatomic correlations, and clinical applications. Mayo Clin Proc 1993; 68(6): 523-51.
[http://dx.doi.org/10.1016/S0025-6196(12)60367-X] [PMID: 8497131]
[62]
Chan SK, Kannam JP, Douglas PS, Manning WJ. Multiplane transesophageal echocardiographic assessment of left atrial appendage anatomy and function. Am J Cardiol 1995; 76(7): 528-30.
[http://dx.doi.org/10.1016/S0002-9149(99)80147-7] [PMID: 7653461]
[63]
Veinot JP, Harrity PJ, Gentile F, et al. Anatomy of the normal left atrial appendage: a quantitative study of age-related changes in 500 autopsy hearts: implications for echocardiographic examination. Circulation 1997; 96(9): 3112-5.
[http://dx.doi.org/10.1161/01.CIR.96.9.3112] [PMID: 9386182]
[64]
Seward JB, Khandheria BK, Oh JK, Freeman WK, Tajik AJ. Critical appraisal of transesophageal echocardiography: limitations, pitfalls, and complications. J Am Soc Echocardiogr 1992; 5(3): 288-305.
[http://dx.doi.org/10.1016/S0894-7317(14)80352-0] [PMID: 1622623]
[65]
Herzog E, Sherrid M. Bifid left atrial appendage with thrombus: source of thromboembolism. J Am Soc Echocardiogr 1998; 11(9): 910-5.
[http://dx.doi.org/10.1016/S0894-7317(98)70013-6] [PMID: 9758385]
[66]
Nakajima H, Seo Y, Ishizu T, et al. Analysis of the left atrial appendage by three-dimensional transesophageal echocardiography. Am J Cardiol 2010; 106(6): 885-92.
[http://dx.doi.org/10.1016/j.amjcard.2010.05.014] [PMID: 20816132]
[67]
Goebel B, Wieg S, Hamadanchi A, et al. Interventional left atrial appendage occlusion: added value of 3D transesophageal echocardiography for device sizing. Int J Cardiovasc Imaging 2016; 32(9): 1363-70.
[http://dx.doi.org/10.1007/s10554-016-0923-z] [PMID: 27271934]
[68]
Sick PB, Schuler G, Hauptmann KE, et al. Initial worldwide experience with the WATCHMAN left atrial appendage system for stroke prevention in atrial fibrillation. J Am Coll Cardiol 2007; 49(13): 1490-5.
[http://dx.doi.org/10.1016/j.jacc.2007.02.035] [PMID: 17397680]
[69]
Calkins H, Kuck KH, Cappato R, et al. 2012 HRS/EHRA/ECAS Expert Consensus Statement on Catheter and Surgical Ablation of Atrial Fibrillation. Heart Rhythm 2012; 9(4): 632-96.
[http://dx.doi.org/10.1016/j.hrthm.2011.12.016] [PMID: 22386883]
[70]
Di Biase L, Santangeli P, Anselmino M, et al. Does the left atrial appendage morphology correlate with the risk of stroke in patients with atrial fibrillation? Results from a multicenter study. J Am Coll Cardiol 2012; 60(6): 531-8.
[http://dx.doi.org/10.1016/j.jacc.2012.04.032] [PMID: 22858289]
[71]
Hur J, Kim YJ, Nam JE, et al. Thrombus in the left atrial appendage in stroke patients: detection with cardiac CT angiography--a preliminary report. Radiology 2008; 249(1): 81-7.
[http://dx.doi.org/10.1148/radiol.2491071544] [PMID: 18695210]
[72]
Hur J, Kim YJ, Lee HJ, et al. Cardioembolic stroke: dual-energy cardiac CT for differentiation of left atrial appendage thrombus and circulatory stasis. Radiology 2012; 263(3): 688-95.
[http://dx.doi.org/10.1148/radiol.12111691] [PMID: 22495682]
[73]
Tani T, Yamakami S, Matsushita T, et al. Usefulness of electron beam tomography in the prone position for detecting atrial thrombi in chronic atrial fibrillation. J Comput Assist Tomogr 2003; 27(1): 78-84.
[http://dx.doi.org/10.1097/00004728-200301000-00014] [PMID: 12544247]
[74]
Patel A, Au E, Donegan K, et al. Multidetector row computed tomography for identification of left atrial appendage filling defects in patients undergoing pulmonary vein isolation for treatment of atrial fibrillation: comparison with transesophageal echocardiography. Heart Rhythm 2008; 5(2): 253-60.
[http://dx.doi.org/10.1016/j.hrthm.2007.10.025] [PMID: 18242550]
[75]
Khurram IM, Dewire J, Mager M, et al. Relationship between left atrial appendage morphology and stroke in patients with atrial fibrillation. Heart Rhythm 2013; 10(12): 1843-9.
[http://dx.doi.org/10.1016/j.hrthm.2013.09.065] [PMID: 24076444]
[76]
Kwong Y, Troupis J. Cardiac CT imaging in the context of left atrial appendage occlusion. J Cardiovasc Comput Tomogr 2015; 9(1): 13-8.
[http://dx.doi.org/10.1016/j.jcct.2014.11.005] [PMID: 25533225]
[77]
Aljaroudi WA, Saliba WS, Wazni OM, Jaber WA. Role of cardiac computed tomography and cardiovascular magnetic resonance imaging in guiding management and treatment of patients with atrial fibrillation: state of the art review. J Nucl Cardiol 2013; 20(3): 426-42.
[http://dx.doi.org/10.1007/s12350-013-9689-z] [PMID: 23400559]
[78]
Feuchtner GM, Dichtl W, Bonatti JO, et al. Diagnostic accuracy of cardiac 64-slice computed tomography in detecting atrial thrombi. Comparative study with transesophageal echocardiography and cardiac surgery. Invest Radiol 2008; 43(11): 794-801.
[http://dx.doi.org/10.1097/RLI.0b013e318184cd6c] [PMID: 18923259]
[79]
Wang Y, Di Biase L, Horton RP, Nguyen T, Morhanty P, Natale A. Left atrial appendage studied by computed tomography to help planning for appendage closure device placement. J Cardiovasc Electrophysiol 2010; 21(9): 973-82.
[http://dx.doi.org/10.1111/j.1540-8167.2010.01814.x] [PMID: 20550614]
[80]
Sepahpour A, Ng MK, Storey P, McGuire MA. Death from pulmonary artery erosion complicating implantation of percutaneous left atrial appendage occlusion device. Heart Rhythm 2013; 10(12): 1810-1.
[http://dx.doi.org/10.1016/j.hrthm.2013.07.046] [PMID: 23911428]
[81]
Bianchi G, Solinas M, Gasbarri T, et al. Pulmonary artery perforation by plug anchoring system after percutaneous closure of left appendage. Ann Thorac Surg 2013; 96(1): e3-5.
[http://dx.doi.org/10.1016/j.athoracsur.2012.12.057] [PMID: 23816115]
[82]
Wiyono SA, Witsenburg M, de Jaegere PPT, Roos-Hesselink JW. Patent ductus arteriosus in adults: Case report and review illustrating the spectrum of the disease. Neth Heart J 2008; 16(7-8): 255-9.
[http://dx.doi.org/10.1007/BF03086157] [PMID: 18711613]
[83]
Gittenberger-de Groot AC, van Ertbruggen I, Moulaert AJ, Harinck E. The ductus arteriosus in the preterm infant: histologic and clinical observations. J Pediatr 1980; 96(1): 88-93.
[http://dx.doi.org/10.1016/S0022-3476(80)80337-4] [PMID: 7350322]
[84]
Anilkumar M. Patent ductus arteriosus. Cardiol Clin 2013; 31(3): 417-30.
[http://dx.doi.org/10.1016/j.ccl.2013.05.006] [PMID: 23931103]
[85]
Krichenko A, Benson LN, Burrows P, Möes CAF, McLaughlin P, Freedom RM. Angiographic classification of the isolated, persistently patent ductus arteriosus and implications for percutaneous catheter occlusion. Am J Cardiol 1989; 63(12): 877-80.
[http://dx.doi.org/10.1016/0002-9149(89)90064-7] [PMID: 2929450]
[86]
Roushdy A, Fiky AE, Din DE. Visualization of patent ductus arteriosus using real-time three-dimensional echocardiogram: Comparative study with 2D echocardiogram and angiography. J Saudi Heart Assoc 2012; 24(3): 177-86.
[http://dx.doi.org/10.1016/j.jsha.2012.02.001] [PMID: 23960692]
[87]
Forbes TJ, Harahsheh A, Rodriguez-Cruz E, et al. Angiographic and hemodynamic predictors for successful outcome of transcatheter occlusion of patent ductus arteriosus in infants less than 8 kilograms. Catheter Cardiovasc Interv 2004; 61(1): 117-22.
[http://dx.doi.org/10.1002/ccd.10751] [PMID: 14696170]
[88]
Ghasemi A, Pandya S, Reddy SV, et al. Trans-catheter closure of patent ductus arteriosus-What is the best device? Catheter Cardiovasc Interv 2010; 76(5): 687-95.
[http://dx.doi.org/10.1002/ccd.22393] [PMID: 20815044]
[89]
Taneja K, Gulati M, Jain M, Saxena A, Das B, Rajani M. Ductus arteriosus aneurysm in the adult: role of computed tomography in diagnosis. Clin Radiol 1997; 52(3): 231-4.
[http://dx.doi.org/10.1016/S0009-9260(97)80279-6] [PMID: 9091260]
[90]
LaBarbera M, Storch BM, Staniloae CS, Slater J. Evaluating patent ductus arteriosus during percutaneous closure: correlation between intravascular ultrasonography and computed tomographic angiography. Tex Heart Inst J 2014; 41(2): 238-9.
[http://dx.doi.org/10.14503/THIJ-12-2914] [PMID: 24808793]
[91]
Kozak MF, Yoo SJ, Mertens L, Ho A, Grosse-Wortmann L. Assessment of ductal blood flow in newborns with obstructive left heart lesions by cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2013; 15(45): 45.
[http://dx.doi.org/10.1186/1532-429X-15-45] [PMID: 23714046]
[92]
Broadhouse KM, Price AN, Durighel G, et al. Assessment of PDA shunt and systemic blood flow in newborns using cardiac MRI. NMR Biomed 2013; 26(9): 1135-41.
[http://dx.doi.org/10.1002/nbm.2927] [PMID: 23412748]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy