Recent Progress in the Synthesis of Furan

Author(s): Dau Xuan Duc*

Journal Name: Mini-Reviews in Organic Chemistry

Volume 16 , Issue 5 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Furans are five-membered aromatic heterocycles containing one oxygen atom that are important building blocks in organic chemistry, but also as natural products found in various natural sources, mostly in plants, algae and microorganisms. In this review, we discussed recent advances in the synthesis of furan compounds. Some classical methods have been modified and improved, while other new methods have been developed. A vast variety of catalysts was used for these transformations. In many studies, furan synthesis reaction mechanisms were also investigated and proposed.

Keywords: Furans, aromatic heterocycles, natural product, one component synthesis, cycloaddition, cycloisomerization reaction.

[1]
Spiteller, G. Furan fatty acids: Occurrence, synthesis, and reactions. Are furan fatty acids responsible for the cardioprotective effects of a fish diet? Lipids, 2005, 40, 755-771.
[2]
Fraga, B.M.; Terrero, D. Alkene-γ-lactones and avocado furans from Persea indica: A revision of the structure of majorenolide and related lactones. Phytochemistry, 1996, 41, 229-232.
[3]
Crabtree, R.H. The Organometallic chemistry of the transition Metals, 3rd ed; Wiley & Sons: New York, 2001.
[4]
Crews, C.; Castle, L. A review of occurrence, formation and analysis of furan in heat-processed foods. Trends Food Sci. Technol., 2007, 18, 365-372.
[5]
(a) Tong, X.; Ma, Y.; Li, Y. Biomass into chemicals: Conversion of sugars to furan derivatives by catalytic processes. Appl. Catal. A, 2010, 385, 1-13.
(b) Gandini, A. Furans as offspring of sugars and polysaccharides and progenitors of a family of remarkable polymers: A review of recent progress. Polym. Chem., 2010, 1, 245-251.
(c) Moreau, C.; Belgacem, M.N.; Gandini, A. Recent catalytic advances in the chemistry of substituted furans from carbohydrates and in the ensuing polymers. Top. Catal., 2004, 27, 11-30.
(d) Gidron, O.; Dadvand, A.; Sheynin, Y.; Bendikov, M.; Perepichka, D.F. Towards “Green” electronic materials. α-Oligofurans as semiconductors. Chem. Commun., 2011, 47, 1976-1978.
[6]
De Paulis, T. Vilazodone- A combined SSRI and 5-HT1A partial agonist for the treatment of depression. Invest. Drug. J., 2007, 10(3), 193-201.
[7]
Munro, T.A.; Duncan, K.K.; Xu, W.; Wang, Y.; Liu-Chen, L.Y.; Carlezon, W.A.; Cohen, B.M.; Béguin, C. Standard protecting groups create potent and selective κ opioids: Salvinorin B alkoxymethyl ethers. Bioorg. Med. Chem., 2008, 16(3), 1279-1286.
[8]
France, C.P. Winger. G.; Medzihradsky, F.; Seggel, M.R.; Rice, K.C.; Woods, J.H. Mirfentanil: Pharmacological profile of a novel fentanyl derivative with opioid and nonopioid effects. J. Pharmacol. Exp. Ther., 1991, 258(2), 502-510.
[9]
Hellerbach, J.; Schnider, O.; Besendorf, H.; Pellmont, B. Synthetic analgesics; Part IIA. Morphinans. Pergamon Press: New York. , 1966.
[10]
Krause, T.; Gerbershagen, M.U.; Fiege, M.; Weisshorn, R.; Wappler, F. Dantrolene. A review of its pharmacology, therapeutic use and new developments. Anaesthesia, 2004, 59(4), 364-373.
[11]
Shen, H. Illustrated pharmacology memory cards; Phar Mnemonics. Minireview, 2008.
[12]
Negwer, M.; Scharnow, H.G. Organic-chemical drugs and their synonyms, 8th ed; Wiley-VCH: Weinheim, 2001.
[13]
Donaldson, S.C.; Straley, B.A.; Hegde, N.V.; Sawant, A.A. De-bRoy, C.; Jayarao, B.M. Molecular epidemiology of ceftiofur-resistant Escherichia coli isolates from dairy calves. Appl. Environ. Microbiol., 2006, 72(6), 3940-3948.
[14]
Pichichero, M.E. Cephalosporins can be prescribed safely for penicillin-allergic patients. J. Fam. Pract., 2006, 55(2), 106-112.
[15]
Furstner, A. Chemistry and biology of roseophilin and the prodigiosin alkaloids: A survey of the last 2500 years. Angew. Chem. Int. Ed., 2003, 42, 3582-3603.
[16]
Stricker, B.H.; Blok, A.P.; Claas, F.H.; Van Parys, G.E.; Desmet, V.J. Hepatic injury associated with the use of nitrofurans: A clinicopathological study of 52 reported cases. Hepatology, 1988, 8(3), 599-606.
[17]
Tripathy, K.D. Essentials of medical pharmacology, 6th Ed.; Jaypee Brothers Medical Publishers (P) Limited, New Delhi. 2009.
[18]
Lednicer, D.; Mitscher, L.A.; Georg, G.I. The organic chemistry of drug synthesis; 4: 5, A Wiley-Interscience Publication, Wiley & Sons: New York. , 1990.
[19]
Parham, H.; Aibaghi Esfahani, B. Determination of furazolidone in urine by square-wave voltammetric method. J. Iran. Chem. Soc., 2008, 5(3), 453-457.
[20]
Hall, C. Dictionary of organic compounds, 6th ed; Chapman Hall: London, 1996.
[21]
Bruni, F.M.; De Luca, G.; Venturoli, V.; Boner, A.L. Intranasal corticosteroids and adrenal suppression. Neuroimmunomodulation, 2009, 16(5), 353-362.
[22]
Tan, R.A.; Corren, J. Mometasone furoate in the management of asthma: A review. Ther. Clin. Risk Manag., 2008, 4(6), 1201-1208.
[23]
Palasciano, G.; Maggi, V.; Portincasa, P. The effect of the H2-antagonist niperotidine on intragastric acidity in healthy subjects undergoing 24-hour pH-monitoring. Ital. J. Gastroenterol., 1990, 22(5), 291-294.
[24]
Rossi, S. Australian medicines handbook, 5th ed; Australian Medicines Handbook Ptv Ltd.: Adelaide, 2004.
[25]
Abdulmalik, O.; Safo, M.K.; Chen, Q.; Yang, J.; Brugnara, C.; Ohene-Frempong, K.; Abraham, D.J.; Asakura, T. 5-Hydroxy-methyl-2-furfural modifies intracellular sickle haemoglobin and inhibits sickling of red blood cells. Br. J. Haematol., 2005, 128(4), 552-561.
[26]
Burris, H.A. Dual kinase inhibition in the treatment of breast cancer: Initial experience with the EGFR/ErbB-2 inhibitor lapatinib. Oncologist, 2004, 9(3), 10-15.
[27]
Lin, T.; Lin, X.; Lu, C.; Hu, Z.; Huang, W.; Huang, Y.; Shen, Y. Secondary metabolites of Phomopsis sp. XZ-26, an endophytic fungus from Camptothecaacuminate. Eur. J. Org. Chem., 2009, 2009(18), 2975-2982.
[28]
Eicher, T.; Hauptmann, S. The chemistry of heterocycles, 2nd ed; Wiley-VCH: Weinheim, 2003.
[29]
Lipshutz, B.H. Five-membered heteroaromatic rings as intermediates in organic synthesis. Chem. Rev., 1986, 86, 795-820.
[30]
Blanc, A.; Bénéteau, V.; Weibel, J.M.; Pale, P. Silver & gold-catalyzed routes to furans and benzofurans. Org. Biomol. Chem., 2016, 14, 9184-9205.
[31]
Gabriele, B.; Plastina, P.; Vetere, M.V.; Veltri, L.; Mancuso, L.; Salerno, G. A simple and convenient synthesis of substituted furans and pyrroles by CuCl2-catalyzed heterocyclodehydration of 3-yne-1,2-diols and N-Boc- or N-tosyl-1-amino-3-yn-2-ols. Tetrahedron Lett., 2010, 51, 3565-3567.
[32]
Minkler, S.R.K.; Isley, N.A.; Lippincott, D.J.; Krause, N.; Lipshutz, B.H. Leveraging the micellar effect: Gold-catalyzed dehydrative cyclizations in water at room temperature. Org. Lett., 2014, 16(3), 724-726.
[33]
Lempke, L.; Ernst, A.; Kahl, F.; Weberskirch, R.; Krause, N. Sustainable micellar gold catalysis. Poly(2-oxazolines) as versatile amphiphiles. Adv. Synth. Catal., 2016, 358, 1491-1499.
[34]
Rajesh, M.; Puri, S.; Kant, R.; Reddy, M.S. Synthesis of substituted furan/pyrrole-3-carboxamides through a tandem nucleopalladation and isocyanate insertion. Org. Lett., 2016, 18(17), 4332-4335.
[35]
Guieu, B.; Roch, M.L.; David, M.; Gouault, N. Gold-catalyzed synthesis of enantioenriched furfurylamines from amino acids. Tetrahedron Asymmetry, 2015, 26, 868-875.
[36]
Gabriele, B.; Mancuso, R.; Maltese, V.; Veltri, L.; Salerno, G. Synthesis of furan-3-carboxylic and 4-methylene-4,5-dihydrofu-ran-3-carboxylic esters by direct palladium iodide catalyzed oxidative carbonylation of 3-yne-1,2-diol derivatives. J. Org. Chem., 2012, 77(19), 8657-8668.
[37]
Miao, M.; Xu, X.; Xu, L.; Ren, H. Copper(I) iodide mediated iodocyclization of cyclopropylideneallenyl ketones: Facile and effective synthesis of highly substituted furan derivatives. Eur. J. Org. Chem., 2014, 2014(27), 5896-5900.
[38]
Wang, C.; Li, Z.; Ju, Y.; Koo, S. Mechanism and scope of the Mn(III)-initiated oxidation of β-ketocarbonyl compounds: Furan synthesis. Eur. J. Org. Chem., 2012, 2012(35), 6976-6985.
[39]
Chen, P.; Meng, Y.; Yang, Q.; Wu, J.; Xiao, Y.; Gorja, D.R.; Song, C.; Chang, J. Selective synthesis of 2,5-disubstituted furan-3- carboxylates and the isomeric 2,4-disubstituted furan-3-carboxylates. RSC Advances, 2015, 5, 79906-79914.
[40]
Klaus, V.; Clark, J.S. Thioether-catalyzed tandem synthesis of furans and cyclic ethers or lactones. Synlett, 2017, 28(11), 1358-1362.
[41]
Xu, C.; Wittmann, S.; Gemander, M.; Ruohonen, V.; Clark, J.S. Trialkylphosphine-mediated synthesis of 2-acyl furans from ynenones. Org. Lett., 2017, 19, 3556-3559.
[42]
Golonka, A.N.; Schindler, C.S. Iron(III) chloride-catalyzed synthesis of 3-carboxy-2,5-disubstituted furans from γ -alkynyl aryl- and alkylketones. Tetrahedron, 2017, 73, 4109-4114.
[43]
Liu, J.M.; Liu, X.Y.; Qing, X.S.; Wang, T.; Wang, C.D.I. 2/K2CO3-promoted ring-opening/cyclization/rearrangement/ aromatization sequence: A powerful strategy for the synthesis of polysubstituted furans. Chin. Chem. Lett., 2016, 28(2), 458-462.
[44]
Irudayanathan, F.M.; Raja, G.C.E.; Lee, S. Copper-catalyzed direct synthesis of furans and thiophenes via decarboxylative coupling of alkynyl carboxylic acids with H2O or Na2S. Tetrahedron, 2015, 71(26), 4418-4425.
[45]
Undeela, S.; Ramchandra, J.P.; Menon, R.S. A sequential synthesis of substituted furans from aryl alkynes and ketones involving a Cerium(IV) Ammonium Nitrate (CAN)-mediated oxidative cyclization. Tetrahedron Lett., 2014, 55, 5667-5670.
[46]
Luo, J.; Lu, D.; Peng, Y.; Tang, Q. Paal-Knorr furan synthesis using titanium tetrachloride as dehydrating agent: A concise furan synthesis from α- haloketones and β-dicarbonyl compounds. Asian J. Org. Chem., 2017, 6, 1546-1550.
[47]
Wang, G.; Guan, Z.; Tang, R.; He, Y. Ionic liquid as catalyst and reaction medium: A simple and efficient procedure for Paal-Knorr furan synthesis. Synth. Commun., 2010, 40, 370-377.
[48]
Chen, L.; Fang, Y.; Zhao, Q.; Shi, M.; Li, C. Synthesis of multisubstituted furans via copper-catalyzed intramolecular O-vinylation of ketones with vinyl bromides. Tetrahedron Lett., 2010, 51, 3678-3681.
[49]
Ferrand, L.; Das Nerves, N.; Malacria, M.; Mouriès-Mansuy, V.; Ollivier, C.; Fensterbank, L. Synthesis of multisubstituted furans via copper-catalyzed intramolecular O-vinylation of ketones with vinyl bromides. Tetrahedron Lett., 2010, 51, 3678-3681.
[50]
Shiroodi, R.K.; Koleda, O.; Gevorgyan, V. 1,2-Boryl migration empowers regiodivergent synthesis of borylated furans. J. Am. Chem. Soc., 2014, 136, 13146-13149.
[51]
Wang, T.; Shi, S.; Vilhelmsen, M.H.; Zhang, T.; Rudolph, M.; Rominger, F.; Hashmi, A.S.K. Chemoselectivity control: Gold(I)-catalyzed synthesis of 6,7- dihydrobenzofuran-4(5H)-ones and benzofurans from 1-(alkynyl)-7-oxabicyclo[4.1.0]heptan-2-ones. Chem. Eur. J, 2013, 19, 12512-12516.
[52]
Hoffmann, M.; Miaskiewicz, S.; Weibel, J.M.; Pale, P.; Blanc, A. Gold(I)-catalyzed formation of furans from γ-acyloxyalkynyl ketones. Beilstein J. Org. Chem., 2013, 9, 1774-1780.
[53]
Shiroodi, R.K.; Vera, C.I.R.; Dudnik, A.S.; Gevorgyan, V. Synthesis of furans and pyrroles via migratory and double migratory cycloisomerization reactions of homopropargylic aldehydes and imines. Tetrahedron Lett., 2015, 56(23), 3251-3254.
[54]
Bai, Y.; Tao, W.; Ren, J.; Wang, Z. Lewis acid catalyzed intramolecular [4+2] and [3+2] cross-cycloaddition of alkynylcyclopropane ketones with carbonyl compounds and imines. Angew. Chem. Int. Ed., 2012, 51, 4112-4116.
[55]
Wang, T.; Shi, S.; Hansmann, M.M.; Rettenmeier, E.; Rudolph, M.; Hashmi, A.S.K. Synthesis of highly substituted 3-formylfurans by a gold(I)-catalyzed oxidation/1,2-alkynyl migration/cyclization cascade. Angew. Chem. Int. Ed., 2014, 53, 3715-3719.
[56]
Wang, T.; Huang, L.; Shi, S.; Rudolph, M.; Hashmi, A.S.K. Synthesis of highly substituted N-(furan-3- ylmethylene) benzenesulfonamides by a gold(I)-catalyzed oxidation/1,2-alkynyl migration/cyclization cascade. Chem. Eur. J, 2014, 20, 14868-14871.
[57]
Pennell, M.N.; Foster, R.W.; Turner, P.G.; Hailes, H.C.; Tameb, C.J.; Sheppard, T.D. Gold catalysed synthesis of 3-alkoxyfurans at room temperature. Chem. Commun., 2014, 50, 1302-1304.
[58]
Vidal, C.; Merza, L.; Álvarez, J.G. Deep eutectic solvents: Biorenewable reaction media for Au(I)-catalysed cycloisomerisations and one-pot tandem cycloisomerisation/Diels-Alder reactions. Green Chem., 2015, 17, 3870-3878.
[59]
Palisse, A.; Kirsch, S.F. Synthesis of furans through silver-catalyzed propargyl-Claisen rearrangement followed by cyclocondensation. Eur. J. Org. Chem., 2014, 2014(32), 7095-7098.
[60]
Morcillo, S.P.; Leboeuf, D.; Bour, C.; Gandon, V. Calcium-catalyzed synthesis of polysubstituted 2-alkenylfurans from β-keto esters tethered to propargyl alcohols. Chem. Eur. J, 2016, 22, 16974-16978.
[61]
Lee, R.J.; Lindley, M.R.; Pritchard, G.J.; Kimber, M.C. A biosynthetically inspired route to substituted furans using the Appel reaction: Total synthesis of the furan fatty acid F5. Chem. Commun., 2017, 53, 6327-6330.
[62]
Zhang, W.B.; Xiu, S.D.; Li, C.Y. Rhodium-catalyzed synthesis of multisubstituted furans from N-sulfonyl-1,2,3- triazoles bearing tethered carbonyl group. Org. Chem. Front., 2015, 2, 47-50.
[63]
Zhang, B.; Wang, T.; Zhang, Z. Gold-catalyzed synthesis of 1-(furan-3-yl)-1,2-diones. J. Org. Chem., 2017, 82, 11644-11654.
[64]
Gao, W.C.; Hu, F.; Tian, J.; Li, X.; Wei, W.L.; Chang, H.H. Hypoiodite-catalysed oxidative cyclisation of Michael adducts of chalcones with 1,3-dicarbonyl compounds: A facile and versatile approach to substituted furans and cyclopropanes. Chem. Commun., 2016, 52, 13097-13100.
[65]
Xue, C.; Huang, X.; Wu, S.; Fu, C.; Ma, S. Controlled TfOH- or AuCl-catalyzed cycloisomerization and tandem hydrolytic defluorination of 1,2-allenyl perfluoroalkyl ketones. Org. Chem. Front., 2016, 3, 588-597.
[66]
Reddy, C.R.; Krishna, G.; Reddy, M.D. Synthesis of substituted 3- furanoates from MBH-acetates of acetylenic aldehydes via tandem isomerization-deacetylation cycloisomerization: Access to Elliott’s alcohol. Org. Biomol. Chem., 2014, 12, 1664-1670.
[67]
Reddy, C.R.; Mohammed, S.Z.; Kumaraswamy, P.A. [3+2]-annulation approach to tetrasubstituted furans from MBH-carbonates of acetylenic aldehydes via sequential substitution/cycloisomerization. Org. Biomol. Chem., 2015, 13, 8310-8321.
[68]
Chen, Z.W.; Luo, M.T.; Ye, D.N.; Zhou, Z.G.; Ye, M.; Liu, L.X. Silver-catalyzed highly regioselective synthesis of α-carbonyl furans from eneones. Synth. Commun., 2014, 44, 1825-1831.
[69]
Cao, H.; Zhan, H.; Cen, J.; Lin, J.; Lin, Y.; Zhu, Q.; Fu, M.; Jiang, H. Copper-catalyzed C-O bond formation: An efficient one-pot highly regioselective synthesis of furans from (2-furyl)carbene complexes. Org. Lett., 2013, 15(5), 1080-1083.
[70]
Manna, S.; Antonchick, A.P. Copper(I)-catalyzed radical addition of acetophenones to alkynes in furan synthesis. Org. Lett., 2015, 17(17), 4300-4303.
[71]
Iqbal, A.; Sahraoui, E.; Leeper, F.J. Gold(I)-catalysed synthesis of a furan analogue of thiamine pyrophosphate. Beilstein J. Org. Chem., 2014, 10, 2580-2585.
[72]
Hosseyni, S.; Su, Y.; Shi, X. Gold catalyzed synthesis of substituted furan by intermolecular cascade reaction of propargyl alcohol and alkyne. Org. Lett., 2015, 17(24), 6010-6013.
[73]
Jiang, H.; Yao, W.; Cao, H.; Huang, H.; Cao, D. Iron-catalyzed domino process for the synthesis of α-carbonyl furan derivatives via one-pot cyclization reaction. J. Org. Chem., 2010, 75, 5347-5350.
[74]
Cao, H.; Jiang, H.F.; Huang, H.V.; Zhao, J.W. Pd-catalyzed cyclization reaction: A convenient domino process for synthesis of α-carbonyl furan derivatives. Org. Biomol. Chem., 2011, 9, 7313-7317.
[75]
Gujarathi, S.; Zheng, G. AgSbF6-catalyzed efficient propargylation/cycloisomerization tandem reaction for the synthesis of fully substituted furans and new insights into the reaction mechanism. Tetrahedron, 2015, 71, 6183-6188.
[76]
Chatterjee, P.N.; Roy, S. Alkylation of 1,3-dicarbonyl compounds with benzylic and propargylic alcohols using Ir-Sn bimetallic catalyst: Synthesis of fully decorated furans and pyrroles. Tetrahedron, 2011, 67, 4569-4577.
[77]
Ghosh, M.; Mishra, S.; Monir, K.; Hajra, A. Copper-catalyzed regioselective synthesis of furan via tandem cycloaddition of ketone with an unsaturated carboxylic acid under air. Org. Biomol. Chem., 2015, 13, 309-314.
[78]
Ghosh, M.; Mishra, S.; Hajra, A. Regioselective synthesis of multisubstituted furans via copper- mediated coupling between ketones and β-nitrostyrenes. J. Org. Chem., 2015, 80(10), 5364-5368.
[79]
Dey, A.; Ali, M.A.; Jana, S.; Hajra, A. Copper-catalyzed regioselective synthesis of multisubstituted furans by coupling between ketones and aromatic olefins. J. Org. Chem., 2017, 82, 4812-4818.
[80]
Palmieri, A.; Gabrielli, S.; Ballini, R. Efficient two-step sequence for the synthesis of 2,5-disubstituted furan derivatives from functionalized nitroalkanes: Successive Amberlyst A21- and Amberlyst 15-catalyzed processes. Chem. Commun., 2010, 46, 6165-6167.
[81]
Ren, Z.L.; Sun, M.; Guan, Z.R.; Ding, M.W. New efficient synthesis of 1,2,4-trisubstituted furans by a sequential Passerini/Wittig/isomerization reaction starting from Baylis-Hillman β-bromo aldehydes. Synlett, 2018, 29(01), 106-110.
[82]
Shaibakova, M.G.; Khafizova, L.O.; Chobanov, N.M.; Gubaidullin, R.R.; Popod’ko, N.R.; Dzhemilev, U.M. The effifient one-pot synthesis of tetraalkyl substituted furans from symmetrical acetylene, EtAlCl2, and carboxylic esters catalyzed by Cp2TiCl2. Tetrahedron Lett., 2014, 55, 1326-1328.
[83]
Chobanov, N.M.; Shaibakova, M.G.; Popod’ko, N.R.; Khafizova, L.O.; Dzhemilev, U.M. Ti-catalyzed reactions of EtAlCl2: An efficient catalytic method for the synthesis of tetrasubstituted furans. Tetrahedron, 2017, 73, 639-5645.
[84]
Chen, R.; Fan, X.; Xu, Z.; He, Z. Facile synthesis of polysubstituted furans and dihydrofurans via cyclization of bromonitromethane with oxodienes. Tetrahedron Lett., 2017, 58, 3722-3726.
[85]
Wang, S.; Liu, C.; Zha, C.; Jia, J.; Xie, M.; Zhang, N. Synthesis of sulfonyl-substituted furans via copper-mediated annulation of acetylenic sulfones and activated methylenes. Tetrahedron, 2016, 72(42), 6684-6691.
[86]
Silwal, S.; Rahaim, R.J. Modular synthesis of tetrasubstituted furans from alkynes, Weinreb amides, and aldehydes. Tetrahedron Lett., 2015, 56, 5738-5742.
[87]
Guo, P. Gold-catalyzed formation of C–O and C–C bonds: An efficient domino reaction synthesis of functionalized furans. Catal. Commun., 2015, 68, 58-60.
[88]
Cui, X.; Xu, X.; Wojtas, L.; Kim, M.M.; Zhang, X.P. Regioselective synthesis of multisubstituted furans via metalloradical cyclization of alkynes with α-diazocarbonyls: Construction of functionalized α-oligofurans. J. Am. Chem. Soc., 2012, 134, 19981-19984.
[89]
Hossain, M.L.; Ye, F.; Zhang, Y. Wang. J. Cu(I)-catalyzed reaction of diazo compounds with terminal alkynes: A direct synthesis of trisubstituted furans. Tetrahedron, 2014, 70, 6957-6962.
[90]
Yang, Y.; Ni, F.; Shu, W.M.; Wu, A.X. Water as an additive for selective synthesis of saturated 1,4-diketones and tetrasubstituted furans directly from 1,4-enediones. Tetrahedron, 2014, 70, 6733-6741.
[91]
Lin, M.H.; Kuo, C.K.; Huang, Y.C.; Tsai, Y.T.; Tsai, C.H.; Liang, K.Y.; Li, Y.S.; Chuang, T.H. Indium-mediated allenylation of arylacyl bromides in a route for the synthesis of substituted furans. Tetrahedron, 2014, 70, 5513-5518.
[92]
Zeng, W.; Wu, W.; Jiang, H.; Sun, Y.; Chen, Z. Highly efficient synthesis of 2,3,4-trisubstituted furans via silver-catalyzed sequential nucleophilic addition and cyclization reactions of haloalkynes. Tetrahedron Lett., 2013, 54, 4605-4609.
[93]
Moss, T.A.; Nowak, T. Synthesis of 2,3-dicarbonylated pyrroles and furans via the three-component Hantzsch reaction. Tetrahedron Lett., 2012, 53, 3056-3060.
[94]
York, M. A continuous-flow synthesis of annulated and polysubstituted furans from the reaction of ketones and α-haloketones. Tetrahedron Lett., 2011, 52, 6267-6270.
[95]
Wang, T.; Liu, J.; Lv, Z.; Zhong, H.; Chen, H.; Niu, C.; Li, K. Efficient and mild synthesis of highly substituted 2,5-dihydrofuran and furan derivatives via stepwise reaction. Tetrahedron, 2011, 67, 3476-3482.
[96]
Sasikala, K.A.; Kalesh, K.A.; Anabha, E.R.; Pillai, P.M.; Asokan, C.V.; Devaky, K.S. Synthesis of 2,3,5-trisubstituted furans from α-formylaroylketene dithioacetals. Tetrahedron Lett., 2011, 52, 1667-1669.
[97]
Yazici, A.; Pyne, S.G. Synthesis of 3-halo-2,5-disubstituted furans via CuX mediated cyclization–halogenation reactions. Tetrahedron Lett., 2011, 52, 1398-1400.
[98]
Sydnes, L.K.; Isanov, R.; Sengee, M.; Livi, F. Regiospecific synthesis of tetrasubstituted furans. Synth. Commun., 2013, 43, 2898-2905.
[99]
Lee, H.; Yi, Y.; Jun, C.H. Copper(II)-promoted one-pot conversion of 1-alkynes with anhydrides or primary amines to the respective 2,5-disubstituted furans or pyrroles under microwave irradiation conditions. Adv. Synth. Catal., 2015, 357, 3485-3490.
[100]
Huang, W.; Liu, C.; Gu, Y. Auto-tandem catalysis-induced synthesis of trisubstituted furans through domino Acid-acid-catalyzed reaction of aliphatic aldehydes and 1,3-dicarbonyl compounds by using N-bromosuccinimide as oxidant. Adv. Synth. Catal., 2017, 359, 1811-1818.
[101]
Roslan, I.I. Sun. J.; Chuah. G.K.; Jaenicke. S. Cobalt(II)-catalyzed electrophilic alkynylation of 1,3-dicarbonyl compounds to form polysubstituted furans via п-п activation. Adv. Synth. Catal., 2015, 357, 719-726.
[102]
Li, J.; Rudolph, M.; Rominger, F.; Xie, J.; Hashmi, A.S.K. A gold-catalyzed A3 coupling/cyclization/elimination sequence as versatile tool for the synthesis of furfuryl alcohol derivatives from glyceraldehyde and alkynes. Adv. Synth. Catal., 2016, 358, 207-211.
[103]
Li, J.; Liu, L.; Ding, D.; Sun, J.; Ji, Y.; Dong, J. Gold(III)-catalyzed Three-Component Coupling reaction (TCC) selective toward furans. Org. Lett., 2013, 15(11), 2884-2887.
[104]
Dateer, R.B.; Pati, K.; Liu, R.S. Gold-catalyzed synthesis of substituted 2-aminofurans via formal [4+1]-cycloadditions on 3-en-1-ynamides. Chem. Commun., 2012, 48, 7200-7202.
[105]
Pagar, V.V.; Liu, R.S. Gold-catalyzed α-furanylations of quinoline N-oxides with alkenyldiazo carbonyl species. Org. Biomol. Chem., 2015, 13, 6166-6169.
[106]
Kramer, S.; Skrydstrup, T. Gold-catalyzed carbene transfer to alkynes: Access to 2,4- disubstituted furans. Angew. Chem. Int. Ed., 2012, 51, 4681-4684.
[107]
Ma, Y.; Zhang, S.; Yang, S.; Song, F.; You, J. Gold-catalyzed C(sp3)-H/C(sp)-H coupling/cyclization/oxidative alkynylation sequence: A powerful strategy for the synthesis of 3-alkynyl polysubstituted furans. Angew. Chem. Int. Ed., 2014, 53, 7870-7874.
[108]
Cheng, X.; Yu, Y.; Mao, Z.; Chen, J.; Huang, X. Facile synthesis of substituted 3‐aminofurans through tandem reaction of N‐sulfonyl‐1,2,3‐triazoles with propargyl alcohols. Org. Biomol. Chem., 2016, 14, 3878-3882.
[109]
Li, E.; Yao, W.; Xie, X.; Wang, C.; Shao, Y.; Li, Y. Gold-catalyzed efficient synthesis of 2,4-disubstituted furans from aryloxyenynes. Org. Biomol. Chem., 2012, 10, 2960-2965.
[110]
Kumari, A.L.S.; Swamy, K.C.K. Gold catalyzed concomitant [3+3] cycloaddition/ cascade heterocyclization of enynones/enynals with azides leading to furanotriazines. J. Org. Chem., 2016, 81(4), 1425-1433.
[111]
He, C.; Guo, S.; Ke, J.; Hao, J.; Xu, H.; Chen, H.; Lei, A. Silver-mediated oxidative C−H/C−H functionalization: A strategy to construct polysubstituted furans. J. Am. Chem. Soc., 2012, 134, 5766-5769.
[112]
Lou, J.; Wang, Q.; Wu, K.; Wu, P.; Yu, Z. Iron-catalyzed oxidative C−H functionalization of internal olefins for the synthesis of tetrasubstituted furans. Org. Lett., 2017, 19, 3287-3290.
[113]
Mondal, K.; Pan, S.C. Synthesis of 2,5-disubstituted furans from Sc(OTf)3 catalyzed reaction of aryl oxiranediesters with γ-hydroxyenones. J. Org. Chem., 2017, 82, 4415-4421.
[114]
Nandi, G.C.; Soumini, K. Catalyst-controlled straightforward synthesis of highly substituted pyrroles/furan via propargylation/ cycloisomerization of α-oxoketene-N,S-acetals. J. Org. Chem., 2016, 81, 11909-11915.
[115]
Xia, Y.; Ge, R.; Chen, L.; Liu, Z.; Xiao, Q.; Zhang, Y.; Wang, J. Palladium-catalyzed oxidative cross-coupling of conjugated enynones with organoboronic acids. J. Org. Chem., 2015, 80(16), 7856-7864.
[116]
Hu, F.; Xia, Y.; Ma, C.; Zhang, Y.; Wang, J. Cu(I)-catalyzed synthesis of furan-substituted allenes using conjugated ene-yne-ketones as carbene precursors. J. Org. Chem., 2016, 81(8), 3275-3285.
[117]
Trofimov, B.A.; Bidusenko, I.A.; Schmidt, E.Y.; Ushakov, I.A.; Vashchenko, A.V. Acetylene as a driving and organizing molecule in one-pot transition metal-free synthesis of furans using chalcones and their analogues. Asian J. Org. Chem., 2017, 6(6), 707-711.
[118]
Chang, S.; Desai, S.; Leznoff, D.B.; Merbouh, N.; Britton, R. A short, gram-scale synthesis of 2,5-disubstituted furans. Eur. J. Org. Chem., 2013, 2013(16), 3219-3222.
[119]
Raimondi, W.; Dauzonne, D.; Constantieux, T.; Bonne, D.; Rodriguez, J. Expeditious, metal-free, domino, regioselective synthesis of highly substituted 2-carbonyl- and 2-phosphorylfurans by formal [3+2] cycloaddition. Eur. J. Org., 2012, 2012(31), 6119-6123.
[120]
Huang, Q.; Zheng, H.; Liu, S.; Kong, L.; Luo, F.; Zhu, G. Direct access to 2-amino-5-azidomethylfurans through palladiumcatalyzed azidative cycloisomerization of homoallenyl amides. Org. Biomol. Chem., 2016, 14, 8557-8563.
[121]
Wan, Y.; Zhang, J.; Chen, Y.; Kong, L.; Luo, F.; Zhu, G. Palladium-catalyzed tandem cyclization/sulfonylation of homoallenyl amides with sodium sulfinates. Org. Biomol. Chem., 2017, 15, 7204-7211.
[122]
Zhang, J.; Wu, M.; Lu, W.; Wang, S.; Zhang, Y.; Cheng, C.; Zhu, G. Preparation of 2-amino-5-homoallylfurans via palladium-cata-lyzed tandem cycloisomerization/heck-type coupling of homoalle-nyl amides with allyltrialkylsilanes. J. Org. Chem., 2017, 82, 11134-11140.
[123]
Miao, M.; Xu, H.; Luo, Y.; Jin, M.; Chen, Z.; Xu, J.; Ren, H. A modular approach to highly functionalized 3-sulfonylfurans via conjugate addition of 3-cyclopropylideneprop-2-en-1-ones with sodium sulfinates and sequential 5-endo-trig iodocyclization. Org. Chem. Front., 2017, 4, 1824-1828.
[124]
Yang, X.; Yan, R. A method for accessing sulfanylfurans from homopropargylic alcohols and sulfonyl hydrazides. Org. Biomol. Chem., 2017, 15, 3571-3574.
[125]
Bakshi, D.; Singh, A. Direct Csp2–H enolization: An allenoate alkylation cascade toward the assembly of multisubstituted furans. Org. Biomol. Chem., 2017, 15, 3175-3178.
[126]
Vijayaprasad, P.; Venkanna, A.; Shanker, M.; Kishan, E.; Rao, P.V. Triflic acid promoted solvent free synthesis of densely functionalized furans. RSC Advances, 2017, 7, 10524-10528.
[127]
Yu, Y.; Chen, Y.; Wu, W.; Jiang, H. Facile synthesis of cyanofurans via Michael-addition/cyclization of ene-yne-ketones with trimethylsilyl cyanide. Chem. Commun., 2017, 53, 640-643.
[128]
An, Z.; She, Y.; Yang, X.; Pang, X.; Yan, R. Metal-free synthesis 3-methylthiofurans from homopropargylic alcohols and DMSO via tandem sulfenylation/cyclization reaction in one-pot manner. Org. Chem. Front., 2016, 3, 1746-1749.
[129]
Zhou, W.; Yuea, Z.; Zhang, J. A highly efficient one-pot trifluoromethylation/cyclization reaction of electron-deficient 1,3-conju-gated enynes: Modular access to trifluoromethylated furans and 2,3-dihydrofurans. Org. Chem. Front., 2016, 3, 1416-1419.
[130]
Wu, J.; Wang, D.; Wan, Y.; Ma, C. Rhodium‐catalyzed tunable oxidative cyclization toward the selective synthesis of α‐pyrones and furans. Chem. Commun., 2016, 52, 1661-1664.
[131]
Mane, V.; Kumar, T.; Pradhan, S.; Katiyar, S.; Namboothiri, I.N.N. One-pot regioselective synthesis of functionalized and fused furans from Morita-Baylis-Hillman and Rauhut-Currier adducts of nitroalkenes. RSC Advances, 2015, 5, 69990-69999.
[132]
Yang, X.; Hu, F.; Di, H.; Cheng, X.; Li, D.; Kan, X.; Zoua, X.; Zhang, Q. A convenient base-mediated synthesis of 3-aryol- 4-methyl (or benzyl)-2-methylthio furans from α-oxo ketene dithioacetals and propargyl alcohols via domino coupling/annulations. Org. Biomol. Chem., 2014, 12, 8947-8951.
[133]
González, J.; López, L.A.; Vicente, R. Zinc-catalyzed synthesis of 2-alkenylfurans via cross-coupling of enynones and diazo compounds. Chem. Commun., 2014, 50, 8536-8538.
[134]
Huynh, T.N.T.; Retailleau, P.; Denhez, C.; Nguyen, K.P.P. Guillaume. D. Regioselective synthesis of 3,4,5- trisubstituted 2-aminofurans. Org. Biomol. Chem., 2014, 12, 5098-5101.
[135]
Li, J.S.; Cai, F.F.; Li, Z.W.; Liu, W.D.; Simpson, J.; Xue, Y.; Pang, H.L.; Huang, P.M.; Cao, Z.; Lia, D.L. One-step metal-free construction of fluorescent 5-aryl-2,3-dicyanofurans from simple aryl ketones with DDQ. RSC Advances, 2014, 4, 474-478.
[136]
Cao, H.; Jiang, H.F.; Zhou, X.S.; Qi, C.R.; Lin, Y.G.; Wua, J.Y.; Liang, Q.M. CuO/CNTs-catalyzed heterogeneous process: A convenient strategy to prepare furan derivatives from electron-deficient alkynes and α-hydroxy ketones. Green Chem., 2012, 14, 2710-2714.
[137]
Hamal, K.B.; Chalifoux, W.A. One-pot synthesis of α-carbonyl bicyclic furans via a sequential Diels−Alder/5-exo-dig cyclization/ oxidation reaction. J. Org. Chem., 2017, 82, 12920-12927.
[138]
Zhang, T.; Maekawa, H. Synthesis of 4-(trifluoromethyl) cyclopentenones and 2-(trifluoromethyl)furans by reductive trifluoroacetylation of ynones. Org. Lett., 2017, 19(24), 6602-6605.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 5
Year: 2019
Page: [422 - 452]
Pages: 31
DOI: 10.2174/1570193X15666180608084557
Price: $65

Article Metrics

PDF: 55
HTML: 11