Pathophysiology of Type 2 Diabetes in Children and Adolescents

Author(s): Badhma Valaiyapathi, Barbara Gower, Ambika P. Ashraf*

Journal Name: Current Diabetes Reviews

Volume 16 , Issue 3 , 2020

Become EABM
Become Reviewer

Abstract:

Background: The prevalence of type 2 diabetes (DM) in children is disturbingly increasing in parallel with the increasing childhood obesity. Better knowledge regarding the pathophysiology of type 2 DM in children is paramount to devise an effective management plan.

Objective: Discuss the pathophysiology of type 2 DM in children and adolescents.

Methods and Results: This is a comprehensive review of the literature on this topic. Type 2 DM in childhood is viewed as a continuum of insulin resistance (IR) which is determined by an underlying genetic predisposition, intrauterine environment, excessive food consumption, continued rapid weight gain, and poor lifestyle. Besides IR, this is compounded by multiple metabolic defects including β-cell dysfunction and inadequate insulin secretion, α-cell dysfunction, hyperglucagonemia and increased hepatic glucose production, lipotoxicity, inflammation, deficiencies in incretin production and action, and increased renal glucose reabsorption. The confluence of genetic and environmental factors underscores the complexity in disease progression.

Conclusion: A consistent single risk factor for type 2 DM is obesity and related IR and therefore it is essential to curtail the progression of obesity. It is important to investigate the role of stringent dietary and nutritional approaches, medications that enhance β-cell function and insulin sensitivity.

Keywords: Type 2 diabetes, obesity, insulin resistance, insulin secretion, hyperglycemia, hyperglucagonemia, incretin.

[1]
Arslanian S. Type 2 diabetes in children: clinical aspects and risk factors. Horm Res 2002; 57(Suppl. 1): 19-28.
[PMID: 11979018]
[2]
Rodriguez BL, Fujimoto WY, Mayer-Davis EJ, et al. Prevalence of cardiovascular disease risk factors in U.S. children and adolescents with diabetes: the SEARCH for diabetes in youth study. Diabetes Care 2006; 29(8): 1891-6.
[http://dx.doi.org/10.2337/dc06-0310] [PMID: 16873798]
[3]
Mayer-Davis EJ, Lawrence JM, Dabelea D, et al. Search for diabetes in youth study. Incidence trends of type 1 and type 2 diabetes among youths, 2002-2012. N Engl J Med 2017; 376(15): 1419-29.
[http://dx.doi.org/10.1056/NEJMoa1610187] [PMID: 28402773]
[4]
Dabelea D, Mayer-Davis EJ, Saydah S, et al. SEARCH for diabetes in youth study. Prevalence of type 1 and type 2 diabetes among children and adolescents from 2001 to 2009. JAMA 2014; 311(17): 1778-86.
[http://dx.doi.org/10.1001/jama.2014.3201] [PMID: 24794371]
[5]
Reinehr T. Type 2 diabetes mellitus in children and adolescents. World J Diabetes 2013; 4(6): 270-81.
[http://dx.doi.org/10.4239/wjd.v4.i6.270] [PMID: 24379917]
[6]
Pinhas-Hamiel O, Zeitler P. The global spread of type 2 diabetes mellitus in children and adolescents. J Pediatr 2005; 146(5): 693-700.
[http://dx.doi.org/10.1016/j.jpeds.2004.12.042] [PMID: 15870677]
[7]
Pinhas-Hamiel O, Zeitler P. Acute and chronic complications of type 2 diabetes mellitus in children and adolescents. Lancet 2007; 369(9575): 1823-31.
[http://dx.doi.org/10.1016/S0140-6736(07)60821-6] [PMID: 17531891]
[8]
Rosenbloom AL, Silverstein JH, Amemiya S, Zeitler P, Klingensmith GJ. International Society for Pediatric and Adolescent Diabetes. ISPAD Clinical practice consensus guidelines 2006-2007. Type 2 diabetes mellitus in the child and adolescent. Pediatr Diabetes 2008; 9(5): 512-26.
[http://dx.doi.org/10.1111/j.1399-5448.2008.00429.x] [PMID: 18694453]
[9]
Jones KL, Arslanian S, Peterokova VA, Park JS, Tomlinson MJ. Effect of metformin in pediatric patients with type 2 diabetes: a randomized controlled trial. Diabetes Care 2002; 25(1): 89-94.
[http://dx.doi.org/10.2337/diacare.25.1.89] [PMID: 11772907]
[10]
Bacha F, Gungor N, Lee S, Arslanian SA. Progressive deterioration of β-cell function in obese youth with type 2 diabetes. Pediatr Diabetes 2013; 14(2): 106-11.
[http://dx.doi.org/10.1111/j.1399-5448.2012.00915.x] [PMID: 22913617]
[11]
Zeitler P, Hirst K, Pyle L, et al. TODAY Study Group. A clinical trial to maintain glycemic control in youth with type 2 diabetes. N Engl J Med 2012; 366(24): 2247-56.
[http://dx.doi.org/10.1056/NEJMoa1109333] [PMID: 22540912]
[12]
Ripsin CM, Kang H, Urban RJ. Management of blood glucose in type 2 diabetes mellitus. Am Fam Physician 2009; 79(1): 29-36.
[PMID: 19145963]
[13]
Albers JJ, Marcovina SM, Imperatore G, et al. Prevalence and determinants of elevated apolipoprotein B and dense low-density lipoprotein in youths with type 1 and type 2 diabetes. J Clin Endocrinol Metab 2008; 93(3): 735-42.
[http://dx.doi.org/10.1210/jc.2007-2176] [PMID: 18089692]
[14]
Tanamas SK, Reddy SP, Chambers MA, Clark EJ, Dunnigan DL, Hanson RL, et al. Effect of severe obesity in childhood and adolescence on risk of type 2 diabetes in youth and early adulthood in an American Indian population. Pediatr Diabetes 2017.
[PMID: 29282818]
[15]
Abbasi A, Juszczyk D, van Jaarsveld CHM, Gulliford MC. Body Mass Index and Incident Type 1 and Type 2 Diabetes in Children and Young Adults: A Retrospective Cohort Study. J Endocr Soc 2017; 1(5): 524-37.
[http://dx.doi.org/10.1210/js.2017-00044] [PMID: 29264507]
[16]
D’Adamo E, Caprio S. Type 2 diabetes in youth: epidemiology and pathophysiology. Diabetes Care 2011; 34(Suppl. 2): S161-5.
[http://dx.doi.org/10.2337/dc11-s212] [PMID: 21525449]
[17]
Shaw ND, Seminara SB, Welt CK, et al. Expanding the phenotype and genotype of female GnRH deficiency. J Clin Endocrinol Metab 2011; 96(3): E566-76.
[http://dx.doi.org/10.1210/jc.2010-2292] [PMID: 21209029]
[18]
Haines L, Wan KC, Lynn R, Barrett TG, Shield JP. Rising incidence of type 2 diabetes in children in the U.K. Diabetes Care 2007; 30(5): 1097-101.
[http://dx.doi.org/10.2337/dc06-1813] [PMID: 17259470]
[19]
González N, Moreno-Villegas Z, González-Bris A, Egido J, Lorenzo Ó. Regulation of visceral and epicardial adipose tissue for preventing cardiovascular injuries associated to obesity and diabetes. Cardiovasc Diabetol 2017; 16(1): 44.
[http://dx.doi.org/10.1186/s12933-017-0528-4] [PMID: 28376896]
[20]
Boyko EJ, Fujimoto WY, Leonetti DL, Newell-Morris L. Visceral adiposity and risk of type 2 diabetes: a prospective study among Japanese Americans. Diabetes Care 2000; 23(4): 465-71.
[http://dx.doi.org/10.2337/diacare.23.4.465] [PMID: 10857936]
[21]
Copeland KC, Zeitler P, Geffner M, et al. TODAY Study Group. Characteristics of adolescents and youth with recent-onset type 2 diabetes: the TODAY cohort at baseline. J Clin Endocrinol Metab 2011; 96(1): 159-67.
[http://dx.doi.org/10.1210/jc.2010-1642] [PMID: 20962021]
[22]
Pinhas-Hamiel O, Lerner-Geva L, Copperman NM, Jacobson MS. Lipid and insulin levels in obese children: changes with age and puberty. Obesity (Silver Spring) 2007; 15(11): 2825-31.
[http://dx.doi.org/10.1038/oby.2007.335] [PMID: 18070774]
[23]
Arslanian SA. Type 2 diabetes mellitus in children: pathophysiology and risk factors. J Pediatr Endocrinol Metab 2000; 13(Suppl. 6): 1385-94.
[http://dx.doi.org/10.1515/jpem-2000-s612] [PMID: 11202214]
[24]
Flint A, Arslanian S. Treatment of type 2 diabetes in youth. Diabetes Care 2011; 34(Suppl. 2): S177-83.
[http://dx.doi.org/10.2337/dc11-s215] [PMID: 21525452]
[25]
Goran MI, Gower BA. Longitudinal study on pubertal insulin resistance. Diabetes 2001; 50(11): 2444-50.
[http://dx.doi.org/10.2337/diabetes.50.11.2444] [PMID: 11679420]
[26]
Kelsey MM, Zeitler PS. Insulin Resistance of Puberty. Curr Diab Rep 2016; 16(7): 64.
[http://dx.doi.org/10.1007/s11892-016-0751-5] [PMID: 27179965]
[27]
Nadal A, Alonso-Magdalena P, Soriano S, Quesada I, Ropero AB. The pancreatic beta-cell as a target of estrogens and xenoestrogens: Implications for blood glucose homeostasis and diabetes. Mol Cell Endocrinol 2009; 304(1-2): 63-8.
[http://dx.doi.org/10.1016/j.mce.2009.02.016] [PMID: 19433249]
[28]
Beck J, Brandt EN Jr, Blackett P, Copeland K. Prevention and early detection of type 2 diabetes in children and adolescents. J Okla State Med Assoc 2001; 94(8): 355-61.
[PMID: 11515385]
[29]
Taha DR, Castells S, Umpaichitra V, Bastian W, Banerji MA. Beta-cell response to intravenous glucagon in African-American and Hispanic children with type 2 diabetes mellitus. J Pediatr Endocrinol Metab 2002; 15(1): 59-67.
[http://dx.doi.org/10.1515/JPEM.2002.15.1.59] [PMID: 11822582]
[30]
Jiang X, Ma H, Wang Y, Liu Y. Early life factors and type 2 diabetes mellitus. J Diabetes Res 2013; 2013485082
[http://dx.doi.org/10.1155/2013/485082] [PMID: 24455747]
[31]
Menke A, Casagrande S, Cowie CC. Prevalence of Diabetes in Adolescents Aged 12 to 19 Years in the United States, 2005-2014. JAMA 2016; 316(3): 344-5.
[http://dx.doi.org/10.1001/jama.2016.8544] [PMID: 27434447]
[32]
Dabelea D, Mayer-Davis EJ, Lamichhane AP, et al. Association of intrauterine exposure to maternal diabetes and obesity with type 2 diabetes in youth: the SEARCH Case-Control Study. Diabetes Care 2008; 31(7): 1422-6.
[http://dx.doi.org/10.2337/dc07-2417] [PMID: 18375420]
[33]
Pettitt DJ, Talton J, Dabelea D, et al. SEARCH for Diabetes in Youth Study Group. Prevalence of diabetes in U.S. youth in 2009: the SEARCH for diabetes in youth study. Diabetes Care 2014; 37(2): 402-8.
[http://dx.doi.org/10.2337/dc13-1838] [PMID: 24041677]
[34]
Bacha F, Lee S, Gungor N, Arslanian SA. From pre-diabetes to type 2 diabetes in obese youth: pathophysiological characteristics along the spectrum of glucose dysregulation. Diabetes Care 2010; 33(10): 2225-31.
[http://dx.doi.org/10.2337/dc10-0004] [PMID: 20592052]
[35]
Bacha F, Gungor N, Lee S, Arslanian SA. In vivo insulin sensitivity and secretion in obese youth: what are the differences between normal glucose tolerance, impaired glucose tolerance, and type 2 diabetes? Diabetes Care 2009; 32(1): 100-5.
[http://dx.doi.org/10.2337/dc08-1030] [PMID: 18835946]
[36]
Cali’ AM, Bonadonna RC, Trombetta M, Weiss R, Caprio S. Metabolic abnormalities underlying the different prediabetic phenotypes in obese adolescents. J Clin Endocrinol Metab 2008; 93(5): 1767-73.
[http://dx.doi.org/10.1210/jc.2007-1722] [PMID: 18303080]
[37]
Cali AM, Man CD, Cobelli C, et al. Primary defects in beta-cell function further exacerbated by worsening of insulin resistance mark the development of impaired glucose tolerance in obese adolescents. Diabetes Care 2009; 32(3): 456-61.
[http://dx.doi.org/10.2337/dc08-1274] [PMID: 19106382]
[38]
Love-Osborne K, Butler N, Gao D, Zeitler P. Elevated fasting triglycerides predict impaired glucose tolerance in adolescents at risk for type 2 diabetes. Pediatr Diabetes 2006; 7(4): 205-10.
[http://dx.doi.org/10.1111/j.1399-5448.2006.00179.x] [PMID: 16911007]
[39]
Weiss R, Caprio S, Trombetta M, Taksali SE, Tamborlane WV, Bonadonna R. Beta-cell function across the spectrum of glucose tolerance in obese youth. Diabetes 2005; 54(6): 1735-43.
[http://dx.doi.org/10.2337/diabetes.54.6.1735] [PMID: 15919795]
[40]
Beck-Nielsen H, Groop LC. Metabolic and genetic characterization of prediabetic states. Sequence of events leading to non-insulin-dependent diabetes mellitus. J Clin Invest 1994; 94(5): 1714-21.
[http://dx.doi.org/10.1172/JCI117518] [PMID: 7962519]
[41]
Del Prato S, Penno G, Miccoli R. Changing the treatment paradigm for type 2 diabetes. Diabetes Care 2009; 32(Suppl. 2): S217-22.
[http://dx.doi.org/10.2337/dc09-S314] [PMID: 19875555]
[42]
Weyer C, Bogardus C, Mott DM, Pratley RE. The natural history of insulin secretory dysfunction and insulin resistance in the pathogenesis of type 2 diabetes mellitus. J Clin Invest 1999; 104(6): 787-94.
[http://dx.doi.org/10.1172/JCI7231] [PMID: 10491414]
[43]
Weiss R, Santoro N, Giannini C, Galderisi A, Umano GR, Caprio S. Prediabetes in youth - mechanisms and biomarkers. Lancet Child Adolesc Health 2017; 1(3): 240-8.
[http://dx.doi.org/10.1016/S2352-4642(17)30044-5] [PMID: 29075659]
[44]
Defronzo RA. Banting Lecture. From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus. Diabetes 2009; 58(4): 773-95.
[http://dx.doi.org/10.2337/db09-9028] [PMID: 19336687]
[45]
Rossetti L, Giaccari A, DeFronzo RA. Glucose toxicity. Diabetes Care 1990; 13(6): 610-30.
[http://dx.doi.org/10.2337/diacare.13.6.610] [PMID: 2192847]
[46]
Florez JC. Pharmacogenetics in type 2 diabetes: precision medicine or discovery tool? Diabetologia 2017; 60(5): 800-7.
[http://dx.doi.org/10.1007/s00125-017-4227-1] [PMID: 28283684]
[47]
Uwaifo GI, Fallon EM, Chin J, Elberg J, Parikh SJ, Yanovski JA. Indices of insulin action, disposal, and secretion derived from fasting samples and clamps in normal glucose-tolerant black and white children. Diabetes Care 2002; 25(11): 2081-7.
[http://dx.doi.org/10.2337/diacare.25.11.2081] [PMID: 12401760]
[48]
Liese AD, D’Agostino RB Jr, Hamman RF, et al. SEARCH for Diabetes in Youth Study Group. The burden of diabetes mellitus among US youth: prevalence estimates from the SEARCH for Diabetes in Youth Study. Pediatrics 2006; 118(4): 1510-8.
[http://dx.doi.org/10.1542/peds.2006-0690] [PMID: 17015542]
[49]
Gower BA. Syndrome X in children: Influence of ethnicity and visceral fat. Am J Hum Biol 1999; 11(2): 249-57.
[http://dx.doi.org/10.1002/(SICI)1520-6300(1999)11:2<249:AID-AJHB12>3.0.CO;2-#] [PMID: 11533948]
[50]
Franks PW, Pearson E, Florez JC. Gene-environment and gene-treatment interactions in type 2 diabetes: progress, pitfalls, and prospects. Diabetes Care 2013; 36(5): 1413-21.
[http://dx.doi.org/10.2337/dc12-2211] [PMID: 23613601]
[51]
Lyssenko V, Jonsson A, Almgren P, et al. Clinical risk factors, DNA variants, and the development of type 2 diabetes. N Engl J Med 2008; 359(21): 2220-32.
[http://dx.doi.org/10.1056/NEJMoa0801869] [PMID: 19020324]
[52]
Meigs JB, Shrader P, Sullivan LM, et al. Genotype score in addition to common risk factors for prediction of type 2 diabetes. N Engl J Med 2008; 359(21): 2208-19.
[http://dx.doi.org/10.1056/NEJMoa0804742] [PMID: 19020323]
[53]
Lin X, Song K, Lim N, et al. Risk prediction of prevalent diabetes in a Swiss population using a weighted genetic score--the CoLaus Study. Diabetologia 2009; 52(4): 600-8.
[http://dx.doi.org/10.1007/s00125-008-1254-y] [PMID: 19139842]
[54]
Saxena R, Voight BF, Lyssenko V, et al. Diabetes Genetics Initiative of Broad Institute of Harvard and MIT, Lund University, and Novartis Institutes of BioMedical Research. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 2007; 316(5829): 1331-6.
[http://dx.doi.org/10.1126/science.1142358] [PMID: 17463246]
[55]
Zeggini E, Weedon MN, Lindgren CM, et al. Wellcome Trust Case Control Consortium (WTCCC). Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science 2007; 316(5829): 1336-41.
[http://dx.doi.org/10.1126/science.1142364] [PMID: 17463249]
[56]
Zeggini E, Scott LJ, Saxena R, et al. Wellcome Trust Case Control Consortium. Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat Genet 2008; 40(5): 638-45.
[http://dx.doi.org/10.1038/ng.120] [PMID: 18372903]
[57]
Meigs JB, Cupples LA, Wilson PW. Parental transmission of type 2 diabetes: the Framingham Offspring Study. Diabetes 2000; 49(12): 2201-7.
[http://dx.doi.org/10.2337/diabetes.49.12.2201] [PMID: 11118026]
[58]
Meigs JB, Dupuis J, Herbert AG, Liu C, Wilson PW, Cupples LA. The insulin gene variable number tandem repeat and risk of type 2 diabetes in a population-based sample of families and unrelated men and women. J Clin Endocrinol Metab 2005; 90(2): 1137-43.
[http://dx.doi.org/10.1210/jc.2004-1212] [PMID: 15562019]
[59]
Frayling TM. Genome-wide association studies provide new insights into type 2 diabetes aetiology. Nat Rev Genet 2007; 8(9): 657-62.
[http://dx.doi.org/10.1038/nrg2178] [PMID: 17703236]
[60]
Reinehr T, Schober E, Wiegand S, Thon A, Holl R. DPV-Wiss Study Group. Beta-cell autoantibodies in children with type 2 diabetes mellitus: subgroup or misclassification? Arch Dis Child 2006; 91(6): 473-7.
[http://dx.doi.org/10.1136/adc.2005.088229] [PMID: 16449253]
[61]
Awa WL, Boehm BO, Rosinger S, et al. DPV Initiative and the German BMBF Competence Networks Diabetes Mellitus and Obesity. HLA-typing, clinical, and immunological characterization of youth with type 2 diabetes mellitus phenotype from the German/Austrian DPV database. Pediatr Diabetes 2013; 14(8): 562-74.
[http://dx.doi.org/10.1111/pedi.12043] [PMID: 23627341]
[62]
DeFronzo RA. Lilly lecture 1987. The triumvirate: beta-cell, muscle, liver. A collusion responsible for NIDDM. Diabetes 1988; 37(6): 667-87.
[http://dx.doi.org/10.2337/diab.37.6.667] [PMID: 3289989]
[63]
Groop L, Lyssenko V. Genes and type 2 diabetes mellitus. Curr Diab Rep 2008; 8(3): 192-7.
[http://dx.doi.org/10.1007/s11892-008-0033-y] [PMID: 18625115]
[64]
Ginsberg HN. Insulin resistance and cardiovascular disease. J Clin Invest 2000; 106(4): 453-8.
[http://dx.doi.org/10.1172/JCI10762] [PMID: 10953019]
[65]
Eriksson J, Franssila-Kallunki A, Ekstrand A, et al. Early metabolic defects in persons at increased risk for non-insulin-dependent diabetes mellitus. N Engl J Med 1989; 321(6): 337-43.
[http://dx.doi.org/10.1056/NEJM198908103210601] [PMID: 2664520]
[66]
Weiss R, Dufour S, Taksali SE, et al. Prediabetes in obese youth: a syndrome of impaired glucose tolerance, severe insulin resistance, and altered myocellular and abdominal fat partitioning. Lancet 2003; 362(9388): 951-7.
[http://dx.doi.org/10.1016/S0140-6736(03)14364-4] [PMID: 14511928]
[67]
Bergman RN, Iyer MS. Indirect Regulation of Endogenous Glucose Production by Insulin: The Single Gateway Hypothesis Revisited. Diabetes 2017; 66(7): 1742-7.
[http://dx.doi.org/10.2337/db16-1320] [PMID: 28637826]
[68]
Sivitz WI, Yorek MA. Mitochondrial dysfunction in diabetes: from molecular mechanisms to functional significance and therapeutic opportunities. Antioxid Redox Signal 2010; 12(4): 537-77.
[http://dx.doi.org/10.1089/ars.2009.2531] [PMID: 19650713]
[69]
Fu Z, Gilbert ER, Liu D. Regulation of insulin synthesis and secretion and pancreatic Beta-cell dysfunction in diabetes. Curr Diabetes Rev 2013; 9(1): 25-53.
[http://dx.doi.org/10.2174/157339913804143225] [PMID: 22974359]
[70]
von Berghes C, Brabant G, Biebermann H, Krude H, Wiegand S. Proinsulin and the proinsulin/insulin ratio in overweight and obese children and adolescents: relation to clinical parameters, insulin resistance, and impaired glucose regulation. Pediatr Diabetes 2011; 12(3 Pt 2): 242-9.
[http://dx.doi.org/10.1111/j.1399-5448.2010.00734.x] [PMID: 21518412]
[71]
Røder ME, Dinesen B, Hartling SG, et al. Intact proinsulin and beta-cell function in lean and obese subjects with and without type 2 diabetes. Diabetes Care 1999; 22(4): 609-14.
[http://dx.doi.org/10.2337/diacare.22.4.609] [PMID: 10189540]
[72]
Gungor N, Bacha F, Saad R, Janosky J, Arslanian S. Youth type 2 diabetes: insulin resistance, beta-cell failure, or both? Diabetes Care 2005; 28(3): 638-44.
[http://dx.doi.org/10.2337/diacare.28.3.638] [PMID: 15735201]
[73]
Beck-Nielsen H, Hother-Nielsen O, Staehr P. Is hepatic glucose production increased in type 2 diabetes mellitus? Curr Diab Rep 2002; 2(3): 231-6.
[http://dx.doi.org/10.1007/s11892-002-0088-0] [PMID: 12643178]
[74]
Lin HV, Accili D. Hormonal regulation of hepatic glucose production in health and disease. Cell Metab 2011; 14(1): 9-19.
[http://dx.doi.org/10.1016/j.cmet.2011.06.003] [PMID: 21723500]
[75]
Godoy-Matos AF. The role of glucagon on type 2 diabetes at a glance. Diabetol Metab Syndr 2014; 6(1): 91.
[http://dx.doi.org/10.1186/1758-5996-6-91] [PMID: 25177371]
[76]
Umpaichitra V, Bastian W, Taha D, Banerji MA. AvRuskin TW, Castells S. C-peptide and glucagon profiles in minority children with type 2 diabetes mellitus. J Clin Endocrinol Metab 2001; 86(4): 1605-9.
[http://dx.doi.org/10.1210/jcem.86.4.7415] [PMID: 11297591]
[77]
Moon JS, Won KC. Pancreatic α-Cell Dysfunction in Type 2 Diabetes: Old Kids on the Block. Diabetes Metab J 2015; 39(1): 1-9.
[http://dx.doi.org/10.4093/dmj.2015.39.1.1] [PMID: 25729706]
[78]
Guilherme A, Virbasius JV, Puri V, Czech MP. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat Rev Mol Cell Biol 2008; 9(5): 367-77.
[http://dx.doi.org/10.1038/nrm2391] [PMID: 18401346]
[79]
Stinkens R, Goossens GH, Jocken JW, Blaak EE. Targeting fatty acid metabolism to improve glucose metabolism. Obes Rev 2015; 16(9): 715-57.
[http://dx.doi.org/10.1111/obr.12298] [PMID: 26179344]
[80]
Titchenell PM, Lazar MA, Birnbaum MJ. Unraveling the Regulation of Hepatic Metabolism by Insulin. Trends Endocrinol Metab 2017; 28(7): 497-505.
[http://dx.doi.org/10.1016/j.tem.2017.03.003] [PMID: 28416361]
[81]
Kahn BB, Flier JS. Obesity and insulin resistance. J Clin Invest 2000; 106(4): 473-81.
[http://dx.doi.org/10.1172/JCI10842] [PMID: 10953022]
[82]
Boden G. Free fatty acids, insulin resistance, and type 2 diabetes mellitus. Proc Assoc Am Physicians 1999; 111(3): 241-8.
[http://dx.doi.org/10.1046/j.1525-1381.1999.99220.x] [PMID: 10354364]
[83]
Lowell BB, Shulman GI. Mitochondrial dysfunction and type 2 diabetes. Science 2005; 307(5708): 384-7.
[http://dx.doi.org/10.1126/science.1104343] [PMID: 15662004]
[84]
Parish R, Petersen KF. Mitochondrial dysfunction and type 2 diabetes. Curr Diab Rep 2005; 5(3): 177-83.
[http://dx.doi.org/10.1007/s11892-005-0006-3] [PMID: 15929863]
[85]
Boden G. Role of fatty acids in the pathogenesis of insulin resistance and NIDDM. Diabetes 1997; 46(1): 3-10.
[http://dx.doi.org/10.2337/diab.46.1.3] [PMID: 8971073]
[86]
Sinaiko AR, Donahue RP, Jacobs DR Jr, Prineas RJ. Relation of weight and rate of increase in weight during childhood and adolescence to body size, blood pressure, fasting insulin, and lipids in young adults. The Minneapolis Children’s Blood Pressure Study. Circulation 1999; 99(11): 1471-6.
[http://dx.doi.org/10.1161/01.CIR.99.11.1471] [PMID: 10086972]
[87]
Tenenbaum A, Klempfner R, Fisman EZ. Hypertriglyceridemia: a too long unfairly neglected major cardiovascular risk factor. Cardiovasc Diabetol 2014; 13: 159.
[http://dx.doi.org/10.1186/s12933-014-0159-y] [PMID: 25471221]
[88]
Gastaldelli A, Cusi K, Pettiti M, et al. Relationship between hepatic/visceral fat and hepatic insulin resistance in nondiabetic and type 2 diabetic subjects. Gastroenterology 2007; 133(2): 496-506.
[http://dx.doi.org/10.1053/j.gastro.2007.04.068] [PMID: 17681171]
[89]
Ameer F, Scandiuzzi L, Hasnain S, Kalbacher H, Zaidi N. De novo lipogenesis in health and disease. Metabolism 2014; 63(7): 895-902.
[http://dx.doi.org/10.1016/j.metabol.2014.04.003] [PMID: 24814684]
[90]
Jensen-Urstad AP, Semenkovich CF. Fatty acid synthase and liver triglyceride metabolism: housekeeper or messenger? Biochim Biophys Acta 2012; 1821(5): 747-53.
[http://dx.doi.org/10.1016/j.bbalip.2011.09.017] [PMID: 22009142]
[91]
Fon Tacer K, Rozman D. Nonalcoholic Fatty liver disease: focus on lipoprotein and lipid deregulation. J Lipids 2011; 2011783976
[http://dx.doi.org/10.1155/2011/783976] [PMID: 21773052]
[92]
Kotronen A, Juurinen L, Tiikkainen M, Vehkavaara S, Yki-Järvinen H. Increased liver fat, impaired insulin clearance, and hepatic and adipose tissue insulin resistance in type 2 diabetes. Gastroenterology 2008; 135(1): 122-30.
[http://dx.doi.org/10.1053/j.gastro.2008.03.021] [PMID: 18474251]
[93]
Williams KH, Shackel NA, Gorrell MD, McLennan SV, Twigg SM. Diabetes and nonalcoholic Fatty liver disease: a pathogenic duo. Endocr Rev 2013; 34(1): 84-129.
[http://dx.doi.org/10.1210/er.2012-1009] [PMID: 23238855]
[94]
Roth CL, Reinehr T. Roles of gastrointestinal and adipose tissue peptides in childhood obesity and changes after weight loss due to lifestyle intervention. Arch Pediatr Adolesc Med 2010; 164(2): 131-8.
[http://dx.doi.org/10.1001/archpediatrics.2009.265] [PMID: 20124141]
[95]
Pickup JC, Crook MA. Is type II diabetes mellitus a disease of the innate immune system? Diabetologia 1998; 41(10): 1241-8.
[http://dx.doi.org/10.1007/s001250051058] [PMID: 9794114]
[96]
Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 2003; 112(12): 1796-808.
[http://dx.doi.org/10.1172/JCI200319246] [PMID: 14679176]
[97]
Lara-Castro C, Garvey WT. Intracellular lipid accumulation in liver and muscle and the insulin resistance syndrome. Endocrinol Metab Clin North Am 2008; 37(4): 841-56.
[http://dx.doi.org/10.1016/j.ecl.2008.09.002] [PMID: 19026935]
[98]
Cieślak M, Wojtczak A, Cieślak M. Role of pro-inflammatory cytokines of pancreatic islets and prospects of elaboration of new methods for the diabetes treatment. Acta Biochim Pol 2015; 62(1): 15-21.
[http://dx.doi.org/10.18388/abp.2014_853] [PMID: 25781159]
[99]
Lean ME, Leslie WS, Barnes AC, et al. Primary care-led weight management for remission of type 2 diabetes (DiRECT): an open-label, cluster-randomised trial. Lancet 2017.
[PMID: 29221645]
[100]
Goss AM, Goree LL, Ellis AC, et al. Effects of diet macronutrient composition on body composition and fat distribution during weight maintenance and weight loss. Obesity (Silver Spring) 2013; 21(6): 1139-42.
[http://dx.doi.org/10.1002/oby.20191] [PMID: 23671029]
[101]
Goss AM, Chandler-Laney PC, Ovalle F, et al. Effects of a eucaloric reduced-carbohydrate diet on body composition and fat distribution in women with PCOS. Metabolism 2014; 63(10): 1257-64.
[http://dx.doi.org/10.1016/j.metabol.2014.07.007] [PMID: 25125349]
[102]
Gower BA, Chandler-Laney PC, Ovalle F, et al. Favourable metabolic effects of a eucaloric lower-carbohydrate diet in women with PCOS. Clin Endocrinol (Oxf) 2013; 79(4): 550-7.
[http://dx.doi.org/10.1111/cen.12175] [PMID: 23444983]
[103]
Mayer SB, Jeffreys AS, Olsen MK, McDuffie JR, Feinglos MN, Yancy WS Jr. Two diets with different haemoglobin A1c and antiglycaemic medication effects despite similar weight loss in type 2 diabetes. Diabetes Obes Metab 2014; 16(1): 90-3.
[http://dx.doi.org/10.1111/dom.12191] [PMID: 23911112]
[104]
Feinman RD, Pogozelski WK, Astrup A, et al. Dietary carbohydrate restriction as the first approach in diabetes management: critical review and evidence base. Nutrition 2015; 31(1): 1-13.
[http://dx.doi.org/10.1016/j.nut.2014.06.011] [PMID: 25287761]
[105]
Chen X, Yang W. Branched-chain amino acids and the association with type 2 diabetes. J Diabetes Investig 2015; 6(4): 369-70.
[http://dx.doi.org/10.1111/jdi.12345] [PMID: 26221513]
[106]
McCormack SE, Shaham O, McCarthy MA, et al. Circulating branched-chain amino acid concentrations are associated with obesity and future insulin resistance in children and adolescents. Pediatr Obes 2013; 8(1): 52-61.
[http://dx.doi.org/10.1111/j.2047-6310.2012.00087.x] [PMID: 22961720]
[107]
Tricò D, Prinsen H, Giannini C, et al. Elevated α-hydroxybutyrate and branched-chain amino acid levels predict deterioration of glycemic control in adolescents. J Clin Endocrinol Metab 2017; 102(7): 2473-81.
[http://dx.doi.org/10.1210/jc.2017-00475] [PMID: 28482070]
[108]
Gardner CD, Trepanowski JF, Del Gobbo LC, et al. Effect of low-fat vs. low-carbohydrate diet on 12-month weight loss in overweight adults and the association with genotype pattern or insulin secretion: The dietfits randomized clinical trial. JAMA 2018; 319(7): 667-79.
[http://dx.doi.org/10.1001/jama.2018.0245] [PMID: 29466592]
[109]
Poudel RR. Renal glucose handling in diabetes and sodium glucose cotransporter 2 inhibition. Indian J Endocrinol Metab 2013; 17(4): 588-93.
[http://dx.doi.org/10.4103/2230-8210.113725] [PMID: 23961473]
[110]
Kim W, Egan JM. The role of incretins in glucose homeostasis and diabetes treatment. Pharmacol Rev 2008; 60(4): 470-512.
[http://dx.doi.org/10.1124/pr.108.000604] [PMID: 19074620]
[111]
Michaliszyn SF, Mari A, Lee S, et al. β-cell function, incretin effect, and incretin hormones in obese youth along the span of glucose tolerance from normal to prediabetes to type 2 diabetes. Diabetes 2014; 63(11): 3846-55.
[http://dx.doi.org/10.2337/db13-1951] [PMID: 24947360]
[112]
Yagihashi S. Diabetes and pancreas size, does it matter? J Diabetes Investig 2017; 8(4): 413-5.
[http://dx.doi.org/10.1111/jdi.12590] [PMID: 27808474]
[113]
Macauley M, Percival K, Thelwall PE, Hollingsworth KG, Taylor R. Altered volume, morphology and composition of the pancreas in type 2 diabetes. PLoS One 2015; 10(5)e0126825
[http://dx.doi.org/10.1371/journal.pone.0126825] [PMID: 25950180]
[114]
Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC. Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 2003; 52(1): 102-10.
[http://dx.doi.org/10.2337/diabetes.52.1.102] [PMID: 12502499]
[115]
Saisho Y, Butler AE, Meier JJ, et al. Pancreas volumes in humans from birth to age one hundred taking into account sex, obesity, and presence of type-2 diabetes. Clin Anat 2007; 20(8): 933-42.
[http://dx.doi.org/10.1002/ca.20543] [PMID: 17879305]
[116]
Bacha F, Cheng P, Gal RL, et al. For the Pediatric diabetes consortium. Initial presentation of type 2 diabetes in adolescents predicts durability of successful treatment with metformin monotherapy: Insights from the pediatric diabetes consortium t2d registry. Horm Res Paediatr 2018; 89(1): 47-55.
[http://dx.doi.org/10.1159/000481687] [PMID: 29131017]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 3
Year: 2020
Page: [220 - 229]
Pages: 10
DOI: 10.2174/1573399814666180608074510

Article Metrics

PDF: 28
HTML: 13