Microsponge Based Gel of Tea Tree Oil for Dermatological Microbial Infections

Author(s): Erosh Yadav, Rekha Rao*, Sunil Kumar, Sheefali Mahant, Prakriti Vohra

Journal Name: The Natural Products Journal

Volume 10 , Issue 3 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Objectives: Tea Tree Oil (TTO), derived from Melaleuca alternifolia possesses broad spectrum antimicrobial potential. However, its therapeutic utility is impaired due to its high volatility, poor aqueous solubility and low stability in the presence of light, oxygen and temperature. The present study was attempted to investigate Ethyl Cellulose (EC) microsponges (MSs) as topical carriers for TTO to circumvent above mentioned limitations.

Methods: TTO MSs were prepared using quasi emulsion solvent diffusion technique. The effect of formulation variables on the production yield, entrapment efficiency, particle size and drug release of MSs was investigated. The optimized MSs were dispersed into Carbopol 934 gel and evaluated for drug release, skin irritation, antibacterial activity and photostability.

Results: Scanning electron microscopy revealed spherical and porous nature of TTO microsponges. The optimized MSs possessed particle size of 36.98 μm, percent entrapment efficiency of 93.12% and percent cumulative drug release of 79.18%, respectively. MS-loaded gels were found nonirritant. In addition, TTO loaded MS gels exhibited good stability. Antimicrobial effect of TTO MS gel showed broader zones of inhibition in comparison to TTO gel.

Conclusion: The findings of our study suggest that MS loaded gel could prove alternative to conventional antibacterial formulations for dermatological microbial infections.

Keywords: Tea tree oil, microsponge, antimicrobial, topical, controlled release, irritation.

[1]
D’souza, J.I.; More, H.N. Topical anti-inflammatory gels of fluocinolone acetonide entrapped in eudragit based microsponge delivery system. RJPT, 2008, 1(4), 502-506.
[2]
Alanis, A.J. Resistance to antibiotics: are we in the post-antibiotic era? Arch. Med. Res., 2005, 36(6), 697-705.
[3]
Heymann, D.L. Resistance to anti-infective drugs and the threat to public health. Cell, 2006, 124(4), 671-675.
[4]
Ge, Y.; Ge, M. Sustained broad-spectrum antimicrobial and haemostatic chitosan-based film with immerged tea tree oil droplets. Fibers Polym., 2015, 16(2), 308-318.
[5]
Reichling, J.; Landvatter, U.; Wagner, H.; Kostka, K.H.; Schaefer, U.F. In vitro studies on release and human skin permeation of Australian tea tree oil (TTO) from topical formulations. Eur. J. Pharm. Biopharm., 2006, 64(2), 222-228.
[6]
Jammy, R.; Sahari, J. Physicochemical and mechanical properties of different morphological parts of the tea tree (Melaleuca alternifolia) fibres. Fibres Text. East. Eur., 2015, 6(114), 31-36.
[7]
Pazyar, N.; Yaghoobi, R.; Bagherani, N.; Kazerouni, A. A review of applications of tea tree oil in dermatology. Int. J. Dermatol., 2013, 52(7), 784-790.
[8]
Catanzano, O.; Straccia, M.C.; Miro, A.; Ungaro, F.; Romano, I.; Mazzarella, G.; Santagata, G.; Quaglia, F.; Laurienzo, P.; Malinconico, M. Spray-by-spray in situ cross-linking alginate hydrogels delivering a tea tree oil microemulsion. Eur. J. Pharm. Sci., 2015, 66, 20-28.
[9]
Harkenthal, M.; Reichling, J.; Geiss, H.K.; Saller, R. Comparative study on the in vitro antibacterial activity of Australian tea tree oil, cajuput oil, niaouli oil, manuka oil, kanuka oil, and eucalyptus oil. Die Pharmazie, 1999, 54(6), 460-463.
[10]
Mondello, F.; De Bernardis, F.; Girolamo, A.; Cassone, A.; and Salvatore, G. In vivo activity of terpinen-4-ol, the main bioactive component of Melaleuca alternifolia Cheel (tea tree) oil against azole-susceptible and -resistant human pathogenic Candida species. BMC Infect. Dis., 2006, 6(1), 158-165.
[11]
Carson, C.F.; Hammer, K.A.; Riley, T.V. Melaleuca alternifolia (Tea Tree) oil: a review of antimicrobial and other medicinal properties. Clin. Microbiol. Rev., 2006, 19(1), 50-62.
[12]
Yang, Z.; Xiao, Z.; Ji, H. Solid inclusion complex of terpinen‐4‐ol/β‐cyclodextrin: Kinetic release, mechanism and its antibacterial activity. Flavour Fragrance J., 2015, 30(2), 179-187.
[13]
Flores, F.C.; de Lima, J.A.; Ribeiro, R.F.; Alves, S.H.; Rolim, C.M.B.; Beck, R.C.R.; da Silva, C.B. Antifungal activity of nanocapsule suspensions containing tea tree oil on the growth of Trichophyton rubrum. Mycopathologia, 2013, 175(3-4), 281-286.
[14]
Sun, L.M.; Zhang, C.L.; Li, P. Characterization, antibiofilm, and mechanism of action of novel PEG-stabilized lipid nanoparticles loaded with terpinen-4-ol. J. Agric. Food Chem., 2012, 60(24), 6150-6156.
[15]
Osmani, R.A.; Aloorkar, N.H.; Thaware, B.U.; Kulkarni, P.K.; Moin, A.; Hani, U.; Srivastava, A.; Bhosale, R.R. Microsponge based drug delivery system for augmented gastroparesis therapy: Formulation development and evaluation. Asian J. Pharm. Sci., 2015, 10(5), 442-451.
[16]
Bothiraja, C.; Gholap, A.D.; Shaikh, K.S.; Pawar, A.P. Investigation of ethyl cellulose microsponge gel for topical delivery of eberconazole nitrate for fungal therapy. Ther. Deliv., 2014, 5(7), 781-794.
[17]
Pawar, A.P.; Gholap, A.P.; Kuchekar, A.B.; Bothiraja, C.; Mali, A.J. Formulation and evaluation of optimized oxybenzone microsponge gel for topical delivery. J. Drug Deliv., 2015, 2015, 442-451.
[18]
Amrutiya, N.; Bajaj, A.; Madan, M. Development of microsponges for topical delivery of mupirocin. AAPS PharmSciTech, 2009, 10(2), 402-409.
[19]
Murtaza, G. Ethylcellulose microparticles: a review. Acta Pol. Pharm., 2012, 69(1), 11-22.
[20]
Sharma, R.; Pathak, K. Polymeric nanosponges as an alternative carrier for improved retention of econazole nitrate onto the skin through topical hydrogel formulation. Pharm. Dev. Technol., 2011, 16(4), 367-376.
[21]
Jelvehgari, M.; Siahi-Shadbad, M.R.; Azarmi, S.; Martin, G.P.; Nokhodchi, A. The microsponge delivery system of benzoyl peroxide: preparation, characterization and release studies. Int. J. Pharm., 2006, 308(1), 124-132.
[22]
Maiti, S.; Kaity, S.; Ray, S.; Sa, B. Development and evaluation of xanthan gum-facilitated ethyl cellulose microsponges for controlled percutaneous delivery of diclofenac sodium. Acta Pharm., 2011, 61(3), 257-270.
[23]
Guo, J.H. Carbopol polymers for pharmaceutical drug delivery applications. Drug Deliv. Technol., 2003, 3, 1-3.
[24]
Mitkari, B.V.; Korde, S.A.; Mahadik, K.R.; Kokare, C.R. Formulation and evaluation of topical liposomal gel for fluconazole. Indian J. Pharm. Educ. Res., 2010, 44(4), 324-333.
[25]
Sinha, P.; Srivastava, S.; Mishra, N.; Singh, D.K.; Luqman, S.; Chanda, D.; Yadav, N.P. Development, optimization, and characterization of a novel tea tree oil nanogel using response surface methodology. Drug Dev. Ind. Pharm., 2016. 12,1-12
[26]
Osmani, R.A.; Aloorkar, N.H.; Kulkarni, A.S.; Harkare, B.R.; Bhosale, R.R. A new cornucopia in topical drug delivery: Microsponge technology. Asian J. Pharm. Sci. Technol., 2014, 4, 48-60.
[27]
Orlu, M.; Cevher, E.; Araman, A. Design and evaluation of colon specific drug delivery system containing flurbiprofen microsponges. Int. J. Pharm., 2006, 318(1), 103-117.
[28]
Aldawsari, H.M.; Badr-Eldin, S.M.; Labib, G.S.; El-Kamel, A.H. Design and formulation of a topical hydrogel integrating lemongrass-loaded nanosponges with an enhanced antifungal effect: in vitro/in vivo evaluation. Int. J. Nanomedicine, 2015, 10, 893-902.
[29]
Nokhodchi, A.; Jelvehgari, M.; Siahi, M.R.; Mozafari, M.R. Factors affecting the morphology of benzoyl peroxide microsponges. Micron, 2007, 38(8), 834-840.
[30]
Shaikh, K.S.; Chellampillai, B.; Pawar, A.P. Studies on nonionic surfactant bilayer vesicles of ciclopirox olamine. Drug Dev. Ind. Pharm., 2010, 36(8), 946-953.
[31]
Rekha, U.; Manjula, B.P. Formulation and evaluation of microsponges for topical drug delivery of mometasone furoate. Int. J. Pharm. Pharm. Sci., 2011, 3(4), 133-137.
[32]
El-Houssieny, B.M.; Hamouda, H.M. Formulation and evaluation of clotrimazole from pluronic F127 gels. Drug Discov. Ther., 2010, 4(1), 33-43.
[33]
Ansari, K.A.; Vavia, P.R.; Trotta, F.; Cavalli, R. Cyclodextrin-based nanosponges for delivery of resveratrol: in vitro characterisation, stability, cytotoxicity and permeation study. AAPS PharmSciTech, 2011, 12(1), 279-286.
[34]
Thomas, J.; Schloemer, B. Primary skin irritation test in the rabbit of water jel burn dressing., 2004. Available at: . http://www.waterjel. com/ public/SkinIrritationTest.pdf Accessed: July 20, 2004
[35]
Jain, V.; Jain, D.; Singh, R. Factors effecting the morphology of Eudragit S-100 based microsponges bearing dicyclomine for colonic delivery. J. Pharm. Sci., 2011, 100(4), 1545-1552.
[36]
Borate, A.; Khambhapati, A.; Udgire, M.; Paul, D.; Mathur, S. Preliminary phytochemical studies and evaluation of antibacterial activity of Psoralea corylifolia seed extract. AJPCT, 2014, 2(1), 95-101.
[37]
Harish, N.M.; Prabhu, P.; Charyulu, R.N.; Gulzar, M.A.; Subrahmanyam, E.V.S. Formulation and evaluation of in situ gels containing clotrimazole for oral candidiasis. Indian J. Pharm. Sci., 2009, 71(4), 421-427.
[38]
Lee, J.H.; Park, T.G.; Choi, H.K. Development of oral drug delivery system using floating microspheres. J. Microencapsul., 1999, 16(6), 715-729.
[39]
Raghuvanshi, S.; Pathak, K. Bioadhesive floating microsponges of cinnarizine as novel gastroretentive delivery: Capmul GMO bioadhesive coating versus acconon MC 8-2 EP/NF with intrinsic bioadhesive property. Int. J. Pharm. Investig., 2016, 6(4), 181.
[40]
Hong, Y.; Gao, C.; Shi, Y.; Shen, J. Preparation of porous polylactide microspheres by emulsion‐solvent evaporation based on solution induced phase separation. Polym. Adv. Technol., 2005, 16(8), 622-627.
[41]
Srivastava, R.; Kumar, D.; Pathak, K. Colonic luminal surface retention of meloxicam microsponges delivered by erosion based colon-targeted matrix tablet. Int. J. Pharm., 2012, 427(2), 153-162.
[42]
Arya, P.; Pathak, K. Assessing the viability of microsponges as gastro retentive drug delivery system of curcumin: optimization and pharmacokinetics. Int. J. Pharm., 2014, 460(1-2), 1-12.
[43]
Gupta, A.; Tiwari, G.; Tiwari, R.; Srivastava, R. Factorial designed 5-fluorouracil-loaded microsponges and calcium pectinate beads plugged in hydroxypropyl methylcellulose capsules for colorectal cancer. Int. J. Pharm. Investig., 2015, 5(4), 234.
[44]
Chinna, G.; Shyam, S.; Vimal, K.; Sleeva, R.M.; Sai, K. Formulation and evaluation of indomethacin microspheres using natural and synthetic polymers as controlled release dosage forms. Int. J. Drug Discov., 2010, 2(1), 8-16.
[45]
Nief, R.; Hussein, A. Preparation and evaluation of meloxicam microsponges: As transdermal delivery system; LAP LAMBERT Academic Publishing: Mauritius, 2015.
[46]
Pagar, K.P.; Vavia, P.R. Poly[LA-(Glc-Leu)] copolymer as a carrier for ocular delivery of ciprofloxacin: formulation, characterization and in vivo biocompatibility study. Ther. Deliv., 2013, 4(5), 553-565.
[47]
Raju, A.; Muthu, M.S.; Feng, S.S. Trastuzumab-conjugated vitamin E TPGS liposomes for sustained and targeted delivery of docetaxel. Expert Opin. Drug Deliv., 2013, 10(6), 747-760.
[48]
Lee, C.J.; Chen, L.W.; Chen, L.G.; Chang, T.L.; Huang, C.W.; Huang, M.C.; Wang, C.C. Correlations of the components of tea tree oil with its antibacterial effects and skin irritation. J. Food Drug Anal., 2013, 21(2), 169-176.
[49]
Yadav, E.; Kumar, S.; Mahant, S.; Khatkar, S.; Rao, R. Tea tree oil: A promising essential oil. J. Essent. Oil Res., 2017, 29(3), 201-213.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 10
ISSUE: 3
Year: 2020
Page: [286 - 297]
Pages: 12
DOI: 10.2174/2210315508666180605080426
Price: $25

Article Metrics

PDF: 12
HTML: 1