Generic placeholder image

Current Medical Imaging

Editor-in-Chief

ISSN (Print): 1573-4056
ISSN (Online): 1875-6603

Review Article

Intracoronary Imaging for Assessment of Vascular Healing and Stent Follow-up in Bioresorbable Vascular Scaffolds

Author(s): Ioan Florin Ferent, Andras Mester*, Ota Hlinomaz, Ladislav Groch, Michal Rezek, Jan Sitar , Jiri Semenka, Martin Novak and Imre Benedek

Volume 16, Issue 2, 2020

Page: [123 - 134] Pages: 12

DOI: 10.2174/1573405614666180604093621

Price: $65

Abstract

Bioresorbable Vascular Scaffolds (BVS) are polymer-based materials implanted in the coronary arteries in order to treat atherosclerotic lesions, based on the concept that once the lesion has been treated, the material of the implanted stent will undergo a process of gradual resorption that will leave, in several years, the vessel wall smooth, free of any foreign material and with its vasomotion restored. However, after the first enthusiastic reports on the efficacy of BVSs, the recently published trials demonstrated disappointing results regarding long-term patency following BVS implantation, which were mainly attributed to technical deficiencies during the stenting procedure. Intracoronary imaging could play a crucial role for helping the operator to correctly implant a BVS into the coronary artery, as well as providing relevant information in the follow-up period. This review aims to summarize the role of intracoronary imaging in the follow-up of coronary stents, with a particular emphasis on the role of intravascular ultrasound and optical coherence tomography for procedural guidance during stent implantation and also for follow-up of bioabsorbable scaffolds.

Keywords: Coronary stents, vascular scaffold, intracoronary imaging, polymer-coated stent, bioresorbable, stent struts.

Graphical Abstract
[1]
Windecker S, Kolh P, Alfonso F, et al. Authors/task force members. 2014 ESC/EACTS guidelines on myocardial revascularization. Eur Heart J 2014; 35(37): 2541-619.
[http://dx.doi.org/10.1093/eurheartj/ehu278] [PMID: 25173339]
[2]
Naito R, Miyauchi K, Konishi H, et al. Clinical outcomes in diabetic patients who underwent percutaneous coronary intervention during the Plain Old Balloon Angioplasty (POBA)-, Bare Metal Stents (BMS)- and Drug-eluting Stents (DES)-eras from 1984 to 2010. Intern Med 2017; 56(1): 1-9.
[http://dx.doi.org/10.2169/internalmedicine.56.7423] [PMID: 28049984]
[3]
Nakazawa G, Finn AV, Vorpahl M, Ladich ER, Kolodgie FD, Virmani R. Coronary responses and differential mechanisms of late stent thrombosis attributed to first-generation sirolimus- and paclitaxel-eluting stents. J Am Coll Cardiol 2011; 57(4): 390-8.
[http://dx.doi.org/10.1016/j.jacc.2010.05.066] [PMID: 21251578]
[4]
Nakazawa G, Otsuka F, Nakano M, et al. The pathology of neoatherosclerosis in human coronary implants bare-metal and drug-eluting stents. J Am Coll Cardiol 2011; 57(11): 1314-22.
[http://dx.doi.org/10.1016/j.jacc.2011.01.011] [PMID: 21376502]
[5]
Amabile N, Souteyrand G, Ghostine S, et al. Very late stent thrombosis related to incomplete neointimal coverage or neoatherosclerotic plaque rupture identified by optical coherence tomography imaging. Eur Heart J Cardiovasc Imaging 2014; 15(1): 24-31.
[http://dx.doi.org/10.1093/ehjci/jet052] [PMID: 23720378]
[6]
Guagliumi G, Sirbu V, Musumeci G, et al. Examination of the in vivo mechanisms of late drug-eluting stent thrombosis: findings from optical coherence tomography and intravascular ultrasound imaging. JACC Cardiovasc Interv 2012; 5(1): 12-20.
[http://dx.doi.org/10.1016/j.jcin.2011.09.018] [PMID: 22230145]
[7]
Montone RA, Niccoli G, De Marco F, et al. Temporal trends in adverse events after everolimus-eluting bioresorbable vascular scaffold versus everolimus-eluting metallic stent implantation: a meta-analysis of randomized controlled trials. Circulation 2017; 135(22): 2145-54.
[http://dx.doi.org/10.1161/circulationaha.117.028479] [PMID: 28559495]
[8]
Felix CM, Vlachojannis GJ, IJsselmuiden AJJ, et al. Potentially increased incidence of scaffold thrombosis in patients treated with Absorb BVS who terminated DAPT before 18 months. EuroIntervention 2017; 13(2): e177-84.
[http://dx.doi.org/10.4244/EIJ-D-17-00119] [PMID: 28512068]
[9]
Sato T, Tölg R, El-Mawardy M, Sulimov DS, Richardt G, Abdel-Wahab M. The fate of incomplete scaffold apposition of everolimus- eluting bioresorble scaffolds: a serial optical coherence tomography analysis. J Cardiol 2017; S0914-5087(17): 30094-1.
[10]
Kozuki A, Shite J, Shinke T, et al. STELLIUM 1: First-in-man follow-up evaluation of bioabsorbable polymer-coated paclitaxel-eluting stent. Circ J 2010; 74(10): 2089-96.
[http://dx.doi.org/10.1253/circj.CJ-09-0859] [PMID: 20699597]
[11]
Waksman R, Prati F, Bruining N, et al. Serial observation of drug-eluting absorbable metal scaffold: multi-imaging modality assessment. Circ Cardiovasc Interv 2013; 6(6): 644-53.
[http://dx.doi.org/10.1161/circinterventions.113.000693] [PMID: 24254708]
[12]
Nallamothu BK, Spertus JA, Lansky AJ, et al. Comparison of clinical interpretation with visual assessment and quantitative coronary angiography in patients undergoing percutaneous coronary intervention in contemporary practice: the assessing angiography (A2) project. Circulation 2013; 127(17): 1793-800.
[http://dx.doi.org/10.1161/circulationaha.113.001952] [PMID: 23470859]
[13]
Witberg G, Lavi I, Vaknin Assa H, Orvin K, Assali A, Kornowski R. Insights from 2D and 3D quantitative angiographic assessment of bioresorbable everolimus-eluting vascular scaffolds. Isr Med Assoc J 2016; 18(7): 318-85.
[PMID: 28471557]
[14]
Tu S, Holm NR, Koning G, Huang Z, Reiber JH. Fusion of 3D QCA and IVUS/OCT. Int J Cardiovasc Imaging 2011; 27(2): 197-207.
[http://dx.doi.org/10.1007/s10554-011-9809-2] [PMID: 21264684]
[15]
Nishi T, Kitahara H, Fujimoto Y, et al. Comparison of 3-dimensional and 2-dimensional quantitative coronary angiography and intravascular ultrasound for functional assessment of coronary lesions. J Cardiol 2017; 69(1): 280-6.
[http://dx.doi.org/10.1016/j.jjcc.2016.05.006] [PMID: 27293021]
[16]
Siogkas PK, Athanasiou LS, Sakellarios AI, et al. Validation study of a 3D-QCA coronary reconstruction method using a hybrid intravascular ultrasound and angiography reconstruction method and patient-specific fractional flow reserve data. Conf Proc IEEE Eng Med Biol Soc 2015; 2015: 973-6.
[http://dx.doi.org/10.1109/EMBC.2015.7318526] [PMID: 26736426]
[17]
Bangalore S, Bhatt DL. Coronary intravascular ultrasound. Circulation 2013; 127(25): e868-74.
[http://dx.doi.org/10.1161/circulationaha.113.003534] [PMID: 23797744]
[18]
Garcìa-Garcìa HM, Gogas BD, Serruys PW, Bruining N. IVUS-based imaging modalities for tissue characterization: similarities and differences. Int J Cardiovasc Imaging 2011; 27(2): 215-24.
[http://dx.doi.org/10.1007/s10554-010-9789-7] [PMID: 21327914]
[19]
Ali ZA, Maehara A, Généreux P, et al. ILUMIEN III: OPTIMIZE PCI investigators. optical coherence tomography compared with intravascular ultrasound and with angiography to guide coronary stent implantation (ILUMIEN III: OPTIMIZE PCI): a randomised controlled trial. Lancet 2016; 388(10060): 2618-28.
[http://dx.doi.org/10.1016/S0140-6736(16)31922-5] [PMID: 27806900]
[20]
Fitzgerald PJ, Oshima A, Hayase M, et al. Final results of the Can Routine Ultrasound Influence Stent Expansion (CRUISE) study. Circulation 2000; 102(5): 523-30.
[http://dx.doi.org/10.1161/01.CIR.102.5.523] [PMID: 10920064]
[21]
Bezerra HG, Costa MA, Guagliumi G, Rollins AM, Simon DI. Intracoronary optical coherence tomography: a comprehensive review clinical and research applications. JACC Cardiovasc Interv 2009; 2(11): 1035-46.
[http://dx.doi.org/10.1016/j.jcin.2009.06.019] [PMID: 19926041]
[22]
Jaguszewski M, Landmesser U. Optical coherence tomography imaging: novel insights into the vascular response after coronary stent implantation. Curr Cardiovasc Imaging Rep 2012; 5(4): 231-8.
[http://dx.doi.org/10.1007/s12410-012-9138-4] [PMID: 22798979]
[23]
Benedek T, Mester A, Benedek A, Rat N, Opincariu D, Chițu M. Assessment of coronary plaque vulnerability in acute coronary syndromes using optical coherence tomography and intravascular ultrasound. A systematic review. J Cardiovasc Emerg 2016; 2: 173-84.
[http://dx.doi.org/10.1515/jce-2016-0028]
[24]
Jegere S, Narbute I, Erglis A. Use of intravascular imaging in managing coronary artery disease. World J Cardiol 2014; 6(6): 393-404.
[http://dx.doi.org/10.4330/wjc.v6.i6.393] [PMID: 24976911]
[25]
Souteyrand G, Amabile N, Mangin L, et al. PESTO investigators. Mechanisms of stent thrombosis analysed by optical coherence tomography: insights from the national PESTO french registry. Eur Heart J 2016; 37(15): 1208-16.
[http://dx.doi.org/10.1093/eurheartj/ehv711] [PMID: 26757787]
[26]
Okamura T, Onuma Y, García-García HM, et al. ABSORB Cohort B investigators. 3-Dimensional optical coherence tomography assessment of jailed side branches by bioresorbable vascular scaffolds: a proposal for classification. JACC Cardiovasc Interv 2010; 3(8): 836-44.
[http://dx.doi.org/10.1016/j.jcin.2010.05.011] [PMID: 20723856]
[27]
Toušek P, Kočka V, Malý M, Lisa L, Buděšínský T, Widimský P. Neointimal coverage and late apposition of everolimus-eluting bioresorbable scaffolds implanted in the acute phase of myocardial infarction: OCT data from the PRAGUE-19 study. Heart Vessels 2016; 31(6): 841-5.
[http://dx.doi.org/10.1007/s00380-015-0679-8] [PMID: 25896128]
[28]
Mattesini A, Pighi M, Konstantinidis N, et al. Optical coherence tomography in bioabsorbable stents: mechanism of vascular response and guidance of stent implantation. Minerva Cardioangiol 2014; 62(1): 71-82.
[PMID: 24500218]
[29]
Alfonso F, Cuevas C, Jimenez-Quevedo P, Gonzalo N, Escribano N. Combined in vivo insights unraveling the underlying substrate of an acute myocardial infarction treated with a bioabsorbable vascular scaffold: from imaging to pathology. JACC Cardiovasc Interv 2014; 7(3): e17-8.
[http://dx.doi.org/10.1016/j.jcin.2013.05.035] [PMID: 24650414]
[30]
Onuma Y, Serruys PW. Bioresorbable scaffold: the advent of a new era in percutaneous coronary and peripheral revascularization? Circulation 2011; 123(7): 779-97.
[http://dx.doi.org/10.1161/circulationaha.110.971606] [PMID: 21343594]
[31]
Durand E, Sharkawi T, Leclerc G, et al. Head-to-head comparison of a drug-free early programmed dismantling polylactic acid bioresorbable scaffold and a metallic stent in the porcine coronary artery: six-month angiography and optical coherence tomographic follow-up study. Circ Cardiovasc Interv 2014; 7(1): 70-9.
[http://dx.doi.org/10.1161/circinterventions.113.000738] [PMID: 24368820]
[32]
Serruys PW, Onuma Y, Dudek D, et al. Evaluation of the second generation of a bioresorbable everolimus-eluting vascular scaffold for the treatment of de novo coronary artery stenosis: 12-month clinical and imaging outcomes. J Am Coll Cardiol 2011; 58(15): 1578-88.
[http://dx.doi.org/10.1016/j.jacc.2011.05.050] [PMID: 21958884]
[33]
Ormiston JA, Serruys PW, Regar E, et al. A bioabsorbable everolimus-eluting coronary stent system for patients with single de-novo coronary artery lesions (ABSORB): a prospective open-label trial. Lancet 2008; 371(9616): 899-907.
[http://dx.doi.org/10.1016/S0140-6736(08)60415-8] [PMID: 18342684]
[34]
Serruys PW, Ormiston JA, Onuma Y, et al. A bioabsorbable everolimus-eluting coronary stent system (ABSORB): 2-year outcomes and results from multiple imaging methods. Lancet 2009; 373(9667): 897-910.
[http://dx.doi.org/10.1016/S0140-6736(09)60325-1] [PMID: 19286089]
[35]
Ormiston JA, Serruys PW, Onuma Y, et al. First serial assessment at 6 months and 2 years of the second generation of absorb everolimus-eluting bioresorbable vascular scaffold: a multi-imaging modality study. Circ Cardiovasc Interv 2012; 5(5): 620-32.
[http://dx.doi.org/10.1161/circinterventions.112.971549] [PMID: 23048057]
[36]
Serruys PW, Ormiston J, van Geuns RJ, et al. A Polylactide Bioresorbable Scaffold Eluting Everolimus for Treatment of Coronary Stenosis: 5-Year Follow-Up. J Am Coll Cardiol 2016; 67(7): 766-76.
[http://dx.doi.org/10.1016/j.jacc.2015.11.060] [PMID: 26892411]
[37]
Serruys PW, Chevalier B, Sotomi Y, et al. Comparison of an everolimus-eluting bioresorbable scaffold with an everolimus-eluting metallic stent for the treatment of coronary artery stenosis (ABSORB II): a 3 year, randomised, controlled, single-blind, multicentre clinical trial. Lancet 2016; 388(10059): 2479-91.
[http://dx.doi.org/10.1016/S0140-6736(16)32050-5] [PMID: 27806897]
[38]
Ellis SG, Kereiakes DJ, Metzger DC, et al. ABSORB III investigators. Everolimus-eluting bioresorbable scaffolds for coronary artery disease. N Engl J Med 2015; 373(20): 1905-15.
[http://dx.doi.org/10.1056/NEJMoa1509038] [PMID: 26457558]
[39]
Moscarella E, Ielasi A, Granata F, et al. Long-term clinical outcomes after bioresorbable vascular scaffold implantation for the treatment of coronary in-stent restenosis: a multicenter Italian experience. Circ Cardiovasc Interv 2016; 9(4)e003148
[http://dx.doi.org/10.1161/circinterventions.115.003148] [PMID: 27059683]
[40]
Tearney GJ, Bouma BE. Shedding light on bioabsorbable stent struts seen by optical coherence tomography in the ABSORB trial. Circulation 2010; 122(22): 2234-5.
[http://dx.doi.org/10.1161/circulationaha.110.980730] [PMID: 20974997]
[41]
Elahi S, Milner TE, Rapoza RJ, Dijkstra J, Feldman MD. Flare spots in IVOCT images of bioabsorbable stents. JACC Cardiovasc Imaging 2014; 7(11): 1174-5.
[http://dx.doi.org/10.1016/j.jcmg.2014.04.023] [PMID: 25459600]
[42]
Slottow TL, Pakala R, Okabe T, et al. Optical coherence tomography and intravascular ultrasound imaging of bioabsorbable magnesium stent degradation in porcine coronary arteries. Cardiovasc Revasc Med 2008; 9(4): 248-54.
[http://dx.doi.org/10.1016/j.carrev.2008.04.001] [PMID: 18928950]
[43]
Pinto Slottow TL, Pakala R, Waksman R. Serial imaging and histology illustrating the degradation of a bioabsorbable magnesium stent in a porcine coronary artery. Eur Heart J 2008; 29(3): 314.
[http://dx.doi.org/10.1093/eurheartj/ehm365] [PMID: 17766278]
[44]
Onuma Y, Serruys PW, Perkins LE, et al. Intracoronary optical coherence tomography and histology at 1 month and 2, 3, and 4 years after implantation of everolimus-eluting bioresorbable vascular scaffolds in a porcine coronary artery model: an attempt to decipher the human optical coherence tomography images in the ABSORB trial. Circulation 2010; 122(22): 2288-300.
[http://dx.doi.org/10.1161/circulationaha.109.921528] [PMID: 20975003]
[45]
Bruining N, Verheye S, Knaapen M, et al. Three-dimensional and quantitative analysis of atherosclerotic plaque composition by automated differential echogenicity. Catheter Cardiovasc Interv 2007; 70(7): 968-78.
[http://dx.doi.org/10.1002/ccd.21310] [PMID: 18044747]
[46]
Campos CM, Ishibashi Y, Eggermont J, et al. Echogenicity as a surrogate for bioresorbableeverolimus-eluting scaffold degradation: analysis at 1-, 3-, 6-, 12- 18, 24-, 30-, 36- and 42-month follow-up in a porcine model. Echogenicity as a surrogate for bioresorbableeverolimus-eluting scaffold degradation: analysis at 1-, 3-, 6-, 12- 18, 24-, 30-, 36- and 42-month follow-up in a porcine model. Int J Cardiovasc Imaging 2015; 31(3): 471-82.
[http://dx.doi.org/10.1007/s10554-015-0591-4] [PMID: 25627777]
[47]
Bruining N, de Winter S, Roelandt JR, et al. Monitoring in vivo absorption of a drug-eluting bioabsorbable stent with intravascular ultrasound-derived parameters a feasibility study. JACC Cardiovasc Interv 2010; 3(4): 449-56.
[http://dx.doi.org/10.1016/j.jcin.2010.02.004] [PMID: 20398874]
[48]
Serruys PW, Onuma Y, Garcia-Garcia HM, et al. Dynamics of vessel wall changes following the implantation of the absorb everolimus-eluting bioresorbable vascular scaffold: a multi-imaging modality study at 6, 12, 24 and 36 months. EuroIntervention 2014; 9(11): 1271-84.
[http://dx.doi.org/10.4244/EIJV9I11A217] [PMID: 24291783]
[49]
Sarno G, Bruining N, Onuma Y, et al. Morphological and functional evaluation of the bioresorption of the bioresorbable everolimus-eluting vascular scaffold using IVUS, echogenicity and vasomotion testing at two year follow-up: a patient level insight into the ABSORB A clinical trial. Int J Cardiovasc Imaging 2012; 28(1): 51-8.
[http://dx.doi.org/10.1007/s10554-010-9769-y] [PMID: 21213050]
[50]
Ailianou A, Ramachandran K, Kossuth MB, Oberhauser JP, Kornfield JA. Multiplicity of morphologies in poly (l-lactide) bioresorbable vascular scaffolds. Proc Natl Acad Sci USA 2016; 113(42): 11670-5.
[http://dx.doi.org/10.1073/pnas.1602311113] [PMID: 27671659]
[51]
Halcox JP, Schenke WH, Zalos G, et al. Prognostic value of coronary vascular endothelial dysfunction. Circulation 2002; 106(6): 653-8.
[http://dx.doi.org/10.1161/01.CIR.0000025404.78001.D8] [PMID: 12163423]
[52]
Haude M, Ince H, Abizaid A, et al. Safety and performance of the second-generation drug-eluting absorbable metal scaffold in patients with de-novo coronary artery lesions (BIOSOLVE-II): 6 month results of a prospective, multicentre, non-randomised, first-in-man trial. Lancet 2016; 387(10013): 31-9.
[http://dx.doi.org/10.1016/S0140-6736(15)00447-X] [PMID: 26470647]
[53]
Haude M, Ince H, Abizaid A, et al. Sustained safety and performance of the second-generation drug-eluting absorbable metal scaffold in patients with de novo coronary lesions: 12-month clinical results and angiographic findings of the BIOSOLVE-II first-in-man trial. Eur Heart J 2016; 37(35): 2701-9.
[http://dx.doi.org/10.1093/eurheartj/ehw196] [PMID: 27190094]
[54]
Cheruvu PK, Finn AV, Gardner C, et al. Frequency and distribution of thin-cap fibroatheroma and ruptured plaques in human coronary arteries: a pathologic study. J Am Coll Cardiol 2007; 50(10): 940-9.
[http://dx.doi.org/10.1016/j.jacc.2007.04.086] [PMID: 17765120]
[55]
Benedek T, Jako B, Benedek I. Plaque quantification by coronary CT and intravascular ultrasound identifies a low CT density core as a marker of plaque instability in acute coronary syndromes. Int Heart J 2014; 55(1): 22-8.
[http://dx.doi.org/10.1536/ihj.13-213] [PMID: 24463925]
[56]
Stone GW, Maehara A, Lansky AJ, et al. PROSPECT investigators. A prospective natural-history study of coronary atherosclerosis. N Engl J Med 2011; 364(3): 226-35.
[http://dx.doi.org/10.1056/NEJMoa1002358] [PMID: 21247313]
[57]
Benedek T, Maurovich-Horváth P, Ferdinandy P, Merkely B. The use of biomarkers for the early detection of vulnerable atherosclerotic plaques and vulnerable patients. A review. J Cardiovas Emerg 2016; 2: 106-13.
[http://dx.doi.org/10.1515/jce-2016-0017]
[58]
Stone PH, Saito S, Takahashi S, et al. PREDICTION investigators. Prediction of progression of coronary artery disease and clinical outcomes using vascular profiling of endothelial shear stress and arterial plaque characteristics: the PREDICTION Study. Circulation 2012; 126(2): 172-81.
[http://dx.doi.org/10.1161/circulationaha.112.096438] [PMID: 22723305]
[59]
Kubo T, Maehara A, Mintz GS, et al. The dynamic nature of coronary artery lesion morphology assessed by serial virtual histology intravascular ultrasound tissue characterization. J Am Coll Cardiol 2010; 55(15): 1590-7.
[http://dx.doi.org/10.1016/j.jacc.2009.07.078] [PMID: 20378076]
[60]
Tenekecioglu E, Albuquerque FN, Sotomi Y, et al. Intracoronary optical coherence tomography: Clinical and research applications and intravascular imaging software overview. Catheter Cardiovasc Interv 2017; 89(4): 679-89.
[http://dx.doi.org/10.1002/ccd.26920] [PMID: 28109054]
[61]
Bourantas CV, Garcia-Garcia HM, Diletti R, Muramatsu T, Serruys PW. Early detection and invasive passivation of future culprit lesions: a future potential or an unrealistic pursuit of chimeras? Am Heart J 2013; 165(6): 869-81.
[http://dx.doi.org/10.1016/j.ahj.2013.02.015] [PMID: 23708157]
[62]
Benedek T, Bucur O, Pascanu I, Benedek I. Analysis of coronary plaque morphology by 64-multislice computed tomography coronary angiography and calcium scoring in patients with type 2 diabetes mellitus. Acta Endo (Buc) 2011; 7(1): 59-68.
[http://dx.doi.org/10.4183/aeb.2011.59]
[63]
Fujii K, Kobayashi Y, Mintz GS, et al. Intravascular ultrasound assessment of ulcerated ruptured plaques: a comparison of culprit and nonculprit lesions of patients with acute coronary syndromes and lesions in patients without acute coronary syndromes. Circulation 2003; 108(20): 2473-8.
[http://dx.doi.org/10.1161/01.CIR.0000097121.95451.39] [PMID: 14610010]
[64]
Cecchi E, Liotta AA, Gori AM, et al. Comparison of hemorheological variables in ST-elevation myocardial infarction versus those in non-ST-elevation myocardial infarction or unstable angina pectoris. Am J Cardiol 2008; 102(2): 125-8.
[http://dx.doi.org/10.1016/j.amjcard.2008.03.026] [PMID: 18602507]
[65]
Smyth SS, Monroe DM III, Wysokinski WE, et al. Platelet activation and its patient-specific consequences. Thromb Res 2008; 122(4): 435-41.
[http://dx.doi.org/10.1016/j.thromres.2007.08.023] [PMID: 17949794]
[66]
Hoole SP, Starovoytov A, Hamburger JN. In-stent restenotic lesions can rupture--a case against plaque sealing. Catheter Cardiovasc Interv 2011; 77(6): 841-2.
[http://dx.doi.org/10.1002/ccd.22791] [PMID: 20853362]
[67]
Benedek T, Gyöngyösi M, Benedek I. Multislice computed tomographic coronary angiography for quantitative assessment of culprit lesions in acute coronary syndromes. Can J Cardiol 2013; 29(3): 364-71.
[http://dx.doi.org/10.1016/j.cjca.2012.11.004] [PMID: 23333164]
[68]
Rioufol G, Gilard M, Finet G, Ginon I, Boschat J, André-Fouët X. Evolution of spontaneous atherosclerotic plaque rupture with medical therapy: long-term follow-up with intravascular ultrasound. Circulation 2004; 110(18): 2875-80.
[http://dx.doi.org/10.1161/01.CIR.0000146337.05073.22] [PMID: 15492303]
[69]
Kempton CL, Hoffman M, Roberts HR, Monroe DM. Platelet heterogeneity: variation in coagulation complexes on platelet subpopulations. Arterioscler Thromb Vasc Biol 2005; 25(4): 861-6.
[http://dx.doi.org/10.1161/01.ATV.0000155987.26583.9b] [PMID: 15653564]
[70]
Brugaletta S, Radu MD, Garcia-Garcia HM, et al. Circumferential evaluation of the neointima by optical coherence tomography after ABSORB bioresorbable vascular scaffold implantation: can the scaffold cap the plaque? Atherosclerosis 2012; 221(1): 106-12.
[http://dx.doi.org/10.1016/j.atherosclerosis.2011.12.008] [PMID: 22209268]
[71]
Zeng Y, Cavalcante R, Tenekecioglu E, et al. investigators of Absorb II study. Comparative assessment of “plaque/media” change on three modalities of IVUS immediately after implantation of either everolimus-eluting bioresorbable vascular scaffold or everolimus-eluting metallic stent in Absorb II study. Int J Cardiovasc Imaging 2017; 33(4): 441-9.
[http://dx.doi.org/10.1007/s10554-016-1033-7] [PMID: 28012050]
[72]
Bourantas CV, Serruys PW, Nakatani S, et al. Bioresorbable vascular scaffold treatment induces the formation of neointimal cap that seals the underlying plaque without compromising the luminal dimensions: a concept based on serial optical coherence tomography data. EuroIntervention 2015; 11(7): 746-56.
[http://dx.doi.org/10.4244/EIJY14M10_06] [PMID: 25308301]
[73]
Karanasos A, Simsek C, Serruys P, et al. Five-year optical coherence tomography follow-up of an everolimus-eluting bioresorbable vascular scaffold: changing the paradigm of coronary stenting? Circulation 2012; 126(7): e89-91.
[http://dx.doi.org/10.1161/circulationaha.112.110122] [PMID: 22891170]
[74]
Lee KS, Lee JZ, Hsu CH, et al. Temporal trends in strut-level optical coherence tomography evaluation of coronary stent coverage: a systematic review and meta-analysis. Catheter Cardiovasc Interv 2016; 88(7): 1083-93.
[http://dx.doi.org/10.1002/ccd.26374] [PMID: 26708687]
[75]
Karanasos A, Simsek C, Gnanadesigan M, et al. OCT assessment of the long-term vascular healing response 5 years after everolimus-eluting bioresorbable vascular scaffold. J Am Coll Cardiol 2014; 64(22): 2343-56.
[http://dx.doi.org/10.1016/j.jacc.2014.09.029] [PMID: 25465421]
[76]
Simsek C, Karanasos A, Magro M, et al. Long-term invasive follow-up of the everolimus-eluting bioresorbable vascular scaffold: five-year results of multiple invasive imaging modalities. EuroIntervention 2016; 11(9): 996-1003.
[PMID: 25349042]
[77]
Lee SY, Hong MK. Neointimal coverage after drug-eluting stent implantation: insights from optical coherence tomography. Interv Cardiol Clin 2015; 4(3): 321-31.
[PMID: 28581948]
[78]
Gomez-Lara J, Radu M, Brugaletta S, et al. Serial analysis of the malapposed and uncovered struts of the new generation of everolimus-eluting bioresorbable scaffold with optical coherence tomography. JACC Cardiovasc Interv 2011; 4(9): 992-1001.
[http://dx.doi.org/10.1016/j.jcin.2011.03.020] [PMID: 21939939]
[79]
Okamura T, Garg S, Gutiérrez-Chico JL, et al. In vivo evaluation of stent strut distribution patterns in the bioabsorbable everolimus-eluting device: an OCT ad hoc analysis of the revision 1.0 and revision 1.1 stent design in the ABSORB clinical trial. EuroIntervention 2010; 5(8): 932-8.
[http://dx.doi.org/10.4244/EIJV5I8A157] [PMID: 20542778]
[80]
Baquet M, Brenner C, Wenzler M, et al. Impact of clinical presentation on early vascular healing after bioresorbable vascular scaffold implantation. J Interv Cardiol 2017; 30(1): 16-23.
[http://dx.doi.org/10.1111/joic.12359] [PMID: 27896843]
[81]
Cutlip DE, Windecker S, Mehran R, et al. Academic research consortium. Clinical end points in coronary stent trials: a case for standardized definitions. Circulation 2007; 115(17): 2344-51.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.106.685313] [PMID: 17470709]
[82]
Ong DS, Jang IK. Causes, assessment, and treatment of stent thrombosis--intravascular imaging insights. Nat Rev Cardiol 2015; 12(6): 325-36.
[http://dx.doi.org/10.1038/nrcardio.2015.32] [PMID: 25781415]
[83]
Stefanini GG, Byrne RA, Serruys PW, et al. Biodegradable polymer drug-eluting stents reduce the risk of stent thrombosis at 4 years in patients undergoing percutaneous coronary intervention: a pooled analysis of individual patient data from the ISAR-TEST 3, ISAR-TEST 4, and LEADERS randomized trials. Eur Heart J 2012; 33(10): 1214-22.
[http://dx.doi.org/10.1093/eurheartj/ehs086] [PMID: 22447805]
[84]
Mahmoud AN, Barakat AF, Elgendy AY, et al. Long-term efficacy and safety of everolimus-eluting bioresorbable vascular scaffolds versus everolimus-eluting metallic stents: a meta-analysis of randomized trials. Circ Cardiovasc Interv 2017; 10(5)e005286
[http://dx.doi.org/10.1161/circinterventions.117.005286] [PMID: 28468954]
[85]
Sorrentino S, Giustino G, Mehran R, et al. Everolimus-eluting bioresorbable scaffolds versus everolimus-eluting metallic stents. J Am Coll Cardiol 2017; 69(25): 3055-66.
[http://dx.doi.org/10.1016/j.jacc.2017.04.011] [PMID: 28412389]
[86]
Karanasos A, Van Mieghem N, van Ditzhuijzen N, et al. Angiographic and optical coherence tomography insights into bioresorbable scaffold thrombosis: single-center experience. Circ Cardiovasc Interv 2015; 8(5)e002369
[http://dx.doi.org/10.1161/CIRCINTERVENTIONS.114.002369] [PMID: 25969547]
[87]
Allahwala UK, Cockburn JA, Shaw E, Figtree GA, Hansen PS, Bhindi R. Clinical utility of Optical Coherence Tomography (OCT) in the optimisation of absorb bioresorbable vascular scaffold deployment during percutaneous coronary intervention. EuroIntervention 2015; 10(10): 1154-9.
[http://dx.doi.org/10.4244/EIJV10I10A190] [PMID: 24647105]
[88]
Puricel S, Cuculi F, Weissner M, et al. Bioresorbable coronary scaffold thrombosis: multicenter comprehensive analysis of clinical presentation, mechanisms, and predictors. J Am Coll Cardiol 2016; 67(8): 921-31.
[http://dx.doi.org/10.1016/j.jacc.2015.12.019] [PMID: 26916481]
[89]
Schnorbus B, Wiebe J, Capodanno D, et al. 12 months outcomes after bioresorbable vascular scaffold implantation in patients with acute coronary syndromes. Data from the European multicentre GHOST-EU extended registry. EuroIntervention 2017; 13(9): e1104-11.
[90]
Katagiri Y, Stone GW, Onuma Y, Serruys PW. State of the art: the inception, advent and future of fully bioresorbable scaffolds. EuroIntervention 2017; 13(6): 734-50.
[http://dx.doi.org/10.4244/EIJ-D-17-00499] [PMID: 28844034]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy