One-pot Preparation of Cu2(OH)3NO3 Nanosheets and Cu(OH)2 Nanowires

Author(s): Wenzhe Zhang, Ailing Yang*, Xichang Bao

Journal Name: Nanoscience & Nanotechnology-Asia

Volume 9 , Issue 4 , 2019

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Introduction: By using Cu(NO3)2 as precursor and polyvinylpyrrolidone (PVP) as surfactant, nanosheets of Cu2(OH)3NO3, nanowires of Cu(OH)2 or the mixture of the two were prepared under different molar ratios of OH− to Cu2+.

Materials and Methods: The crystal structures and morphologies of the products were characterized by X-Ray Diffraction (XRD) and Transmission Electron Microscope (TEM).

Results: When the molar ratio of OH− to Cu2+ in reaction solution is lower than 1.28, pure Cu2(OH)3NO3 nanosheets were obtained. The thickness of one piece of nanosheet is about 167 nm. The Cu2(OH)3NO3 nanosheets consists of two types of crystal structures, monoclinic phase and orthorhombic phase. With increase of the molar ratio of OH− to Cu2+, the monoclinic phase of Cu2(OH)3NO3 was transferred to the orthorhombic phase of Cu2(OH)3NO3. When the molar ratio of OH− to Cu2+ is within 1.28-2.24, the product is the mixture of Cu2(OH)3NO3 nanosheets and Cu(OH)2 nanowires. And when this molar ratio is higher than 2.24, only Cu(OH)2 nanowires were produced. The lengths and the diameters of the Cu(OH)2 nanowires are in the region of 50-250 nm and 10 nm, respectively.

Conclusion: The reason of the Cu2(OH)3NO3 nanosheets changing into the Cu(OH)2 nanowires is that the OH− anions replace the NO3 − anions in the layered Cu2(OH)3NO3 nanosheets, which causes the rupture of hydrogen bonds connecting the adjacent layers. The Cu(OH)2 nanowires were not stable and found to become spindled CuO nanosheets in air at room temperature.

Keywords: Cu2(OH)3NO3 nanosheets, Cu(OH)2 nanowires, molar ratio of OH− to Cu2+, monoclinic phase, orthorhombic phase, anion replacement, spindled CuO nanosheets.

Rokhmat, M.; Wibowo, E. Sutisna; Khairurrijal; Abdullah, M. Performance improvement of TiO2/CuO solar cell by growing Copper particle using fix current electroplating method. Proc Eng., 2017, 170, 72-77.
Jeong, D.; Lee, J.; Hong, H.; Choi, D.; Cho, J-W.; Kim, S-K.; Nam, Y. Absorption mechanism and performance characterization of CuO nanostructured absorbers. Solar. Energy Mater. Solar. Cells, 2017, 169, 270-279.
Zhang, Z-K.; Guo, D-Z.; Zhang, G-M. Preparation, characterization and catalytic property of CuO nano/microspheres via thermal decomposition of cathode-plasma generating Cu2(OH)3NO3 nano/microspheres. J. Colloid Interface Sci., 2011, 357(1), 95-100.
Zhan, Y.; Zhou, X.; Fu, B.; Chen, Y. Catalytic wet peroxide oxidation of azo dye (Direct Blue 15) using solvothermally synthesized copper hydroxide nitrate as catalyst. J. Hazard. Mater., 2011, 187(1), 348-354.
Xu, W.; Lan, R.; Du, D.; Humphreys, J.; Walker, M.; Wu, Z.; Wang, H.; Tao, S. Directly growing hierarchical nickel-copper hydroxide nanowires on carbon fibre cloth for efficient electrooxidation of ammonia. Appl. Catal. B Environ, 2017, 218, 470-479.
Dandeneau, C.S.; Jeon, Y-H.; Shelton, C.T.; Plant, T.K.; Cann, D.P.; Gibbons, B.J. Thin film chemical sensors based on p-CuO/n-ZnO heterocontacts. Thin Solid Films, 2009, 517(15), 4448-4454.
Zhang, X.; Sun, S.; Lv, J.; Tang, L.; Kong, C.; Song, X.; Yang, Z. Nanoparticle-aggregated CuO nanoellipsoids for high-performance non-enzymatic glucose detection. J. Mater. Chem. A ., 2014, 2(26), 10073-10080.
Şişman, O.; Kılınç, N.; Öztürk, Z.Z. Structural, electrical and H2 sensing properties of copper oxide nanowires on glass substrate by anodization. Sensors. Actuat. B Chem., 2016, 236, 1118-1125.
Wang, Z.; Han, P.; Mao, X.; Yin, Y.; Cao, Y. Sensitive detection of glutathione by using DNA-templated copper nanoparticles as electrochemical reporters. Sensors. Actuat. B Chem., 2017, 238, 325-330.
Yang, J.; Lin, Q.; Yin, W.; Jiang, T.; Zhao, D.; Jiang, L. A novel nonenzymatic glucose sensor based on functionalized PDDA-graphene/CuO nanocomposites. Sensors. Actuat. B Chem., 2017, 253, 1087-1095.
Korschelt, K.; Ragg, R.; Metzger, C.S.; Kluenker, M.; Oster, M.; Barton, B.; Panthöfer, M.; Strand, D.; Kolb, U.; Mondeshki, M.; Strand, S.; Brieger, J.; Tahir, M.N.; Tremel, W. Glycine-functionalized copper (II) hydroxide nanoparticles with high intrinsic superoxide dismutase activity. Nanoscale, 2017, 9(11), 3952-3960.
Henrist, C.; Traina, K.; Hubert, C.; Toussaint, G.; Rulmont, A.; Cloots, R. Study of the morphology of copper hydroxynitrate nanoplatelets obtained by controlled double jet precipitation and urea hydrolysis. J. Crystal. Growth, 2003, 254(1-2), 176-187.
Luo, Y-H.; Huang, J.; Jin, J.; Peng, X.; Schmitt, W.; Ichinose, I. Formation of positively charged copper hydroxide nanostrands and their structural characterization. Chem. Mater., 2006, 18(7), 1795-1802.
Liu, B. One-dimensional copper hydroxide nitrate nanorods and nanobelts for radiochemical applications. Nanoscale, 2012, 4(22), 7194-7198.
Biswick, T.; Jones, W.; Pacuła, A.; Serwicka, E. Synthesis, characterisation and anion exchange properties of copper, magnesium, zinc and nickel hydroxy nitrates. J. Solid State Chem., 2006, 179(1), 49-55.
Wang, X.; Huang, L. A novel one-step method to synthesize copper nitrate hydroxide nanorings. Trans. Nonferrous Metals. Soc. China, 2009, 19, s480-s484.
Park, S-H.; Kim, H.J. Unidirectionally aligned copper hydroxide crystalline nanorods from two-dimensional Copper Hydroxy Nitrate. J. Am. Chem. Soc., 2004, 126(44), 14368-14369.
Di, L.; Duan, D.; Zhan, Z.; Zhang, X. Gas-liquid cold plasma for synthesizing copper hydroxide nitrate nanosheets with high adsorption capacity. Adv. Mater. Interfaces, 2016, 3(24)1600760
Akhavan, O.; Azimirad, R.; Safa, S.; Hasani, E. CuO/Cu(OH)2 hierarchical nanostructures as bactericidal photocatalysts. J. Mater. Chem., 2011, 21(26), 9634-9640.
Xiao-Jiao, Q.; Qian, W.; Hai-Yan, G.; Zhao, Y.; Guo-Dong, L. Hollow spindle-shaped CuO/Cu2(OH)2CO3 nanocomposites: Synthesis and gas sensing property. Chinese J. Inorg. Chem., 2015, 31, 1010-1018.
Patil, U.M.; Nam, M-S.; Lee, S.C.; Liu, S.; Kang, S.; Park, B.H.; Jun, S.C. Temperature influenced chemical growth of hydrous copper oxide/hydroxide thin film electrodes for high performance supercapacitors. J. Alloys Comp., 2017, 701, 1009-1018.
Niu, H.; Yang, Q.; Tang, K. A new route to copper nitrate hydroxide microcrystals. Mater. Sci. Eng. B, 2006, 135(2), 172-175.
Ahn, J.K.; Kim, H.Y.; Baek, S.; Park, H.G. A new s-adenosylhomocysteine hydrolase-linked method for adenosine detection based on DNA-templated fluorescent Cu/Ag nanoclusters. Biosens. Bioelectron., 2017, 93, 330-334.
Joshi, N.; Banerjee, S. PVP coated copper-iron oxide nanocomposite as an efficient catalyst for Click reactions. Tetrahedron Lett., 2015, 56(28), 4163-4169.
Liu, H.; Liu, Q.; Zhang, J.; Yin, C.; Zhao, Y.; Yin, S.; Liu, C.; Sun, W. PVP-assisted synthesis of unsupported NiMo catalysts with enhanced hydrodesulfurization activity. Fuel Process. Technol., 2017, 160, 93-101.
Wang, H.; Qiao, X.; Chen, J.; Wang, X.; Ding, S. Mechanisms of PVP in the preparation of silver nanoparticles. Mater. Chem. Phys., 2005, 94(2-3), 449-453.
Kourde-Hanafi, Y.; Loulergue, P.; Szymczyk, A.; Bruggen, B.V.; Nachtnebel, M.; Rabiller-Baudry, M.; Audic, J-L.; Pölt, P.; Baddari, K. Influence of PVP content on degradation of PES/PVP membranes: Insights from characterization of membranes with controlled composition. J. Membrane. Sci., 2017, 533, 261-269.
Nekouei, R.K.; Rashchi, F.; Ravanbakhsh, A. Copper nanopowder synthesis by electrolysis method in nitrate and sulfate solutions. Powder Technol., 2013, 250, 91-96.
Bovio, B.; Locchi, S. Crystal structure of the orthorhombic basic copper nitrate, Cu2(OH)3NO3. J. Crystallogr. Spectroscopic Res., 1982, 12(6), 507-517.
Meyn, M.; Beneke, K.; Lagaly, G. Anion-exchange reactions of hydroxy double salts. Inorg. Chem., 1993, 32(7), 1209-1215.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2019
Published on: 25 November, 2019
Page: [467 - 471]
Pages: 5
DOI: 10.2174/2210681208666180601102915
Price: $25

Article Metrics

PDF: 17
PRC: 1