Title:Bifurcation Analysis for Physiological Flow of a Nanofluid: Application of Biomechanics
VOLUME: 14 ISSUE: 6
Author(s):Anber Saleem, Sadia Waheed and Sohail Nadeem*
Affiliation:Department of Anatomy, Islamabad Medical and Dental College, Islamabad, Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000, Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000
Keywords:Bifurcation, streamline topologies, porous medium, slip condition, Reynolds number, nanofluid density.
Abstract:Objective: The aim of this study is to analyze the local and global bifurcation for the physiological
flow of nanofluid in channel and tube having porous medium with slip conditions.
Methods: Of concern in this paper, simultaneous effects of surface slip and mixed convection on the
streamline patterns along their bifurcations for peristaltic flow of blood base nanofluid have been
investigated in a homogenous porous medium. The flow is supposed to be in a vertical twodimensional
symmetric channel. The flow systems are reduced by employing the estimation of low
Reynolds number and long wavelength. For the discourse of the path of particle in the wave frame,
an arrangement of nonlinear independent differential equations is built up and the strategies for dynamical
frameworks are utilized to examine the local bifurcations and their topological changes.
Flow situations marked as backward flow, trapping or augmented flow.
Results: Graphically, a wide range of topological changes of bifurcations are examined. The analysis
is disclosed that the number and size of trapped bolus increases in planner channel by increasing
Grashof number and slip parameter.
Conclusion: The place of the bifurcation point changes with the variation of the slip parameter. Increase
of Darcy number leads to increase the size of trapped bolus. The decreasing behavior of temperature
is depicted with respect to slip parameter, which clarify the nanofluid as a cooling agent.
Graphically, a wide range of topological changes of bifurcations are examined.