Generic placeholder image

Current Pharmaceutical Analysis

Editor-in-Chief

ISSN (Print): 1573-4129
ISSN (Online): 1875-676X

Research Article

Quantification and Evaluation of Glycyrrhizic Acid-loaded Surface Decorated Nanoparticles by UHPLC-MS/MS and used in the Treatment of Cerebral Ischemia

Author(s): Niyaz Ahmad*, Rizwan Ahmad*, Md Aftab Alam, Farhan Jalees Ahmad and Rehan Abdur Rub

Volume 16, Issue 1, 2020

Page: [24 - 39] Pages: 16

DOI: 10.2174/1573412914666180530073613

Price: $65

Abstract

Background: Glycyrrhizic Acid (GRA), a potent antioxidant triterpene saponin glycoside and neuroprotective properties exhibits an important role in the treatment of neurological disorders i.e. cerebral ischemia. GRA is water soluble, therefore it’s have low bioavailability in the brain.

Objective: To enhance brain bioavailability for intranasally administered Glycyrrhizic Acidencapsulated- chitosan-coated-PCL-Nanoparticles (CS-GRA-PCL-NPs).

Methods: Chitosan-coated-PCL-Nanoparticles (CS-PCL-NPs) were developed through double emulsification- solvent evaporation technique and further characterized for particle size, zeta potential, size distribution, encapsulation efficiency as well as in vitro drug release. UPLC triple quadrupole Qtrap MS/MS method was developed to evaluate brain-drug uptake for optimized CS-GRA-PCL-NPs and to determine its pharmacokinetic in rat’s brain as well as plasma.

Results: Mean particles size (231.47±7.82), polydispersity index (PDI) i.e. (0.216±0.030) and entrapment efficiency (65.69±5.68) was determined for developed NPs. UPLC triple quadrupole Qtrap MS/MS method study showed a significantly high mucoadhesive potential of CS-GRA-PCL-NPs and least for conventional and homogenized nanoformulation; elution time for GRA and internal standard (IS) Hydrocortisone as 0.37 and 1.94 min at m/z 821.49/113.41 and 363.45/121.40 were observed, respectively. Furthermore, intra and inter-assay (%CV) of 0.49-5.48, %accuracy (90.00-99.09%) as well as a linear dynamic range (10.00 ng/mL -2000.0 ng/mL), was observed. Pharmacokinetic studies in Wistar rat brain exhibited a high AUC0-24 alongwith an amplified Cmax (p** < 0.01) as compared to i.v. treated group.

Conclusion: Intranasal administration of developed CS-coated-GRA-loaded-PCL-NPs enhanced the drug bioavailability in rat brain along with successfully UPLC-MS/MS method and thus preparation of GRA-NPs may help treat cerebral ischemia effectively. The toxicity studies performed at the end revealed safe nature of optimized nanoformulation.

Keywords: Glycyrrhizic acid, UHPLC-triple-quadrupole-qtrap-MS/MS, CS-PCL-NPs, intranasal drug delivery, brain bioavailability, brain pharmacokinetic.

Graphical Abstract
[1]
Baker, K.; Marcus, C.B.; Hirffman, K.; Kruk, H.; Malfory, B.; Doctrow, S.R. Synthetic combined super oxide dismutase/catalase mimetics are protective as delayed treatment in a rat stroke model, a key role of reactive oxygen species in ischemic brain injury. J. Pharmacol. Exp. Ther., 1998, 284, 215-221.
[2]
Sharma, S.S. Emerging neuroprotective approaches in stroke treatment. CRIPS, 2003, 4, 8-12.
[3]
Margaill, I.; Plotkine, M.; Lerouet, D. Antioxidant strategies in the treatment of stroke. Free Radic. Biol. Med., 2005, 39, 429-443.
[4]
Schreibelt, G.; Horssen, J.V.; Rossum, S.V.; Dijkstra, C.D.; Drukarch, B.; Vries, H.E. Therapeutic potential and biological role of endogenous 403 antioxidant enzymes in multiple sclerosis pathology. Brain Res. Rev., 2007, 56, 322-330.
[5]
Vellaisamy, K.; Li, G.; Ko, C.N.; Zhong, H.J.; Fatima, S.; Kwan, H.Y.; Wong, C.Y.; Kwong, W.J.; Tan, W.; Leung, C.H.; Ma, D.L. Cell imaging of dopamine receptor using agonist labeling iridium(III) complex. Chem. Sci., 2018, 9, 1119-1125.
[6]
Liu, J.B.; Yang, C.; Ko, C.N.; Vellaisamy, K.; Yang, B.; Lee, M.Y.; Leung, C.H.; Ma, D.L. A long lifetime iridium(III) complex as a sensitive luminescent probe for bisulfite detection in living zebrafish. Sens. Actuators B Chem., 2017, 243, 971-976.
[7]
Wang, W.; Vellaisamy, K.; Li, G.; Wu, C.; Ko, C.N.; Leung, C.H.; Ma, D.L. Development of a long-lived luminescence probe for visualizing β-galactosidase in ovarian carcinoma cells. Anal. Chem., 2017, 89(21), 11679-11684.
[8]
Liu, L.J.; Wang, W.; Huang, S.Y.; Hong, Y.; Li, G.; Lin, S.; Tian, J.; Cai, Z.; Wang, H.D.; Ma, D.L.; Leung, C.H. Inhibition of the Ras/Raf interaction and repression of renal cancer xenografts in vivo by an enantiomeric iridium(iii) metal-based compound. Chem. Sci., 2017, 8(7), 4756-4763.
[9]
San, B.H.; Hwang, J.; Sampath, S.; Li, Y.; Bennink, L.L.; Yu, S.M. Self-Assembled Water-Soluble Nanofibers Displaying Collagen Hybridizing Peptides. J. Am. Chem. Soc., 2017, 139(46), 16640-16649.
[10]
Li, Y.; Li, Y.; Ji, W.; Lu, Z.; Liu, L.; Shi, Y.; Ma, G.; Zhang, X. Positively Charged Polyprodrug Amphiphiles with Enhanced Drug Loading and Reactive Oxygen Species-Responsive Release Ability for Traceable Synergistic Therapy. J. Am. Chem. Soc., 2018, 140(11), 4164-4171.
[11]
Richter, T.; Keipert, S. In Vitro Permeation Studies Comparing Bovine Nasal Mucosa, Porcine Cornea and Artificial Membrane: Androstenedione in Microemulsions and Their Components. Eur. J. Pharm. Biopharm., 2004, 58, 137-143.
[12]
Gilgun-Sherki, Y.; Rosenbaum, Z.; Melamed, E.; Offen, D. Antioxidant therapy in acute central nervous system injury, current state. Pharmacol. Rev., 2002, 54, 271-284.
[13]
Rasool, M.; Iqbal, J.; Malik, A.; Ramzan, H.S.; Qureshi, M.S.; Asif, M.; Qazi, M.H.; Kamal, M.A.; Chaudhary, A.G.; Al-Qahtani, M.H.; Gan, S.H.; Karim, S. Hepatoprotective effects of Silybum marianum (Silymarin) and Glycyrrhiza glabra (Glycyrrhizin) in combination: a possible synergy. Evid. Based Complement. Alternat. Med., 2014, 2014641597
[14]
Akman, T.; Guven, M.; Aras, A.B.; Ozkan, A.; Sen, H.M.; Okuyucu, A.; Kalkan, Y.; Sehitoglu, I.; Silan, C.; Cosar, M. The Neuroprotective Effect of Glycyrrhizic Acid on an Experimental Model of Focal Cerebral Ischemia in Rats. Inflammation, 2015, 38(4), 1581-1588.
[15]
Kim, S.W.; Jin, Y.; Shin, J.H.; Kim, I.D.; Lee, H.K.; Park, S.; Han, P.L.; Lee, J.K. Glycyrrhizic acid affords robust neuroprotection in the postischemic brain via anti-inflammatory effect by inhibiting HMGB1 phosphorylation and secretion. Neurobiol. Dis., 2012, 46(1), 147-156.
[16]
Hosseinzadeh, H. Nassiri, Asl. M.; Parvardeh, S. The effects of carbenoxolone, a semisynthetic derivative of glycyrrhizinic acid, on peripheral and central ischemia-reperfusion injuries in the skeletal muscle and hippocampus of rats. Phytomedicine, 2005, 12(9), 632-637.
[17]
Khorsandi, L.; Orazizadeh, M.; Mansori, E.; Fakhredini, F. Glycyrrhizic acid attenuated lipid peroxidation induced by titanium dioxide nanoparticles in rat liver. Bratisl. Lek Listy, 2015, 116(6), 383-388.
[18]
Orazizadeh, M.; Fakhredini, F.; Mansouri, E.; Khorsandi, L. Effect of glycyrrhizic acid on titanium dioxide nanoparticles-induced hepatotoxicity in rats. Chem. Biol. Interact., 2014, 220, 214-221.
[19]
Ahmad, N. Rasagiline-encapsulated chitosan-coated PLGA nanoparticles targeted to the brain in the treatment of parkinson’s disease. J. Liq. Chromatogr. Relat. Technol., 2017, 40(13), 677-690.
[20]
Dhuria, S.V.; Hanson, L.R.; Frey, W.H. Intranasal delivery to the central nervous system: mechanism and experimental consideration. J. Pharm. Sci., 2010, 99(4), 1654-1673.
[21]
Pires, A.; Fortuna, A.; Alves, G.; Falcao, A. Intranasal drug delivery: how, why and what for. J. Pharm. Sci., 2009, 12(3), 288-311.
[22]
Mittal, D.; Ali, A.; Md, S.; Baboota, S.; Sahni, J.K.; Ali, J. Insights in to direct nose to brain delivery: current status and future perspective. Drug Deliv., 2013, 21(2), 75-86.
[23]
Davis, S.S. Biomedical applications of nanotechnology - implications for drug targeting and gene therapy. Trends Biotechnol., 1997, 15(6), 217-224.
[24]
Illum, L. Transport of drugs from the nasal cavity to central nervous system. Eur. J. Pharm. Sci., 2000, 11(1), 1-18.
[25]
Ugwoke, M.I.; Agu, R.U.; Vanbilloen, H.; Baetens, J.; Augustijns, P.; Verbeke, N.; Mortelmans, L.; Verbruggen, A.; Kinget, R.; Bormans, G. Scintigraphic evaluation in rabbits of nasal drug delivery systems based on carbopol 971P® and carboxymethylcellulose. J. Control. Release, 2000, 68(2), 207-214.
[26]
Ugwoke, M.I.; Verbeke, N.; Kinget, R. The biopharmaceutical aspects of nasal mucoadhesive drug delivery. J. Pharm. Pharmacol., 2001, 53(1), 3-21.
[27]
Fernandez-Urrusuno, R.; Romani, D.; Calvo, D. Development of a freeze dried formulation of insulin-loaded chitosan nanoparticles intended for nasal administration. STP Pharm. Sci, 1999, 9, 429-436.
[28]
Ahmad, N.; Ahmad, R.; Naqvi, A.A.; Alam, M.A.; Ashafaq, M.; Samim, M.; Iqbal, Z.; Ahmad, F.J. Rutin-encapsulated chitosan nanoparticles targeted to the brain in the treatment of Cerebral Ischemia. Int. J. Biol. Macromol., 2016, 91, 640-655.
[29]
Patel, A.; Patel, M.; Yang, X.; Mitra, A.K. Recent advances in protein and Peptide drug delivery: a special emphasis on polymeric nanoparticles. Protein Pept. Lett., 2014, 21(11), 1102-1120.
[30]
Xin, H.; Jiang, X.; Gu, J.; Sha, X.; Chen, L.; Law, K.; Chen, Y.; Wang, X.; Jiang, Y.; Fang, X. Angiopep-conjugated poly(ethylene glycol)-co-poly(ε-caprolactone) nanoparticles as dual-targeting drug delivery system for brain glioma. Biomaterials, 2011, 32(18), 4293-4305.
[31]
Xin, H.; Sha, X.; Jiang, X.; Chen, L.; Law, K.; Gu, J.; Chen, Y.; Wang, X.; Fang, X. The brain targeting mechanism of Angiopep-conjugated poly(ethylene glycol)-co-poly(ε-caprolactone) nanoparticles. Biomaterials, 2012, 33(5), 1673-1681.
[32]
Gao, H.; Qian, J.; Yang, Z.; Pang, Z.; Xi, Z.; Cao, S.; Wang, Y.; Pan, S.; Zhang, S.; Wang, W.; Jiang, X.; Zhang, Q. Whole-cell SELEX aptamer-functionalised poly(ethyleneglycol)-poly(ε-caprolactone) nanoparticles for enhanced targeted glioblastoma therapy. Biomaterials, 2012, 33(26), 6264-6272.
[33]
Bonaccorso, A.; Musumeci, T.; Carbone, C.; Vicari, L.; Lauro, M.R.; Puglisi, G. Revisiting the role of sucrose in PLGA-PEG nanocarrier for potential intranasal delivery. Pharm. Dev. Technol., 2018, 23(3), 265-274.
[34]
Bi, C.; Wang, A.; Chu, Y.; Liu, S.; Mu, H.; Liu, W.; Wu, Z.; Sun, K.; Li, Y. Intranasal delivery of rotigotine to the brain with lactoferrin-modified PEG-PLGA nanoparticles for Parkinson’s disease treatment. Int. J. Nanomedicine, 2016, 11, 6547-6559.
[35]
Warsi, M.H.; Anwar, M.; Garg, V.; Jain, G.K.; Talegaonkar, S.; Ahmad, F.J.; Khar, R.K. Dorzolamide-loaded PLGA/vitamin E TPGS nanoparticles for glaucoma therapy: Pharmacoscintigraphy study and evaluation of extended ocular hypotensive effect in rabbits. Colloids Surf. B Biointerfaces, 2014, 122, 423-431.
[36]
Zhou, L.; He, H.; Li, M.C.; Song, K.; Cheng, H.N.; Wu, Q. Morphological influence of cellulose nanoparticles (CNs) from cottonseed hulls on rheological properties of polyvinyl alcohol/CN suspensions. Carbohydr. Polym., 2016, 153, 445-454.
[37]
Liang, Q.; Wang, Y.X.; Ding, J.S.; He, W.; Deng, L.L.; Li, N.; Liao, Y.J.; Li, Z.; Ye, B.; Wang, W. Intra-arterial delivery of superparamagnetic iron-oxide nanoshell and polyvinyl alcohol based chemoembolization system for the treatment of liver tumor. Discov. Med., 2017, 23(124), 27-39.
[38]
Chang, S.F.; Huang, K.C.; Cheng, C.C.; Su, Y.P.; Lee, K.C.; Chen, C.N.; Chang, H.I. Glucose Adsorption to Chitosan Membranes Increases Proliferation of Human Chondrocyte via Mammalian Target of Rapamycin Complex 1 and Sterol Regulatory Element-binding Protein-1 Signaling. J. Cell. Physiol., 2017, 232(10), 2741-2749.
[39]
He, R.; Yin, C. Trimethyl chitosan based conjugates for oral and intravenous delivery of paclitaxel. Acta Biomater., 2017, 53, 355-366.
[40]
Gupta, S.; Sharma, R.; Pandotra, P.; Jaglan, S.; Gupta, A.P. Chromolithic method development, validation and system suitability analysis of ultra-sound assisted extraction of glycyrrhizic acid and glycyrrhetinic acid from Glycyrrhiza glabra. Nat. Prod. Commun., 2012, 7(8), 991-994.
[41]
Hennell, J.R.; Lee, S.; Khoo, C.S.; Gray, M.J.; Bensoussan, A. The determination of glycyrrhizic acid in Glycyrrhiza uralensis Fisch. ex DC. (Zhi Gan Cao) root and the dried aqueous extract by LC-DAD. J. Pharm. Biomed. Anal., 2008, 47(3), 494-500.
[42]
Zhang, M.; Deng, Y.; Wang, C.; Cai, H.L.; Wen, J.; Fang, P.F.; Zhang, B.K.; Li, H.D.; Yan, M. An LC-MS/MS method for determination of bioactive components of liquorice and Semen Strychni in rat plasma: Application to a pharmacokinetics study. Drug Test. Anal., 2018, 10(2), 262-271.
[43]
He, M.; Chen, W.; Wang, M.; Wu, Y.; Zeng, J.; Zhang, Z.; Shen, S.; Jiang, J. Simultaneous determination of multiple bioactive components of Bu-zhong-yi-qi-tang in rat tissues by LC-MS/MS: Application to a tissue distribution study. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2017, 1044-1045, 177-184.
[44]
Liu, G.; Qiao, S.; Liu, T.; Yu, H.; Wang, W.; Zhou, Y.; Li, Q.; Li, S. Simultaneous Determination of 18 Chemical Constituents in Traditional Chinese Medicine of Antitussive by UPLC-MS-MS. J. Chromatogr. Sci., 2016, 54(9), 1540-1552.
[45]
Montoro, P.; Maldini, M.; Russo, M.; Postorino, S.; Piacente, S.; Pizza, C. Metabolic profiling of roots of liquorice (Glycyrrhiza glabra) from different geographical areas by ESI/MS/MS and determination of major metabolites by LC-ESI/MS and LC-ESI/MS/MS. J. Pharm. Biomed. Anal., 2011, 54(3), 535-544.
[46]
Wang, P.; Li, S.F.; Lee, K.H. Determination of glycyrrhizic acid and 18-beta-glycyrrhetinic acid in biological fluids by micellar electrokinetic chromatography. J. Chromatogr. A, 1998, 811(1-2), 219-224.
[47]
Yin, Q.; Wang, P.; Zhang, A.; Sun, H.; Wu, X.; Wang, X. Ultra-performance LC-ESI/quadrupole-TOF MS for rapid analysis of chemical constituents of Shaoyao-Gancao decoction. J. Sep. Sci., 2013, 36(7), 1238-1246.
[48]
Zhang, W.; Saif, M.W.; Dutschman, G.E.; Li, X.; Lam, W.; Bussom, S.; Jiang, Z.; Ye, M.; Chu, E.; Cheng, Y.C. Identification of chemicals and their metabolites from PHY906, a Chinese medicine formulation, in the plasma of a patient treated with irinotecan and PHY906 using liquid chromatography/tandem mass spectrometry (LC/MS/MS). J. Chromatogr. A, 2010, 1217(37), 5785-5793.
[49]
Makadia, H.K.; Siegel, S.J. Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier. Polymers (Basel), 2011, 3(3), 1377-1397.
[50]
Badran, M.M.; Mady, M.M.; Ghannam, M.M.; Shakeel, F. Preparation and characterization of polymeric nanoparticles surface modified with chitosan for target treatment of colorectal cancer. Int. J. Biol. Macromol., 2017, 95, 643-649.
[51]
Ahmad, N.; Alam, M.A.; Ahmad, R.; Naqvi, A.A.; Ahmad, F.J. Preparation and characterization of surface-modified PLGA-polymeric nanoparticles used to target treatment of intestinal cancer. Artif. Cells Nanomed. Biotechnol., 2018, 46(2), 432-446.
[52]
Ahmad, N.; Ahmad, R.; Alam, M.A.; Samim, M.; Iqbal, Z.; Ahmad, F.J. Quantification and evaluation of thymoquinone loaded mucoadhesive nanoemulsion for treatment of cerebral ischemia. Int. J. Biol. Macromol., 2016, 88, 320-332.
[53]
Ahmad, N.; Ahmad, R.; Naqvi, A.A.; Alam, M.A.; Samim, M.; Iqbal, Z.; Ahmad, F.J. Quantification of rutin in rat’s brain by UHPLC/ESI-Q-TOF-MS/MS after intranasal administration of rutin loaded chitosan nanoparticles. EXCLI J., 2016, 15, 518-531.
[54]
Ahmad, N.; Ahmad, R.; Naqvi, A.A.; Alam, M.A.; Ashafaq, M.; Iqbal, Z.; Ahmad, F.J. Isolation, characterization, and quantification of curcuminoids and their comparative effects in cerebral ischemia. J. Liq. Chromatogr. Relat. Technol., 2017, 40(3), 133-146.
[55]
US Food and Drug Administration., Guidance for industry: bioanalytical method validation. Available from: https://www.fda.gov/downloads/drugs/guidances/ucm368107.pdf [September 2013]
[56]
Mustafa, G.; Ahmad, N.; Baboota, S.; Ali, J.; Ahuja, A. UHPLC/ESI-Q-TOF-MS method for the measurement of dopamine in rodent striatal tissue: a comparative effects of intranasal administration of ropinirole solution over nanoemulsion. Drug Test. Anal., 2013, 5(8), 702-709.
[57]
Longa, E.Z.; Weinstein, P.R.; Carlson, S.; Cummins, R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke, 1989, 20(1), 84-91.
[58]
Ahmad, N.; Ahmad, I.; Umar, S.; Iqbal, Z.; Samim, M.; Ahmad, F.J. PNIPAM Nanoparticles for Targeted and Enhanced Nose-to-Brain Delivery of Curcuminoids: UPLC/ESI-Q-ToF-MS/MS-Based Pharmacokinetics and Pharmacodynamic Evaluation in Cerebral Ischemia Model. Drug Deliv., 2016, 23, 2095-2114.
[59]
Ahmad, N.; Ahmad, R.; Naqvi, A.A.; Ashafaq, M.; Alam, M.A.; Ahmad, F.J.; Al-Ghamdi, M.S. The effect of safranal loaded mucoadhesive nanoemulsion on oxidative stress markers in cerebral ischemia. Artif. Cells Nanomed. Biotechnol., 2017, 45(4), 775-787.
[60]
Yan, X.Q.; Shi, Y.L.; Jiang, Q.F.; Ping, G.F.; Deng, Z.J. Design of amphiphilic PCL-PEG-PCL block copolymers as vehicles of Ginkgolide B and their brain-targeting studies. J. Biomater. Sci. Polym. Ed., 2017, 28(14), 1497-1510.
[61]
Mundargi, R.C.; Srirangarajan, S.; Agnihotri, S.A.; Patil, S.A.; Ravindra, S.; Setty, S.B.; Aminabhavi, T.M. Development and evaluation of novel biodegradable microspheres based on poly (d, l-lactide-co-glycolide) and poly(epsilon-caprolactone) for controlled delivery of doxycycline in the treatment of human periodontal pocket: in vitro and in vivo studies. J. Control. Release, 2007, 119, 59-68.
[62]
Mainardes, R.M.; Evangelista, R.C. PLGA nanoparticles containing praziquantel: effect of formulation variables on size distribution. Int. J. Pharm., 2005, 290, 137-144.
[63]
Mittal, G.; Sahana, D.K.; Bhardwaj, V.; Kumar, M.N. Estradiol loaded PLGA nanoparticles for oral administration: effect of polymer molecular weight and copolymer composition on release behavior in vitro and in vivo. J. Control. Release, 2007, 119, 77-85.
[64]
Ibrahim, M.M.; Abd-elgawad, H.A.; Osama, A.S.; Monica, M.J. Nanoparticle-based topical ophthalmic formulations for sustained celecoxib release. J. Pharm. Sci., 2013, 102, 1036-1053.
[65]
Wang, Y.; Li, P.; Kong, L. Chitosan-modified PLGA nanoparticles with versatile surface for improved drug delivery. AAPS PharmSciTech, 2013, 14(2), 585-592.
[66]
Song, Z.; Feng, R.; Sun, M.; Guo, C.; Gao, Y.; Li, L.; Zhai, G. Curcumin-loaded PLGA-PEG-PLGA triblock copolymeric micelles: preparation, pharmacokinetics and distribution in vivo. J. Colloid Interface Sci., 2011, 354(1), 116-123.
[67]
Mei, L.; Zhang, Y.; Zheng, Y.; Tian, G.; Song, C.; Yang, D.; Chen, H.; Sun, H.; Tian, Y.; Liu, K.; Li, Z.; Huang, L. A novel docetaxel-loaded poly (ε-caprolactone)/pluronic F68 nanoparticle overcoming multidrug resistance for breast cancer treatment. Nanoscale Res. Lett., 2009, 4(12), 1530-1539.
[68]
Sanna, V.; Roggio, A.M.; Posadino, A.M.; Cossu, A.; Marceddu, S.; Mariani, A.; Alzari, V.; Uzzau, S.; Pintus, G.; Sechi, M. Novel docetaxel-loaded nanoparticles based on poly(lactide-co-caprolactone) and poly(lactide-co-glycolide-co-caprolactone) for prostate cancer treatment: formulation, characterization, and cytotoxicity studies. Nanoscale Res. Lett., 2011, 6(1), 260-270.
[69]
Saha, P.; Kou, J.H. Effect of solubilizing excipients on permeation of poorly water-soluble compounds across Caco-2 cell monolayers. Eur. J. Pharm. Biopharm., 2000, 50(3), 403-411.
[70]
Misra, R.; Acharya, S.; Dilnawaz, F.; Sahoo, S.K. Sustained antibacterial activity of doxycycline-loaded poly (d,l-lactide-co-glycolide) and poly(epsilon-caprolactone) nanoparticles. Nanomedicine, 2009, 4(5), 519-530.
[71]
Alam, S.; Khan, Z.I.; Mustafa, G.; Kumar, M.; Islam, F.; Bhatnagar, A.; Ahmad, F.J. Development and Evaluation of Thymoquinone-Encapsulated Chitosan Nanoparticles for Nose-to-Brain Targeting: A Pharmacoscintigraphic Study. Int. J. Nanomed, 2012, 7, 5705-5718.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy