The Application of Machine Learning Techniques in Clinical Drug Therapy

Author(s): Huan-Yu Meng, Wan-Lin Jin, Cheng-Kai Yan, Huan Yang*

Journal Name: Current Computer-Aided Drug Design

Volume 15 , Issue 2 , 2019

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Introduction: The development of a novel drug is an extremely complicated process that includes the target identification, design and manufacture, and proper therapy of the novel drug, as well as drug dose selection, drug efficacy evaluation, and adverse drug reaction control. Due to the limited resources, high costs, long duration, and low hit-to-lead ratio in the development of pharmacogenetics and computer technology, machine learning techniques have assisted novel drug development and have gradually received more attention by researchers.

Methods: According to current research, machine learning techniques are widely applied in the process of the discovery of new drugs and novel drug targets, the decision surrounding proper therapy and drug dose, and the prediction of drug efficacy and adverse drug reactions.

Results and Conclusion: In this article, we discussed the history, workflow, and advantages and disadvantages of machine learning techniques in the processes mentioned above. Although the advantages of machine learning techniques are fairly obvious, the application of machine learning techniques is currently limited. With further research, the application of machine techniques in drug development could be much more widespread and could potentially be one of the major methods used in drug development.

Keywords: Machine learning technique, pharmacogenetics, drug development, computer technology, drug efficacy, novel drug.

Downing, N.S.; Zhang, A.D.; Ross, J.S. Regulatory review of new therapeutic agents - FDA versus EMA, 2011-2015. N. Engl. J. Med., 2017, 376(14), 1386-1387.
Huang, L.C.; Wu, X.; Chen, J.Y. Predicting adverse side effects of drugs. BMC Genomics, 2011, 12(5), S11.
Kandoi, G.; Acencio, M.L.; Lemke, N. Prediction of druggable proteins using machine learning and systems biology: A mini-review. Front. Physiol., 2015, 6, 366.
Kononenko, I. Machine learning for medical diagnosis: History, state of the art and perspective. Artif. Intell. Med., 2001, 23(1), 89-109.
Jamali, A.A.; Ferdousi, R.; Razzaghi, S.; Li, J.; Safdari, R.; Ebrahimie, E. DrugMiner: Comparative analysis of machine learning algorithms for prediction of potential druggable proteins. Drug Discov. Today, 2016, 21(5), 718-724.
Lima, A.N.; Philot, E.A.; Trossini, G.H.; Scott, L.P.; Maltarollo, V.G.; Honorio, K.M. Use of machine learning approaches for novel drug discovery. Expert Opin. Drug Discov., 2016, 11(3), 225-239.
Weaver, I.N.; Weaver, D.F. Drug design and discovery: Translational biomedical science varies among countries. Clin. Transl. Sci., 2013, 6(5), 409-413.
Reiss, T. Drug discovery of the future: The implications of the human genome project. Trends Biotechnol., 2001, 19(12), 496-499.
Costa, P.R.; Acencio, M.L. Lemke, N. A machine learning approach for genome-wide prediction of morbid and druggable human genes based on systems-level data. BMC Genomics, 2010, 11(5), S9.
Griesenauer, R.H.; Kinch, M.S. 2016 in review: FDA approvals of new molecular entities. Drug Discov. Today, 2017, 22(11), 1593-1597.
Ekins, S.; Mestres, J.; Testa, B. In silico pharmacology for drug discovery: Applications to targets and beyond. Br. J. Pharmacol., 2007, 152(1), 21-37.
Jamal, S.; Goyal, S.; Shanker, A. Grover A3 predicting neurological adverse drug reactions based on biological, chemical and phenotypic properties of drugs using machine learning models. Sci. Rep., 2017, 7(1), 872.
Lan, M.Y.; Yang, W.L.; Lin, K.T.; Lin, J.C.; Shann, Y.J.; Ho, C.Y.; Huang, C.Y. Using computational strategies to predict potential drugs for nasopharyngeal carcinoma. Head Neck, 2014, 36(10), 1398-1407.
Lavecchia, A. Machine-learning approaches in drug discovery: Methods and applications. Drug Discov. Today, 2015, 20(3), 318-331.
Cosgun, E.; Limdi, N.A.; Duarte, C.W. High-dimensional pharmacogenetic prediction of a continuous trait using machine learning techniques with application to warfarin dose prediction in African Americans. Bioinformatics, 2011, 27(10), 1384-1389.
Larkins, N.; Matsell, D.G. Tacrolimus therapeutic drug monitoring and pediatric renal transplant graft outcomes. Pediatr. Transplant., 2014, 18(8), 803-809.
Lin, F.P.; Pokorny, A.; Teng, C.; Dear, R.; Epstein, R. Computational prediction of multidisciplinary team decision-making for adjuvant breast cancer drug therapies: A machine learning approach. BMC Cancer, 2016, 16(1), 929.
Yang, S.H.; Lee, M.G. Dose-independent pharmacokinetics of clindamycin after intravenous and oral administration to rats: Contribution of gastric first-pass effect to low bioavailability. Int. J. Pharm., 2007, 332(1-2), 17-23.
Kureshi, N.; Abidi, S.S. Blouin, C. A Predictive model for personalized therapeutic interventions in non-small cell lung cancer. IEEE J. Biomed. Health Inform., 2016, 20(1), 424-431.
Wallemacq, P.; Armstrong, V.W.; Brunet, M.; Haufroid, V.; Holt, D.W.; Johnston, A.; Kuypers, D.; Le Meur, Y.; Marquet, P.; Oellerich, M.; Thervet, E.; Toenshoff, B.; Undre, N.; Weber, L.T.; Westley, I.S.; Mourad, M. Opportunities to optimize tacrolimus therapy in solid organ transplantation: Report of the European consensus conference. Ther. Drug Monit., 2009, 31(2), 139-152.
Staatz, C.E.; Goodman, L.K.; Tett, S.E. Effect of CYP3A and ABCB1 single nucleotide polymorphisms on the pharmacokinetics and pharmacodynamics of calcineurin inhibitors: Part I. Clin. Pharmacokinet., 2010, 49(3), 141-175.
Finlayson, S.G.; Levy, M.; Reddy, S.; Rubin, D.L. Toward rapid learning in cancer treatment selection: An analytical engine for practice-based clinical data. J. Biomed. Inform., 2016, 60, 104-113.
Tan, M. Prediction of anti-cancer drug response by kernelized multi-task learning. Artif. Intell. Med., 2016, 73, 70-77.
Mani, S.; Chen, Y.; Li, X.; Arlinghaus, L.; Chakravarthy, A.B.; Abramson, V.; Bhave, S.R.; Levy, M.A.; Xu, H.; Yankeelov, T.E. Machine learning for predicting the response of breast cancer to neoadjuvant chemotherapy. J. Am. Med. Inform. Assoc., 2013, 20(4), 688-695.
Ma, Y.; Ding, Z.; Qian, Y.; Shi, X.; Castranova, V.; Harner, E.J.; Guo, L. Predicting cancer drug response by proteomic profiling. Clin. Cancer Res., 2006, 12(15), 4583-4589.
deAndres-Galiana, E.J.; Fernández-Martínez, J.L.; Luaces, O.; Del Coz, J.J.; Fernández, R.; Solano, J.; Nogués, E.A.; Zanabilli, Y.; Alonso, J.M.; Payer, A.R.; Vicente, J.M.; Medina, J.; Taboada, F.; Vargas, M.; Alarcón, C.; Morán, M.; González-Ordóñez, A.; Palicio, M.A.; Ortiz, S.; Chamorro, C.; Gonzalez, S.; González-Rodríguez, A.P. On the prediction of Hodgkin lymphoma treatment response. Clin. Transl. Oncol., 2015, 17(8), 612-619.
Dong, Z.; Naiqian, Z.; Chun, Li.; Haiyun, W.; Yun, F.; Jun, W.; Xiaoqi, Z. Anticancer drug sensitivity prediction in cell lines from baseline gene expression through recursive feature selection. BMC Cancer, 2015, 15, 489.
Kim, J.W.; Sharma, V.; Ryan, N.D. Predicting methylphenidate response in ADHD using machine learning approaches. Int. J. Neuropsychopharmacol., 2015, 18(11), pyv052.
Nguyen, L.; Dang, C.C. Systematic assessment of multi-gene predictors of pan-cancer cell line sensitivity to drugs exploiting gene expression data. F1000Res, 2016, 5 doi: 10.12688/f1000research.10529.2
Jang, I.S.; Neto, E.C.; Guinney, J.; Friend, S.H.; Margolin, A.A. Systematic assessment of analytical methods for drug sensitivity prediction from cancer cell line data. Pac. Symp. Biocomput., 2014, 63-74.
Menden, M.P.; Iorio, F.; Garnett, M.; McDermott, U.; Benes, C.H.; Ballester, P.J.; Saez-Rodriguez, J. Machine learning prediction of cancer cell sensitivity to drugs based on genomic and chemical properties. PLoS One, 2013, 8(4), e61318.
Colic, S.; Wither, R.G.; Lang, M.; Zhang, L.; Eubanks, J.H.; Bardakjian, B.L. Prediction of antiepileptic drug treatment outcomes using machine learning. J. Neural Eng., 2017, 14(1), 016002.
Forshed, J.; Pernemalm, M.; Tan, C.S.; Lindberg, M.; Kanter, L.; Pawitan, Y.; Lewensohn, R.; Stenke, L.; Lehtiö, J. Proteomic data analysis workflow for discovery of candidate biomarker peaks predictive of clinical outcome for patients with acute myeloid leukemia. J. Proteome Res., 2008, 7(6), 2332-2341.
Liu, M.; Wu, Y.; Chen, Y.; Sun, J.; Zhao, Z.; Chen, X.W.; Matheny, M.E.; Xu, H. Large-scale prediction of adverse drug reactions using chemical, biological, and phenotypic properties of drugs. J. Am. Med. Inform. Assoc., 2012, 19(e1), e28-e35.
Hammann, F.; Gutmann, H.; Vogt, N.; Helma, C.; Drewe, J. Prediction of adverse drug reactions using decision tree modeling. Clin. Pharmacol. Ther., 2010, 88(1), 52-59.
Liang, Z.; Jimmy, X.H.; Xing, Z.; Gang, Z. DL-ADR: A novel deep learning model for classifying genomic variants into adverse drug reactions. BMC Med. Genomics, 2016, 9(2), 48.
Raja, K.; Patrick, M.; Elder, J.T.; Tsoi, L.C. Machine learning workflow to enhance predictions of Adverse Drug Reactions (ADRs) through drug-gene interactions: Application to drugs for cutaneous diseases. Sci. Rep., 2017, 7(1), 3690.
Moon, H.; Cong, M. Predictive models of cytotoxicity as mediated by exposure to chemicals or drugs. SAR QSAR Environ. Res., 2016, 27(6), 455-468.
Huang, L.C. X. Wu.; Chen, J.Y. Predicting adverse drug reaction profiles by integrating protein interaction networks with drug structures. Proteomics, 2013, 13(2), 313-324.
Vidyasagar, M. Identifying predictive features in drug response using machine learning: Opportunities and challenges. Annu. Rev. Pharmacol. Toxicol., 2015, 55, 15-34.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2019
Published on: 12 March, 2019
Page: [111 - 119]
Pages: 9
DOI: 10.2174/1573409914666180525124608
Price: $65

Article Metrics

PDF: 78
HTML: 15
PRC: 1