Pharmacokinetics and Tissue Distribution Study of Ferruginol in Wistar Rat by High-performance Liquid Chromatography

Author(s): Guiyun Cao*, Suqiao Han, Keke Li, Li Shen, Xiaohong Wang, Youbo Zhang

Journal Name: Current Pharmaceutical Analysis

Volume 15 , Issue 1 , 2019


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: Ferruginol (FRGN) exhibits a broad range of pharmacological properties which make it a promising candidate for chemoprevention. However, little is known about its absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties.

Methods: A rapid, sensitive and specific HPLC-DAD method was established to quantify FRGN in the plasma and tissues of Wistar rats. After extraction of FRGN with ethyl acetate (EtOAc), chromatographic separation was performed on a YMC ODS C18 column (250 × 4.6 mm I.D., 5 µm) with a mobile phase consisting of methanol-water (92:8, v/v) at a flow rate of 0.9 mL/min. Detection was conducted with a wavelength of 273 nm at 25 °C.

Results: The calibration curves for FRGN were linear in the concentration range of 0.5-20 µg/mL for plasma, 0.5-10 µg/mL for heart, liver, spleen, lung, kidney, stomach, intestine, brain and muscle. After three cycles of freezing and thawing, the concentration variations were within ± 7% of nominal concentrations, indicating no significant substance loss during repeated thawing and freezing. The assay was applied to pharmacokinetic and tissue distribution study in rats. Results suggested that lung, heart, liver, spleen and kidney were the major distribution tissues of FRGN in rats, and FRGN could permeate the blood-brain barrier to distribute in the brain of rats.

Conclusion: The information provided by this research is very useful for gaining knowledge of the pharmacokinetic process and tissue distribution of FRGN.

Keywords: Ferruginol, pharmacokinetics, tissue distribution, HPLC-DAD, Wistar rats, calibration.

[1]
Helfenstein, A.; Vahermo, M.; Nawrot, D.A.; Demirci, F.; İşcan, G.; Krogerus, S.; Yli-Kauhaluoma, J.; Moreira, V.M.; Tammela, P. Antibacterial profiling of abietane-type diterpenoids. Bioorg. Med. Chem., 2017, 25(1), 132-137.
[2]
AbdelMonem, A.R.; Abdelrahman, E.H. New abietane diterpenes from Euphorbia Pseudocactus Berger (Euphorbiaceae) and their antimicrobial activity. Pharmacogn. Mag., 2016, 12(Suppl. 3), S346-S349.
[3]
Subash-Babu, P.; Alshammari, G.M.; Ignacimuthu, S.; Alshatwi, A.A. Epoxy clerodane diterpene inhibits MCF-7 human breast cancer cell growth by regulating the expression of the functional apoptotic genes Cdkn2A, Rb1, mdm2 and p53. Biomed. Pharmacother., 2017, 87, 388-396.
[4]
Shrestha, S.; Song, Y.W.; Kim, H.; Lee, D.S.; Cho, S.K. Sageone, a diterpene from Rosmarinus officinalis, synergizes with cisplatin cytotoxicity in SNU-1 human gastric cancer cells. Phytomedicine, 2016, 23(13), 1671-1679.
[5]
Erharuyi, O.; Adhikari, A.; Falodun, A.; Jabeen, A.; Imad, R.; Ammad, M.; Choudhary, M.I.; Gören, N. Cytotoxic, antiinflammatory, and leishmanicidal activities of diterpenes isolated from the roots of Caesalpinia pulcherrima. Planta Med, 2017, 83(1-02), 104-110.
[6]
Jiménez-García, L.; Través, P.G.; López-Fontal, R.; Herranz, S.; Higueras, M.A.; de Las Heras, B.; Hortelano, S.; Luque, A. 8,9-Dehydrohispanolone-15,16-lactol diterpene prevents LPS-triggered inflammatory responses by inhibiting endothelial activation. Biochem. J., 2016, 473(14), 2061-2071.
[7]
Han, B.S.; Kim, K.S.; Kim, Y.J.; Jung, H.Y.; Kang, Y.M.; Lee, K.S.; Sohn, M.J.; Kim, C.H.; Kim, K.S.; Kim, W.G. Daphnane diterpenes from Daphne genkwa activate Nurr1 and have a neuroprotective effect in an animal model of Parkinson’s disease. J. Nat. Prod., 2016, 79(6), 1604-1609.
[8]
Costa, J.P.; Ferreira, P.B.; De Sousa, D.P.; Jordan, J.; Freitas, R.M. Anticonvulsant effect of phytol in a pilocarpine model in mice. Neurosci. Lett., 2012, 523(2), 115-118.
[9]
He, F.; Lindqvist, C.; Harding, W.W. Leonurenones A-C: labdane diterpenes from Leonotis leonurus. Phytochemistry, 2012, 83, 168-172.
[10]
Farkhondeh, T.; Samarghandian, S.; Borji, A. Evaluation of antidiabetic activity of carnosol (phenolic diterpene in rosemary) in streptozotocin-induced diabetic rats. Cardiovasc. Hematol. Disord. Drug Targets, 2016, in press
[11]
Ebrahimi, A.; Schluesener, H. Natural polyphenols against neurodegenerative disorders: potentials and pitfalls. Ageing Res. Rev., 2012, 11(2), 329-345.
[12]
Lu, X.Z.; Luo, H.W.; Ji, J.; Cai, H. The structure of trijuganone C from Salvia trijuga. Acta. Pharmaceutica. Sinica., 1991, 26(3), 193-196.
[13]
Zhao, M.Z.; Li, J.Q.; Zhang, Y.; Zhang, X.J.; Jiang, B. Study on chemical constituents from rhizome of Rabdosia flavida. Zhong Yao Cai, 2014, 37(7), 1193-1196.
[14]
Yao, F.; Zhang, D.W.; Qu, G.W.; Li, G.S.; Dai, S.J. New abietane norditerpenoid from Salvia miltiorrhiza with cytotoxic activities. J. Asian Nat. Prod. Res., 2012, 14(9), 913-917.
[15]
Roa-Linares, V.C.; Brand, Y.M.; Agudelo-Gomez, L.S.; Tangarife-Castaño, V.; Betancur-Galvis, L.A.; Gallego-Gomez, J.C.; González, M.A. Anti-herpetic and anti-dengue activity of abietane ferruginol analogues synthesized from (+)-dehydroabietylamine. Eur. J. Med. Chem., 2016, 108, 79-88.
[16]
Búfalo, J.; Cantrell, C.L.; Jacob, M.R.; Schrader, K.K.; Tekwani, B.L.; Kustova, T.S.; Ali, A.; Boaro, C.S. Antimicrobial and antileishmanial activities of diterpenoids isolated from the roots of Salvia deserta. Planta Med., 2016, 82(1-2), 131-137.
[17]
Saijo, H.; Kofujita, H.; Takahashi, K.; Ashitani, T. Antioxidant activity and mechanism of the abietane-type diterpene ferruginol. Nat. Prod. Res., 2015, 29(18), 1739-1743.
[18]
Ho, S.T.; Tung, Y.T.; Kuo, Y.H.; Lin, C.C.; Wu, J.H. Ferruginol inhibits non-small cell lung cancer growth by inducing caspase-associated apoptosis. Integr. Cancer Ther., 2015, 14(1), 86-97.
[19]
González, M.A.; Clark, J.; Connelly, M.; Rivas, F. Antimalarial activity of abietane ferruginol analogues possessing a phthalimide group. Bioorg. Med. Chem. Lett., 2014, 24(22), 5234-5237.
[20]
Alqasoumi, S.I.; Abdel-Kader, M.S. Terpenoids from Juniperus procera with hepatoprotective activity. Pak. J. Pharm. Sci., 2012, 25(2), 315-322.
[21]
Areche, C.; Theoduloz, C.; Yáñez, T.; Souza-Brito, A.R.; Barbastefano, V.; de Paula, D.; Ferreira, A.L.; Schmeda-Hirschmann, G.; Rodríguez, J.A. Gastroprotective activity of ferruginol in mice and rats: effects on gastric secretion, endogenous prostaglandins and non-protein sulfhydryls. J. Pharm. Pharmacol., 2008, 60(2), 245-251.
[22]
Wei, Y.H.; He, J.Q.; Qin, H.Y.; Wu, X.A.; Yao, X.J. Determination of ferruginol in rat plasma via high-performance liquid chromatography and its application in pharmacokinetics study. Biomed. Chromatogr., 2009, 23(10), 1116-1120.
[23]
Zhang, Z.W.; Liu, X.X.; Cao, W.; Xiao, X.; Qu, J.G.; Zhao, M.G.; Li, X.Q. Pharmacokinetics and tissue distribution of fargesin after oral administration in rats by high performance liquid chromatography. Curr. Pharm. Anal., 2016, 12(4), 379-385.
[24]
Je, W.P.; Nguyen, H.H.; Nguyen, L.H. Analysis of ursodeoxycholic acid using ultra-performance liquid chromatography with tandem mass spectrometry. Curr. Pharm. Anal., 2016, 12(3), 185-191.
[25]
Alves, E.A.; Agonia, A.S.; Cravo, S.M. GC-MS method for the analysis of thirteen opioids, cocaine and cocaethylene in whole blood based on a modified quechers extraction. Curr. Pharm. Anal., 2017, 13(3), 215-223.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 15
ISSUE: 1
Year: 2019
Published on: 28 November, 2018
Page: [67 - 73]
Pages: 7
DOI: 10.2174/1573412914666180508154147
Price: $65

Article Metrics

PDF: 25
HTML: 3