Natural Products: Key Prototypes to Drug Discovery Against Neglected Diseases Caused by Trypanosomatids

Author(s): Marina Themoteo Varela, João Paulo S. Fernandes*

Journal Name: Current Medicinal Chemistry

Volume 27 , Issue 13 , 2020


  Journal Home
Translate in Chinese
Become EABM
Become Reviewer
Call for Editor

Abstract:

Background: Neglected tropical diseases are a group of infections caused by microorganisms and viruses that affect mainly poor regions of the world. In addition, most available drugs are associated with long periods of treatment and high toxicity which limits the application and patient compliance. Investment in research and development is not seen as an attractive deal by the pharmaceutical industry since the final product must ideally be cheap, not returning the amount invested. Natural products have always been an important source for bioactive compounds and are advantageous over synthetic compounds when considering the unique structural variety and biological activities. On the other hand, isolation difficulties and low yields, environmental impact and high cost usually limit their application as drug per se.

Objective: In this review, the use of natural products as prototypes for the semi-synthesis or total synthesis, as well as natural products as promising hits is covered, specifically regarding compounds with activities against trypanosomatids such as Trypanosoma spp. and Leishmania spp.

Methods: Selected reports from literature with this approach were retrieved.

Conclusion: As summary, it can be concluded that natural products are an underestimated source for designing novel agents against these parasites.

Keywords: Natural products, neglected diseases, prototypes, semi-synthetic derivatives, synthetic derivatives, trypanosomatids.

[1]
Neglected tropical diseases. World Health Organization. Available at: http://www.who.int/neglected_diseases/ diseases/en/ (Accessed Date: November 26, 2017).
[2]
Aagaard-Hansen, J.; Chaignat, C.L. Neglected tropical diseases: equity and social determinants in: Equity, social determinants and public health programmes; Blas, E.; Kurup, A. S. K., Eds.; World Health Organization: Geneva, SWI, 2010, pp. 135-157.
[3]
Moran, M. Global funding of new products for neglected tropical diseases in: Institute of Medicine (US) Forum on Microbial Threats. The Causes and Impacts of Neglected Tropical and Zoonotic Diseases: Opportunities for Integrated Intervention Strategies; National Academies Press: Washington (DC), US, 2011, A16.
[4]
Chapman, N.; Abela-Oversteegen, L.; Doubell, A.; Chowdhary, V.; Gurjav, U.; Ong, M. Neglected disease research and development: a pivotal moment for global health. Policy Cures; G-FINDER, 2016, p. 115.
[5]
Patwardhan, B. Ethnopharmacology and drug discovery. J. Ethnopharmacol., 2005, 100(1-2), 50-52.
[http://dx.doi.org/10.1016/j.jep.2005.06.006] [PMID: 16023811]
[6]
Raza, M. A role for physicians in ethnopharmacology and drug discovery. J. Ethnopharmacol., 2006, 104(3), 297-301.
[http://dx.doi.org/10.1016/j.jep.2006.01.007] [PMID: 16459039]
[7]
Shen, B. A new golden age of natural products drug discovery. Cell, 2015, 163(6), 1297-1300.
[http://dx.doi.org/10.1016/j.cell.2015.11.031] [PMID: 26638061]
[8]
Lemke, T.L.; Williams, D.A., Eds.; Foye’s Principles of Medicinal Chemistry, 7th ed; LWW: Philadephia, 2012.
[9]
The Nobel Prize in physiology or medicine. Available at: https://www.nobelprize.org/nobel_prizes/medicine/laureates/2015/ (Accessed Date: November 26, 2017)
[10]
Strong case for weekly paclitaxel in breast cancer. Available at: http://www.medscape.com/viewarticle/805220 ( Accessed Date: November 26, 2017)
[11]
Malik, S.; Cusidó, R.M.; Mirjalili, M.H.; Moyano, E.; Palazón, J.; Bonfill, M. Production of the anticancer drug taxol in Taxus baccata suspension cultures: a review. Process Biochem., 2011, 46(1), 23-34.
[http://dx.doi.org/10.1016/j.procbio.2010.09.004]
[12]
Naill, M.C.; Kolewe, M.E.; Roberts, S.C. Paclitaxel uptake and transport in Taxus cell suspension cultures. Biochem. Eng. J., 2012, 63, 50-56.
[http://dx.doi.org/10.1016/j.bej.2012.01.006] [PMID: 23180977]
[13]
Nyongbela, K.D.; Ntie-Kang, F.; Hoye, T.R.; Efange, S.M.N. Antiparasitic sesquiterpenes from the cameroonian spice scleria striatinux and preliminary in vitro and in silico DMPK assessment. Nat. Prod. Bioprospect., 2017, 7(3), 235-247.
[http://dx.doi.org/10.1007/s13659-017-0125-y] [PMID: 28421410]
[14]
Rodrigues, D.F.; Maniscalco, D.A.; Silva, F.A.J.; Chiari, B.G.; Castelli, M.V.; Isaac, V.L.B.; Cicarelli, R.M.B.; López, S.N. Trypanocidal activity of Flavokawin B, a component of polygonum ferrugineum wedd. Planta Med., 2017, 83(3-04), 239-244.
[http://dx.doi.org/10.1055/s-0042-112031] [PMID: 27442262]
[15]
Ezzat, S.M.; Salama, M.M.; Mahrous, E.A.; Maes, L.; Pan, C.H.; Abdel-Sattar, E. Antiprotozoal activity of major constituents from the bioactive fraction of Verbesina encelioides. Nat. Prod. Res., 2017, 31(6), 676-680.
[http://dx.doi.org/10.1080/14786419.2016.1180604] [PMID: 27154232]
[16]
Beer, M.F.; Frank, F.M.; Germán Elso, O.; Ernesto Bivona, A.; Cerny, N.; Giberti, G.; Luis Malchiodi, E.; Susana Martino, V.; Alonso, M.R.; Patricia Sülsen, V.; Cazorla, S.I. Trypanocidal and leishmanicidal activities of flavonoids isolated from Stevia satureiifolia var. satureiifolia. Pharm. Biol., 2016, 54(10), 2188-2195.
[http://dx.doi.org/10.3109/13880209.2016.1150304] [PMID: 26983579]
[17]
Katiyar, C.; Gupta, A.; Kanjilal, S.; Katiyar, S. Drug discovery from plant sources: An integrated approach. Ayu, 2012, 33(1), 10-19.
[http://dx.doi.org/10.4103/0974-8520.100295] [PMID: 23049178]
[18]
Coura, J.R. The main sceneries of Chagas disease transmission. The vectors, blood and oral transmissions--a comprehensive review. Mem. Inst. Oswaldo Cruz, 2015, 110(3), 277-282.
[http://dx.doi.org/10.1590/0074-0276140362] [PMID: 25466622]
[19]
Chagas disease (American trypanosomiasis) – Epidemiology. Available at: http://www.who.int/chagas/ epidemiology/en/ (Accessed Date: November 26, 2017)
[20]
Tempone, A.G.; Sartorelli, P.; Mady, C.; Fernandes, F. Natural products to anti-trypanosomal drugs: an overview of new drug prototypes for American Trypanosomiasis. Cardiovasc. Hematol. Agents Med. Chem., 2007, 5(3), 222-235.
[http://dx.doi.org/10.2174/187152507781058726] [PMID: 17630949]
[21]
Alviano, D.S.; Barreto, A.L.S. Dias, Fde.A.; Rodrigues, Ide.A.; Rosa, Mdo.S.; Alviano, C.S.; Soares, R.M.A. Conventional therapy and promising plant-derived compounds against trypanosomatid parasites. Front. Microbiol., 2012, 3, 283.
[http://dx.doi.org/10.3389/fmicb.2012.00283] [PMID: 22888328]
[22]
Torres-Guerrero, E.; Quintanilla-Cedillo, M.R.; Ruiz-Esmenjaud, J.; Arenas, R. Leishmaniasis: a review. F1000 Res., 2017, 6, 750-764.
[http://dx.doi.org/10.12688/f1000research.11120.1] [PMID: 28649370]
[23]
Handler, M.Z.; Patel, P.A.; Kapila, R.; Al-Qubati, Y.; Schwartz, R.A. Cutaneous and mucocutaneous leishmaniasis: Clinical perspectives. J. Am. Acad. Dermatol., 2015, 73(6), 897-908.
[http://dx.doi.org/10.1016/j.jaad.2014.08.051] [PMID: 26568335]
[24]
Bern, C.; Maguire, J.H.; Alvar, J. Complexities of assessing the disease burden attributable to leishmaniasis. PLoS Negl. Trop. Dis., 2008, 2(10)e313
[http://dx.doi.org/10.1371/journal.pntd.0000313] [PMID: 18958165]
[25]
Control of the leishmaniasis: report of a meeting of the WHO Expert Committee on the Control of Leishmaniases; Geneva, 2010, 22-26.
[26]
Katsuno, K.; Burrows, J.N.; Duncan, K.; Hooft van Huijsduijnen, R.; Kaneko, T.; Kita, K.; Mowbray, C.E.; Schmatz, D.; Warner, P.; Slingsby, B.T. Hit and lead criteria in drug discovery for infectious diseases of the developing world. Nat. Rev. Drug Discov., 2015, 14(11), 751-758.
[http://dx.doi.org/10.1038/nrd4683] [PMID: 26435527]
[27]
Baell, J.; Walters, M.A. Chemistry: Chemical con artists foil drug discovery. Nature, 2014, 513(7519), 481-483.
[http://dx.doi.org/10.1038/513481a] [PMID: 25254460]
[28]
Morais, T.R.; da Costa-Silva, T.A.; Tempone, A.G.; Borborema, S.E.T.; Scotti, M.T.; de Sousa, R.M.F.; Araujo, A.C.C.; de Oliveira, A.; de Morais, S.A.L.; Sartorelli, P.; Lago, J.H.G. Antiparasitic activity of natural and semi-synthetic tirucallane triterpenoids from Schinus terebinthifolius (Anacardiaceae): structure/activity relationships. Molecules, 2014, 19(5), 5761-5776.
[http://dx.doi.org/10.3390/molecules19055761] [PMID: 24802987]
[29]
Leite, J.P.V.; Oliveira, A.B.; Lombardi, J.A.; Filho, J.D.S.; Chiari, E. Trypanocidal activity of triterpenes from Arrabidaea triplinervia and derivatives. Biol. Pharm. Bull., 2006, 29(11), 2307-2309.
[http://dx.doi.org/10.1248/bpb.29.2307] [PMID: 17077535]
[30]
Mazoir, N.; Benharref, A.; Bailén, M.; Reina, M.; González-Coloma, A.; Martínez-Díaz, R.A. Antileishmanial and antitrypanosomal activity of triterpene derivatives from latex of two Euphorbia species. Z. Natforsch. C J. Biosci., 2011, 66(7-8), 360-366.
[http://dx.doi.org/10.1515/znc-2011-7-807] [PMID: 21950160]
[31]
Aniszewski, T. Alkaloids - Secrets of life; Elsevier: Amsterdam, 2007.
[32]
Endeshaw, M.; Zhu, X.; He, S.; Pandharkar, T.; Cason, E.; Mahasenan, K.V.; Agarwal, H.; Li, C.; Munde, M.; Wilson, W.D.; Bahar, M.; Doskotch, R.W.; Kinghorn, A.D.; Kaiser, M.; Brun, R.; Drew, M.E.; Werbovetz, K.A. 8,8-dialkyldihydroberberines with potent antiprotozoal activity. J. Nat. Prod., 2013, 76(3), 311-315.
[http://dx.doi.org/10.1021/np300638f] [PMID: 23167812]
[33]
Bahar, M.; Deng, Y.; Zhu, X.; He, S.; Pandharkar, T.; Drew, M.E.; Navarro-Vázquez, A.; Anklin, C.; Gil, R.R.; Doskotch, R.W.; Werbovetz, K.A.; Kinghorn, A.D. Potent antiprotozoal activity of a novel semi-synthetic berberine derivative. Bioorg. Med. Chem. Lett., 2011, 21(9), 2606-2610.
[http://dx.doi.org/10.1016/j.bmcl.2011.01.101] [PMID: 21474310]
[34]
Borges-Argáez, R.; Vela-Catzín, T.; Yam-Puc, A.; Chan-Bacab, M.J.; Moo-Puc, R.E.; Cáceres-Farfán, M. Antiprotozoal and cytotoxic studies on some isocordoin derivatives. Planta Med., 2009, 75(12), 1336-1338.
[http://dx.doi.org/10.1055/s-0029-1185670] [PMID: 19431103]
[35]
Borges-Argáez, R.; Balnbury, L.; Flowers, A.; Giménez-Turba, A.; Ruiz, G.; Waterman, P.G.; Peña-Rodríguez, L.M. Cytotoxic and antiprotozoal activity of flavonoids from Lonchocarpus spp. Phytomedicine, 2007, 14(7-8), 530-533.
[http://dx.doi.org/10.1016/j.phymed.2006.11.027] [PMID: 17291734]
[36]
Grecco, S.S.; Costa-Silva, T.A.; Jerz, G.; de Sousa, F.S.; Alves Conserva, G.A.; Mesquita, J.T.; Galuppo, M.K.; Tempone, A.G.; Neves, B.J.; Andrade, C.H.; Cunha, R.L.O.R.; Uemi, M.; Sartorelli, P.; Lago, J.H.G. Antitrypanosomal activity and evaluation of the mechanism of action of dehydrodieugenol isolated from Nectandra leucantha (Lauraceae) and its methylated derivative against Trypanosoma cruzi. Phytomedicine, 2017, 24, 62-67.
[http://dx.doi.org/10.1016/j.phymed.2016.11.015] [PMID: 28160863]
[37]
Rodrigues, L.C.; Barbosa-Filho, J.M.; de Oliveira, M.R.; do Nascimento Néris, P.L.; Borges, F.V.P.; Mioso, R. Synthesis and antileishmanial activity of natural dehydrodieugenol and its mono- and dimethyl ethers. Chem. Biodivers., 2016, 13(7), 870-874.
[http://dx.doi.org/10.1002/cbdv.201500280] [PMID: 27251851]
[38]
de Oliveira, A.; Mesquita, J.T.; Tempone, A.G.; Lago, J.H.G.; Guimarães, E.F.; Kato, M.J. Leishmanicidal activity of an alkenylphenol from Piper malacophyllum is related to plasma membrane disruption. Exp. Parasitol., 2012, 132(3), 383-387.
[http://dx.doi.org/10.1016/j.exppara.2012.08.019] [PMID: 22981719]
[39]
Varela, M.T.; Dias, R.Z.; Martins, L.F.; Ferreira, D.D.; Tempone, A.G.; Ueno, A.K.; Lago, J.H.G.; Fernandes, J.P.S. Gibbilimbol analogues as antiparasitic agents--Synthesis and biological activity against Trypanosoma cruzi and Leishmania (L.) infantum. Bioorg. Med. Chem. Lett., 2016, 26(4), 1180-1183.
[http://dx.doi.org/10.1016/j.bmcl.2016.01.040] [PMID: 26821820]
[40]
Varela, M.T.; Lima, M.L.; Galuppo, M.K.; Tempone, A.G.; de Oliveira, A.; Lago, J.H.G.; Fernandes, J.P.S. New alkenyl derivative from Piper malacophyllum and analogues: Antiparasitic activity against Trypanosoma cruzi and Leishmania infantum. Chem. Biol. Drug Des., 2017, 90(5), 1007-1011.
[http://dx.doi.org/10.1111/cbdd.12986] [PMID: 28371557]
[41]
Lopes, N.P.; Chicaro, P.; Kato, M.J.; Albuquerque, S.; Yoshida, M. Flavonoids and lignans from Virola surinamensis twigs and their in vitro activity against Trypanosoma cruzi. Planta Med., 1998, 64(7), 667-668.
[http://dx.doi.org/10.1055/s-2006-957548] [PMID: 9810278]
[42]
Martins, R.C.C.; Lago, J.H.G.; Albuquerque, S.; Kato, M.J. Trypanocidal tetrahydrofuran lignans from inflorescences of Piper solmsianum. Phytochemistry, 2003, 64(2), 667-670.
[http://dx.doi.org/10.1016/S0031-9422(03)00356-X] [PMID: 12943793]
[43]
da Rosa, R.; de Moraes, M.H.; Zimmermann, L.A.; Schenkel, E.P.; Steindel, M.; Bernardes, L.S.C. Design and synthesis of a new series of 3,5-disubstituted isoxazoles active against Trypanosoma cruzi and Leishmania amazonensis. Eur. J. Med. Chem., 2017, 128, 25-35.
[http://dx.doi.org/10.1016/j.ejmech.2017.01.029] [PMID: 28152426]
[44]
Itoh, A.; Ikuta, Y.; Baba, Y.; Tanahashi, T.; Nagakura, N. Ipecac alkaloids from Cephaelis acuminata. Phytochemistry, 1999, 52(6), 1169-1176.
[http://dx.doi.org/10.1016/S0031-9422(99)00361-1] [PMID: 10643674]
[45]
Ito, A.; Lee, Y.H.; Chai, H.B.; Gupta, M.P.; Farnsworth, N.R.; Cordell, G.A.; Pezzuto, J.M.; Kinghorn, A.D. 1′,2′,3′,4′-tetradehydrotubulosine, a cytotoxic alkaloid from Pogonopus speciosus. J. Nat. Prod., 1999, 62(9), 1346-1348.
[http://dx.doi.org/10.1021/np990255u] [PMID: 10514334]
[46]
Kölzer, M.; Weitzel, K.; Göringer, H.U.; Thines, E.; Opatz, T. Synthesis of bioactive 2-aza-analogues of ipecac and alangium alkaloids. ChemMedChem, 2010, 5(9), 1456-1464.
[http://dx.doi.org/10.1002/cmdc.201000230] [PMID: 20575140]
[47]
Uchiyama, N.; Kiuchi, F.; Ito, M.; Honda, G.; Takeda, Y.; Khodzhimatov, O.K.; Ashurmetov, O.A. New icetexane and 20 norabietane diterpenes with trypanocidal activity from Dracocephalum komarovi. J. Nat. Prod., 2003, 66(1), 128-131.
[http://dx.doi.org/10.1021/np020308z] [PMID: 12542361]
[48]
Suto, Y.; Nakajima-Shimada, J.; Yamagiwa, N.; Onizuka, Y.; Iwasaki, G. Synthesis and biological evaluation of quinones derived from natural product komaroviquinone as anti-Trypanosoma cruzi agents. Bioorg. Med. Chem. Lett., 2015, 25(15), 2967-2971.
[http://dx.doi.org/10.1016/j.bmcl.2015.05.022] [PMID: 26037321]
[49]
Aponte, J.C.; Vaisberg, A.J.; Rojas, R.; Caviedes, L.; Lewis, W.H.; Lamas, G.; Sarasara, C.; Gilman, R.H.; Hammond, G.B. Isolation of cytotoxic metabolites from targeted peruvian amazonian medicinal plants. J. Nat. Prod., 2008, 71(1), 102-105.
[http://dx.doi.org/10.1021/np070560c] [PMID: 18163590]
[50]
Aponte, J.C.; Verástegui, M.; Málaga, E.; Zimic, M.; Quiliano, M.; Vaisberg, A.J.; Gilman, R.H.; Hammond, G.B. Synthesis, cytotoxicity, and anti-Trypanosoma cruzi activity of new chalcones. J. Med. Chem., 2008, 51(19), 6230-6234.
[http://dx.doi.org/10.1021/jm800812k] [PMID: 18798609]
[51]
Lima, T.C.; Souza, R.J.; Santos, A.D.; Moraes, M.H.; Biondo, N.E.; Barison, A.; Steindel, M.; Biavatti, M.W. Evaluation of leishmanicidal and trypanocidal activities of phenolic compounds from Calea uniflora Less. Nat. Prod. Res., 2016, 30(5), 551-557.
[http://dx.doi.org/10.1080/14786419.2015.1030740] [PMID: 25880257]
[52]
da Silva Mota, J.; Leite, A.C.; Batista, Junior J.M.; Noelí López, S.; Luz Ambrósio, D.; Duó Passerini, G.; Kato, M.J.; da Silva Bolzani, V.; Barretto Cicarelli, R.M.; Furlan, M. In vitro trypanocidal activity of phenolic derivatives from Peperomia obtusifolia. Planta Med., 2009, 75(6), 620-623.
[http://dx.doi.org/10.1055/s-0029-1185364] [PMID: 19241331]
[53]
Mothana, R.A.; Al-Said, M.S.; Al-Musayeib, N.M.; El Gamal, A.A.; Al-Massarani, S.M.; Al-Rehaily, A.J.; Abdulkader, M.; Maes, L. In vitro antiprotozoal activity of abietane diterpenoids isolated from Plectranthus barbatus Andr. Int. J. Mol. Sci., 2014, 15(5), 8360-8371.
[http://dx.doi.org/10.3390/ijms15058360] [PMID: 24823881]
[54]
Nogueira, M.S.; Da Costa, F.B.; Brun, R.; Kaiser, M.; Schmidt, T.J. ent-Pimarane and ent-kaurane diterpenes from Aldama discolor (Asteraceae) and their antiprotozoal activity. Molecules, 2016, 21(9), 1237-1251.
[http://dx.doi.org/10.3390/molecules21091237] [PMID: 27649126]
[55]
da Silva, A.; Maciel, D.; Freitas, V.P.; Conserva, G.A.A.; Alexandre, T.R.; Purisco, S.U.; Tempone, A.G.; Melhem, M.S.C.; Kato, M.J.; Guimarães, E.F.; Lago, J.H.G. Bioactivity-guided isolation of laevicarpin, an antitrypanosomal and anticryptococcal lactam from Piper laevicarpu (Piperaceae). Fitoterapia, 2016, 111, 24-28.
[http://dx.doi.org/10.1016/j.fitote.2016.04.005] [PMID: 27083380]
[56]
Cretton, S.; Breant, L.; Pourrez, L.; Ambuehl, C.; Marcourt, L.; Ebrahimi, S.N.; Hamburger, M.; Perozzo, R.; Karimou, S.; Kaiser, M.; Cuendet, M.; Christen, P. Antitrypanosomal quinoline alkaloids from the roots of Waltheria indica. J. Nat. Prod., 2014, 77(10), 2304-2311.
[http://dx.doi.org/10.1021/np5006554] [PMID: 25314007]
[57]
Koolen, H.H.F.; Pral, E.M.F.; Alfieri, S.C.; Marinho, J.V.N.; Serain, A.F.; Hernández-Tasco, A.J.; Andreazza, N.L.; Salvador, M.J. Antiprotozoal and antioxidant alkaloids from Alternanthera littoralis. Phytochemistry, 2017, 134, 106-113.
[http://dx.doi.org/10.1016/j.phytochem.2016.11.008] [PMID: 27889243]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 27
ISSUE: 13
Year: 2020
Published on: 24 April, 2020
Page: [2133 - 2146]
Pages: 14
DOI: 10.2174/0929867325666180501102450
Price: $65

Article Metrics

PDF: 32
HTML: 2