Copper-Based Bulk and Nano-Catalysts for the One-Pot Propargylamine Synthesis

Author(s): Soheil Sayyahi*, Seyyed Jafar Saghanezhad

Journal Name: Mini-Reviews in Organic Chemistry

Volume 16 , Issue 4 , 2019


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Propargylamines are prominent components strikethrough as precursors for the synthesis of miscellaneous nitrogen-containing compounds, such as allylamines, pyrrolidines, pyrroles and oxazoles or as intermediates in the preparation of a various natural product, biologically active and pharmaceutical compounds. The catalytic coupling of the aldehyde–alkyne–amine (A3 coupling) has shown great utility in the simple and rapid preparation of propargylamines in broadly tolerant and highly tunable reaction conditions. In this respect, various catalytic systems using transition metal catalysts have been developed. Based on a literature survey, Cu catalysts have promoted this field substantially via development of new methods for the synthesis of propargylamines. This review will cover copper-based catalyst system reported for the synthesis of propargylamine derivatives until 2017.

Keywords: Multicomponent Reactions, propargylamine, A3 coupling, copper-based catalyst, bulk catalyst, nanocatalysts.

[1]
Bates, R. Introduction. In: Organic Synthesis Using Transition Metals; John Wiley & Sons, Ltd: New Jersey, 2012; pp. 1-20.
[2]
Wang, D.; Astruc, D. The recent development of efficient earth-abundant transition-metal nanocatalysts. Chem. Soc. Rev., 2017, 46, 816-854.
[3]
Woodward, S. The primary organometallic in copper-catalyzed reactions. In: Copper-Catalyzed Asymmetric Synthesis; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim,, 2014; pp. 3-32.
[4]
Gawande, M.B.; Goswami, A.; Felpin, F.X.; Asefa, T.; Huang, X.; Silva, R.; Zou, X.; Zboril, R.; Varma, R.S. Cu and Cu-based nanoparticles: Synthesis and applications in catalysis. Chem. Rev., 2016, 116, 3722-3811.
[5]
Allen, S.E.; Walvoord, R.R.; Padilla-Salinas, R.; Kozlowski, M.C. Aerobic copper-catalyzed organic reactions. Chem. Rev., 2013, 113, 6234-6458.
[6]
Stanley, L.M.; Sibi, M.P. Enantioselective copper-catalyzed 1,3-dipolar cycloadditions. Chem. Rev., 2008, 108, 2887-2902.
[7]
Chemler, S.R.; Fuller, P.H. Heterocycle synthesis by copper facilitated addition of heteroatoms to alkenes, alkynes and arenes. Chem. Soc. Rev., 2007, 36, 1153-1160.
[8]
Guo, X.X.; Gu, D.W.; Wu, Z.; Zhang, W. Copper-catalyzed C–H functionalization reactions: Efficient synthesis of heterocycles. Chem. Rev., 2015, 115, 1622-1651.
[9]
Zhang, C.; Tang, C.; Jiao, N. Recent advances in copper-catalyzed dehydrogenative functionalization via a Single Electron Transfer (SET) process. Chem. Soc. Rev., 2012, 41, 3464-3484.
[10]
Wang, Y.; Mo, M.; Zhu, K.; Zheng, C.; Zhang, H.; Wang, W.; Shao, Z. Asymmetric synthesis of syn-propargylamines and unsaturated [beta]-amino acids under Bronsted base catalysis. Nat. Commun., 2015, 6, Article ID 8544.
[11]
Zani, L.; Bolm, C. Direct addition of alkynes to imines and related C[double bond,length as m-dash]N electrophiles: A convenient access to propargylamines. Chem.Comm., 2006, 4263-4275.
[12]
Jiang, B.; Xu, M. Highly enantioselective construction of fused pyrrolidine systems that contain a quaternary stereocenter: Concise formal synthesis of (+)-conessine. Angew. Chem. Int. Ed., 2004, 43, 2543-2546.
[13]
Konishi, M.; Ohkuma, H.; Tsuno, T.; Oki, T.; VanDuyne, G.D.; Clardy, J. Crystal and molecular structure of dynemicin A: A novel 1,5-diyn-3-ene antitumor antibiotic. J. Am. Chem. Soc., 1990, 112, 3715-3716.
[14]
Connolly, P.J.; Wetter, S.K.; Beers, K.N.; Hamel, S.C.; Chen, R.H.K.; Wachter, M.P.; Ansell, J.; Singer, M.M.; Steber, M.; Ritchie, D.M.; Argentieri, D.C. N-Hydroxyurea and hydroxamic acid inhibitors of cyclooxygenase and 5-lipoxygenase. Bioorg. Med. Chem. Lett., 1999, 9, 979-984.
[15]
Trost, B.M.; Chung, C.K.; Pinkerton, A.B. Stereocontrolled total synthesis of (+)-streptazolin by a palladium-catalyzed reductive diyne cyclization. Angew. Chem. Int. Ed., 2004, 43, 4327-4329.
[16]
Yu, P.H.; Davis, B.A.; Boulton, A.A. Aliphatic propargylamines: Potent, selective, irreversible monoamine oxidase B inhibitors. J. Med. Chem., 1992, 35, 3705-3713.
[17]
Naoi, M.; Maruyama, W.; Shamoto-Nagai, M.; Yi, H.; Akao, Y.; Tanaka, M. Oxidative stress in mitochondria. Mol. Neurobiol., 2005, 31, 81-93.
[18]
Uhlig, N.; Yoo, W.J.; Zhao, L.; Li, C.J. Catalytic nucleophilic addition of alkynes to imines: The A3 (Aldehyde–Alkyne–Amine) Coupling. In: Modern Alkyne Chemistry; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 2014; pp. 239-268.
[19]
Lo, V.K.Y.; Liu, Y.; Wong, M.K.; Che, C.M. Gold(III) salen complex-catalyzed synthesis of propargylamines via a three-component coupling reaction. Org. Lett., 2006, 8, 1529-1532.
[20]
Datta, K.K.R.; Reddy, B.V.S.; Ariga, K.; Vinu, A. Gold nanoparticles embedded in a mesoporous carbon nitride stabilizer for highly efficient three-component coupling reaction. Angew. Chem. Int. Ed., 2010, 49, 5961-5965.
[21]
Kidwai, M.; Bansal, V.; Kumar, A.; Mozumdar, S. The first Au-nanoparticles catalyzed green synthesis of propargylamines via a three-component coupling reaction of aldehyde, alkyne and amine. Green Chem., 2007, 9, 742-745.
[22]
Liu, L.; Tai, X.; Zhang, N.; Meng, Q.; Xin, C. Supported Au/MIL-53(Al): A reusable green solid catalyst for the three-component coupling reaction of aldehyde, alkyne, and amine. React. Kinet. Mech. Catal., 2016, 119, 335-348.
[23]
Sarode, P.B.; Bahekar, S.P.; Chandak, H.S. Zn(OTf)2-mediated expeditious and solvent-free synthesis of propargylamines via C–H activation of phenylacetylene. Synlett, 2016, 27, 2209-2212.
[24]
Salam, N.; Sinha, A.; Roy, A.S.; Mondal, P.; Jana, N.R.; Islam, S.M. Synthesis of silver-graphene nanocomposite and its catalytic application for the one-pot three-component coupling reaction and one-pot synthesis of 1,4-disubstituted 1,2,3-triazoles in water. RSC Adv, 2014, 4, 10001-10012.
[25]
Zhao, Y.; Zhou, X.; Okamura, T.A.; Chen, M.; Lu, Y.; Sun, W.Y.; Yu, J.Q. Silver supramolecule catalyzed multicomponent reactions under mild conditions. Dalton Trans., 2012, 41, 5889-5896.
[26]
Jeganathan, M.; Dhakshinamoorthy, A.; Pitchumani, K. One-pot synthesis of propargylamines using Ag(I)-exchanged K10 montmorillonite clay as reusable catalyst in water. ACS Sustain. Chem. Eng., 2014, 2, 781-787.
[27]
Kotadia, D.A.; Soni, S.S. Stable mesoporous Fe/TiO2 nanoparticles: A recoverable catalyst for solvent-free synthesis of propargylamine via CH activation. Appl. Catal. A., 2014, 488, 231-238.
[28]
Jung, B.; Park, K.; Song, K.H.; Lee, S. Continuous flow reactions in water for the synthesis of propargylamines via a metal-free decarboxylative coupling reaction. Tetrahedron Lett., 2015, 56, 4697-4700.
[29]
Mandlimath, T.R.; Sathiyanarayanan, K.I. Facile synthesis of ZnAl2O4 nanoparticles: Efficient and reusable porous nano ZnAl2O4 and copper supported on ZnAl2O4 catalysts for one pot green synthesis of propargylamines and imidazo[1,2-a]pyridines by A3 coupling reactions. RSC Adv, 2016, 6, 3117-3125.
[30]
Khabibullina, G.R.; Zaynullina, F.T.; Karamzina, D.S.; Ibragimov, A.G.; Dzhemilev, U.M. Efficient one-pot method for the synthesis of bis-propargylamines by the reaction of terminal acetylenes with 1,5,3-dioxazepanes catalyzed by copper chloride. Tetrahedron, 2017, 73, 2367-2373.
[31]
Palchak, Z.L.; Lussier, D.J.; Pierce, C.J.; Larsen, C.H. Synthesis of tetrasubstituted propargylamines from cyclohexanone by solvent-free copper(II) catalysis. Green Chem., 2015, 17, 1802-1810.
[32]
Xu, Z.; Yu, X.; Feng, X.; Bao, M. Propargylamine synthesis by copper-catalyzed oxidative coupling of alkynes and tertiary amine N-oxides. J. Org. Chem., 2011, 76, 6901-6905.
[33]
Patil, M.K.; Keller, M.; Reddy, B.M.; Pale, P.; Sommer, J. Copper zeolites as green catalysts for multicomponent reactions of aldehydes, terminal alkynes and amines: An efficient and green synthesis of propargylamines. Eur. J. Org. Chem., 2008, 2008, 4440-4445.
[34]
Yu, D.; Zhang, Y. Copper-catalyzed three-component coupling of terminal alkyne, dihalomethane and amine to propargylic amines. Adv. Synth. Catal., 2011, 353, 163-169.
[35]
Gommermann, N.; Knochel, P. Practical highly enantioselective synthesis of propargylamines through a copper-catalyzed one-pot three-component condensation reaction. Chem. Eur. J., 2006, 12, 4380-4392.
[36]
Furukawa, H.; Cordova, K.E.; O’Keeffe, M.; Yaghi, O.M. The chemistry and applications of metal-organic frameworks. Science, 2013, 341.
[37]
Qiu, S.; Xue, M.; Zhu, G. Metal-organic framework membranes: From synthesis to separation application. Chem. Soc. Rev., 2014, 43, 6116-6140.
[38]
Farrusseng, D.; Aguado, S.; Pinel, C. Metal-Organic frameworks: Opportunities for catalysis. Angew. Chem. Int. Ed., 2009, 48, 7502-7513.
[39]
Yoon, M.; Srirambalaji, R.; Kim, K. Homochiral metal-organic frameworks for asymmetric heterogeneous catalysis. Chem. Rev., 2012, 112, 1196-1231.
[40]
Li, P.; Regati, S.; Huang, H.C.; Arman, H.D.; Chen, B.L.; Zhao, J.C.G. A sulfonate-based Cu(I) metal-organic framework as a highly efficient and reusable catalyst for the synthesis of propargylamines under solvent-free conditions. Chin. Chem. Lett., 2015, 26, 6-10.
[41]
Varyani, M.; Khatri, P.K.; Jain, S.l. Amino acid ionic liquid bound copper Schiff base catalyzed highly efficient three component A3-coupling reaction. Catal. Commun., 2016, 77, 113-117.
[42]
Gharibpour, N.; Abdollahi-Alibeik, M.; Moaddeli, A. Super paramagnetic, MCM-41-supported, recyclable copper-complexed dendrimer: A novel nanostructured catalyst for propargylamine synthesis under solvent-free conditions. Chem. Select, 2017, 2, 3137-3146.
[43]
Naeimi, H.; Moradian, M. Encapsulation of copper(I)-Schiff base complex in NaY nanoporosity: An efficient and reusable catalyst in the synthesis of propargylamines via A3-coupling (aldehyde-amine-alkyne) reactions. Appl. Catal. A Gen., 2013, 467, 400-406.
[44]
Machado, B.F.; Serp, P. Graphene‐based materials for catalysis. Catal. Sci. Technol., 2012, 2, 54-75.
[45]
Xiong, X.; Chen, H.; Zhu, R. Highly efficient and scale-up synthesis of propargylamines catalyzed by graphene oxide-supported CuCl2 catalyst under microwave condition. Catal. Commun., 2014, 54, 94-99.
[46]
Kumari, S.; Shekhar, A.; Pathak, D.D. Synthesis and characterization of a Cu(II) Schiff base complex immobilized on graphene oxide and its catalytic application in the green synthesis of propargylamines. RSC Adv, 2016, 6, 15340-15344.
[47]
Karimi, B.; Gholinejad, M.; Khorasani, M. Highly efficient three-component coupling reaction catalyzed by gold nanoparticles supported on periodic mesoporous organosilica with ionic liquid framework. Chem. Comm., 2012, 48, 8961-8963.
[48]
Gholinejad, M.; Karimi, B.; Aminianfar, A.; Khorasani, M. One-pot preparation of propargylamines catalyzed by heterogeneous copper catalyst supported on periodic mesoporous organosilica with ionic liquid framework. ChemPlusChem, 2015, 80, 1573-1579.
[49]
Gholinejad, M.; Saadati, F.; Shaybanizadeh, S.; Pullithadathil, B. Copper nanoparticles supported on starch micro particles as a degradable heterogeneous catalyst for three-component coupling synthesis of propargylamines. RSC Adv, 2016, 6, 4983-4991.
[50]
Sayyahi, S.; Mozafari, S.; Saghanezhad, S.J. Fe3O4 nanoparticle-bonded β-cyclodextrin as an efficient and magnetically retrievable catalyst for the preparation of β-azido alcohols and β-hydroxy thiocyanate. Res. Chem. Intermed., 2016, 42, 511-518.
[51]
Amini, A.; Sayyahi, S.; Saghanezhad, S.J.; Taheri, N. Integration of aqueous biphasic with magnetically recyclable systems: Polyethylene glycol-grafted Fe3O4 nanoparticles catalyzed phenacyl synthesis in water. Catal. Commun., 2016, 78, 11-16.
[52]
Olia, F.K.; Sayyahi, S.; Taheri, N. An Fe3O4 nanoparticle-supported Mn(II)-azo Schiff complex acts as a heterogeneous catalyst in alcoholysis of epoxides. C. R. Chim., 2017, 20, 370-376.
[53]
Shouli, A.; Menati, S.; Sayyahi, S. Copper(II) chelate-bonded magnetite nanoparticles: A new magnetically retrievable catalyst for the synthesis of propargylamines. C. R. Chim., 2017, 20, 765-772.
[54]
Wu, L.; Mendoza-Garcia, A.; Li, Q.; Sun, S. Organic phase syntheses of magnetic nanoparticles and their applications. Chem. Rev., 2016, 116, 10473-10512.
[55]
Baig, R.B.N.; Varma, R.S. Magnetically retrievable catalysts for organic synthesis. Chem. Comm., 2013, 49, 752-770.
[56]
Nemati, F.; Elhampour, A.; Farrokhi, H.; Bagheri Natanzi, M. Cu2O/nano-CuFe2O4: A novel and recyclable magnetic catalyst for three-component coupling of carbonyl compounds–alkynes–amines under solvent-free condition. Catal. Commun., 2015, 66, 15-20.
[57]
Rezaei, M.; Azizi, K.; Amani, K. Copper–birhodanine complex immobilized on Fe3O4 nanoparticles: DFT studies and heterogeneous catalytic applications in the synthesis of propargylamines in aqueous medium. Appl. Organometal. Chem., 2017, e4120, 1-9.
[58]
Reddy, B.R.P.; Reddy, P.V.G.; Shankar, M.V.; Reddy, B.N. CuI supported on protonated trititanate nanotubes: A reusable catalyst for the one‐pot synthesis of propargylamines via A3‐Coupling. Asian J. Org. Chem., 2017, 6, 712-719.
[59]
Borah, B.J.; Borah, S.J.; Saikia, L.; Dutta, D.K. Efficient three-component coupling reactions catalyzed by Cu0-nanoparticles stabilized on modified montmorillonite. Catal. Sci. Technol., 2014, 4, 1047-1054.
[60]
Cheng, S.; Shang, N.; Feng, C.; Gao, S.; Wang, C.; Wang, Z. Efficient multicomponent synthesis of propargylamines catalyzed by copper nanoparticles supported on metal-organic framework derived nanoporous carbon. Catal. Commun., 2017, 89, 91-95.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 4
Year: 2019
Published on: 19 March, 2019
Page: [361 - 368]
Pages: 8
DOI: 10.2174/1570193X15666180430151658
Price: $65

Article Metrics

PDF: 47
HTML: 2