Flavonoids and Platelet-Derived Thrombotic Disorders

Author(s): Jose J. Lopez, Mohammed El Haouari, Isaac Jardin*, Nieves Alonso, Sergio Regodon, Raquel Diez-Bello, Pedro C. Redondo, Juan A. Rosado.

Journal Name: Current Medicinal Chemistry

Volume 26 , Issue 39 , 2019

  Journal Home
Translate in Chinese
Become EABM
Become Reviewer

Abstract:

Thrombotic disorders are characterized by an increase in the probability of the formation of unnecessary thrombi that might be due to the activation of the coagulation cascade or the circulating platelets. Platelets or thrombocytes play an essential role in hemostasis but abnormal platelet function leads to the development of a number of cardiovascular complications, including thrombotic disorders. Under pathological conditions, platelets are associated with the development of different thrombotic disorders, including atherosclerosis, arterial thrombosis and stroke, deep venous thrombosis and pulmonary embolism; therefore, platelets are the target of a number of anti-thrombotic strategies. Flavonoids, a large group of polyphenols ubiquitously expressed in fruits and vegetables that have attracted considerable attention because of their benefits in human health, including the reduction of the risk of cardiovascular disease. Flavonoids have been reported to reduce platelet activity by attenuating agonist-induced GPIIb/IIIa receptor activation, mobilization of intracellular free Ca2+, granule exocytosis, as well as activation of different signaling molecules such as mitogen- activated protein kinases or phospholipases. This review summarizes the current studies concerning the modulation of platelet activation by flavonoids, giving especial attention to those events associated to thrombotic disorders.

Keywords: Platelets, thrombotic disorders, flavonoids, cardiovascular disease, GPIIb/IIIa receptor, anti-thrombotic strategies.

[1]
Sauls, D.L.; Lockhart, E.; Warren, M.E.; Lenkowski, A.; Wilhelm, S.E.; Hoffman, M. Modification of fibrinogen by homocysteine thiolactone increases resistance to fibrinolysis: a potential mechanism of the thrombotic tendency in hyperhomocysteinemia. Biochemistry, 2006, 45(8), 2480-2487.
[http://dx.doi.org/10.1021/bi052076j] [PMID: 16489740]
[2]
Schafer, A.I.; Levine, M.N.; Konkle, B.A.; Kearon, C. Thrombotic disorders: diagnosis and treatment. Hematology (Am. Soc. Hematol. Educ. Program), 2003, 520-539.
[http://dx.doi.org/10.1182/asheducation-2003.1.520] [PMID: 14633797]
[3]
Saavedra, F.R.; Redondo, P.C.; Hernández-Cruz, J.M.; Salido, G.M.; Pariente, J.A.; Rosado, J.A. Store-operated Ca(2+) entry and tyrosine kinase pp60(src) hyperactivity are modulated by hyperglycemia in platelets from patients with non insulin-dependent diabetes mellitus. Arch. Biochem. Biophys., 2004, 432(2), 261-268.
[http://dx.doi.org/10.1016/j.abb.2004.09.034] [PMID: 15542065]
[4]
El Haouari, M.; Rosado, J.A. Platelet signalling abnormalities in patients with type 2 diabetes mellitus: a review. Blood Cells Mol. Dis., 2008, 41(1), 119-123.
[http://dx.doi.org/10.1016/j.bcmd.2008.02.010] [PMID: 18387322]
[5]
Chang, Y.; Bluteau, D.; Debili, N.; Vainchenker, W. From hematopoietic stem cells to platelets. J. Thromb. Haemost., 2007, 5(Suppl. 1), 318-327.
[http://dx.doi.org/10.1111/j.1538-7836.2007.02472.x] [PMID: 17635743]
[6]
Rosado, J.A.; Sage, S.O. Platelets in thrombotic and non-thrombotic disorders. In: Pathophysiology, pharmacology and therapeutics; Gresele, P.; Page, C.P.; Fuster, V.; Vermylen, J., Eds.; Cambridge University Press: Cambridge, 2000; pp. 260-271.
[7]
Hartwig, J.H. Mechanisms of actin rearrangements mediating platelet activation. J. Cell Biol., 1992, 118(6), 1421-1442.
[http://dx.doi.org/10.1083/jcb.118.6.1421] [PMID: 1325975]
[8]
Rosado, J.A.; Jenner, S.; Sage, S.O. A role for the actin cytoskeleton in the initiation and maintenance of store-mediated calcium entry in human platelets. Evidence for conformational coupling. J. Biol. Chem., 2000, 275(11), 7527-7533.
[http://dx.doi.org/10.1074/jbc.275.11.7527] [PMID: 10713057]
[9]
Rosado, J.A.; López, J.J.; Harper, A.G.; Harper, M.T.; Redondo, P.C.; Pariente, J.A.; Sage, S.O.; Salido, G.M. Two pathways for store-mediated calcium entry differentially dependent on the actin cytoskeleton in human platelets. J. Biol. Chem., 2004, 279(28), 29231-29235.
[http://dx.doi.org/10.1074/jbc.M403509200] [PMID: 15136566]
[10]
Escolar, G.; White, J.G. The platelet open canalicular system: a final common pathway. Blood Cells, 1991, 17(3), 467-485.
[PMID: 1760557]
[11]
Salido, G.M.; Jardín, I.; Rosado, J.A. The TRPC ion channels: association with Orai1 and STIM1 proteins and participation in capacitative and non-capacitative calcium entry. Adv. Exp. Med. Biol., 2011, 704, 413-433.
[http://dx.doi.org/10.1007/978-94-007-0265-3_23] [PMID: 21290309]
[12]
Ebbeling, L.; Robertson, C.; McNicol, A.; Gerrard, J.M. Rapid ultrastructural changes in the dense tubular system following platelet activation. Blood, 1992, 80(3), 718-723.
[http://dx.doi.org/10.1182/blood.V80.3.718.718] [PMID: 1322202]
[13]
King, S.M.; Reed, G.L. Development of platelet secretory granules. Semin. Cell Dev. Biol., 2002, 13(4), 293-302.
[http://dx.doi.org/10.1016/S1084952102000599] [PMID: 12243729]
[14]
Rolf, M.G.; Brearley, C.A.; Mahaut-Smith, M.P. Platelet shape change evoked by selective activation of P2X1 purinoceptors with alpha,beta-methylene ATP. Thromb. Haemost., 2001, 85(2), 303-308.
[http://dx.doi.org/10.1055/s-0037-1615684] [PMID: 11246552]
[15]
Xu, X.R.; Carrim, N.; Neves, M.A.; McKeown, T.; Stratton, T.W.; Coelho, R.M.; Lei, X.; Chen, P.; Xu, J.; Dai, X.; Li, B.X.; Ni, H. Platelets and platelet adhesion molecules: novel mechanisms of thrombosis and anti-thrombotic therapies. Thromb. J., 2016, 14(Suppl. 1), 29.
[http://dx.doi.org/10.1186/s12959-016-0100-6] [PMID: 27766055]
[16]
Nieswandt, B.; Pleines, I.; Bender, M. Platelet adhesion and activation mechanisms in arterial thrombosis and ischaemic stroke. J. Thromb. Haemost., 2011, 9(Suppl. 1), 92-104.
[http://dx.doi.org/10.1111/j.1538-7836.2011.04361.x] [PMID: 21781245]
[17]
Golebiewska, E.M.; Poole, A.W. Platelet secretion: From haemostasis to wound healing and beyond. Blood Rev., 2015, 29(3), 153-162.
[http://dx.doi.org/10.1016/j.blre.2014.10.003] [PMID: 25468720]
[18]
King, S.M.; McNamee, R.A.; Houng, A.K.; Patel, R.; Brands, M.; Reed, G.L. Platelet dense-granule secretion plays a critical role in thrombosis and subsequent vascular remodeling in atherosclerotic mice. Circulation, 2009, 120(9), 785-791.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.108.845461] [PMID: 19687360]
[19]
Harper, A.G.; Mason, M.J.; Sage, S.O. A key role for dense granule secretion in potentiation of the Ca2+ signal arising from store-operated calcium entry in human platelets. Cell Calcium, 2009, 45(5), 413-420.
[http://dx.doi.org/10.1016/j.ceca.2009.02.003] [PMID: 19285721]
[20]
Lopez, E.; Bermejo, N.; Berna-Erro, A.; Alonso, N.; Salido, G.M.; Redondo, P.C.; Rosado, J.A. Relationship between calcium mobilization and platelet α- and δ-granule secretion. A role for TRPC6 in thrombin-evoked δ-granule exocytosis. Arch. Biochem. Biophys., 2015, 585, 75-81.
[http://dx.doi.org/10.1016/j.abb.2015.09.012] [PMID: 26386308]
[21]
Jackson, S.P. The growing complexity of platelet aggregation. Blood, 2007, 109(12), 5087-5095.
[http://dx.doi.org/10.1182/blood-2006-12-027698] [PMID: 17311994]
[22]
Lindemann, S.; Krämer, B.; Seizer, P.; Gawaz, M. Platelets, inflammation and atherosclerosis. J. Thromb. Haemost., 2007, 5(Suppl. 1), 203-211.
[http://dx.doi.org/10.1111/j.1538-7836.2007.02517.x] [PMID: 17635728]
[23]
Massberg, S.; Brand, K.; Grüner, S.; Page, S.; Müller, E.; Müller, I.; Bergmeier, W.; Richter, T.; Lorenz, M.; Konrad, I.; Nieswandt, B.; Gawaz, M. A critical role of platelet adhesion in the initiation of atherosclerotic lesion formation. J. Exp. Med., 2002, 196(7), 887-896.
[http://dx.doi.org/10.1084/jem.20012044] [PMID: 12370251]
[24]
Patzelt, J.; Verschoor, A.; Langer, H.F. Platelets and the complement cascade in atherosclerosis. Front. Physiol., 2015, 6, 49.
[http://dx.doi.org/10.3389/fphys.2015.00049] [PMID: 25784879]
[25]
von Hundelshausen, P.; Schmitt, M.M. Platelets and their chemokines in atherosclerosis-clinical applications. Front. Physiol., 2014, 5, 294.
[http://dx.doi.org/10.3389/fphys.2014.00294] [PMID: 25152735]
[26]
Lievens, D.; Eijgelaar, W.J.; Biessen, E.A.; Daemen, M.J.; Lutgens, E. The multi-functionality of CD40L and its receptor CD40 in atherosclerosis. Thromb. Haemost., 2009, 102(2), 206-214.
[http://dx.doi.org/10.1160/TH09-01-0029] [PMID: 19652870]
[27]
Rautou, P.E.; Vion, A.C.; Amabile, N.; Chironi, G.; Simon, A.; Tedgui, A.; Boulanger, C.M. Microparticles, vascular function, and atherothrombosis. Circ. Res., 2011, 109(5), 593-606.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.233163] [PMID: 21852557]
[28]
Morel, O.; Jesel, L.; Freyssinet, J.M.; Toti, F. Cellular mechanisms underlying the formation of circulating microparticles. Arterioscler. Thromb. Vasc. Biol., 2011, 31(1), 15-26.
[http://dx.doi.org/10.1161/ATVBAHA.109.200956] [PMID: 21160064]
[29]
Coleman, M.L.; Sahai, E.A.; Yeo, M.; Bosch, M.; Dewar, A.; Olson, M.F. Membrane blebbing during apoptosis results from caspase-mediated activation of ROCK I. Nat. Cell Biol., 2001, 3(4), 339-345.
[http://dx.doi.org/10.1038/35070009] [PMID: 11283606]
[30]
Sebbagh, M.; Renvoizé, C.; Hamelin, J.; Riché, N.; Bertoglio, J.; Bréard, J. Caspase-3-mediated cleavage of ROCK I induces MLC phosphorylation and apoptotic membrane blebbing. Nat. Cell Biol., 2001, 3(4), 346-352.
[http://dx.doi.org/10.1038/35070019] [PMID: 11283607]
[31]
Dean, W.L.; Lee, M.J.; Cummins, T.D.; Schultz, D.J.; Powell, D.W. Proteomic and functional characterisation of platelet microparticle size classes. Thromb. Haemost., 2009, 102(4), 711-718.
[http://dx.doi.org/10.1160/TH09-04-243] [PMID: 19806257]
[32]
Boulanger, C.M.; Amabile, N.; Tedgui, A. Circulating microparticles: a potential prognostic marker for atherosclerotic vascular disease. Hypertension, 2006, 48(2), 180-186.
[http://dx.doi.org/10.1161/01.HYP.0000231507.00962.b5] [PMID: 16801490]
[33]
Mause, S.F.; von Hundelshausen, P.; Zernecke, A.; Koenen, R.R.; Weber, C. Platelet microparticles: a transcellular delivery system for RANTES promoting monocyte recruitment on endothelium. Arterioscler. Thromb. Vasc. Biol., 2005, 25(7), 1512-1518.
[http://dx.doi.org/10.1161/01.ATV.0000170133.43608.37] [PMID: 15890969]
[34]
Jickling, G.C.; Liu, D.; Ander, B.P.; Stamova, B.; Zhan, X.; Sharp, F.R. Targeting neutrophils in ischemic stroke: translational insights from experimental studies. J. Cereb. Blood Flow Metab., 2015, 35(6), 888-901.
[http://dx.doi.org/10.1038/jcbfm.2015.45] [PMID: 25806703]
[35]
Voetsch, B.; Loscalzo, J. Genetic determinants of arterial thrombosis. Arterioscler. Thromb. Vasc. Biol., 2004, 24(2), 216-229.
[http://dx.doi.org/10.1161/01.ATV.0000107402.79771.fc] [PMID: 14615395]
[36]
Nylander, S.; Schulz, R. Effects of P2Y12 receptor antagonists beyond platelet inhibition--comparison of ticagrelor with thienopyridines. Br. J. Pharmacol., 2016, 173(7), 1163-1178.
[http://dx.doi.org/10.1111/bph.13429] [PMID: 26758983]
[37]
Duran, X.; Sánchez, S.; Vilahur, G.; Badimon, L. Protective effects of triflusal on secondary thrombus growth and vascular cyclooxygenase-2. J. Thromb. Haemost., 2008, 6(8), 1385-1392.
[http://dx.doi.org/10.1111/j.1538-7836.2008.03036.x] [PMID: 18503633]
[38]
van Lummel, M.; Pennings, M.T.; Derksen, R.H.; Urbanus, R.T.; Lutters, B.C.; Kaldenhoven, N.; de Groot, P.G. The binding site in beta2-glycoprotein I for ApoER2′ on platelets is located in domain V. J. Biol. Chem., 2005, 280(44), 36729-36736.
[http://dx.doi.org/10.1074/jbc.M504172200] [PMID: 16091370]
[39]
Shi, T.; Giannakopoulos, B.; Yan, X.; Yu, P.; Berndt, M.C.; Andrews, R.K.; Rivera, J.; Iverson, G.M.; Cockerill, K.A.; Linnik, M.D.; Krilis, S.A. Anti-beta2-glycoprotein I antibodies in complex with beta2-glycoprotein I can activate platelets in a dysregulated manner via glycoprotein Ib-IX-V. Arthritis Rheum., 2006, 54(8), 2558-2567.
[http://dx.doi.org/10.1002/art.21968] [PMID: 16868978]
[40]
Urbanus, R.T.; Pennings, M.T.; Derksen, R.H.; de Groot, P.G. Platelet activation by dimeric beta2-glycoprotein I requires signaling via both glycoprotein Ibalpha and apolipoprotein E receptor 2′. J. Thromb. Haemost., 2008, 6(8), 1405-1412.
[http://dx.doi.org/10.1111/j.1538-7836.2008.03021.x] [PMID: 18485085]
[41]
Mehrbod, M.; Trisno, S.; Mofrad, M.R. On the activation of integrin αIIbβ3: outside-in and inside-out pathways. Biophys. J., 2013, 105(6), 1304-1315.
[http://dx.doi.org/10.1016/j.bpj.2013.07.055] [PMID: 24047981]
[42]
Xu, Z.; Chen, X.; Zhi, H.; Gao, J.; Bialkowska, K.; Byzova, T.V.; Pluskota, E.; White, G.C., II; Liu, J.; Plow, E.F.; Ma, Y.Q. Direct interaction of kindlin-3 with integrin αIIbβ3 in platelets is required for supporting arterial thrombosis in mice. Arterioscler. Thromb. Vasc. Biol., 2014, 34(9), 1961-1967.
[http://dx.doi.org/10.1161/ATVBAHA.114.303851] [PMID: 24969775]
[43]
Induruwa, I.; Jung, S.M.; Warburton, E.A. Beyond antiplatelets: The role of glycoprotein VI in ischemic stroke. Int. J. Stroke, 2016, 11(6), 618-625.
[http://dx.doi.org/10.1177/1747493016654532] [PMID: 27312676]
[44]
Aleman, M.M.; Walton, B.L.; Byrnes, J.R.; Wolberg, A.S. Fibrinogen and red blood cells in venous thrombosis. Thromb. Res., 2014, 133(Suppl. 1), S38-S40.
[http://dx.doi.org/10.1016/j.thromres.2014.03.017] [PMID: 24759140]
[45]
Walton, B.L.; Byrnes, J.R.; Wolberg, A.S. Fibrinogen, red blood cells, and factor XIII in venous thrombosis. J. Thromb. Haemost., 2015, 13(Suppl. 1), S208-S215.
[http://dx.doi.org/10.1111/jth.12918] [PMID: 26149026]
[46]
Payne, H.; Ponomaryov, T.; Watson, S.P.; Brill, A. Mice with a deficiency in CLEC-2 are protected against deep vein thrombosis. Blood, 2017, 129(14), 2013-2020.
[http://dx.doi.org/10.1182/blood-2016-09-742999] [PMID: 28104688]
[47]
Page, M.J.; Lourenço, A.L.; David, T.; LeBeau, A.M.; Cattaruzza, F.; Castro, H.C.; VanBrocklin, H.F.; Coughlin, S.R.; Craik, C.S. Non-invasive imaging and cellular tracking of pulmonary emboli by near-infrared fluorescence and positron-emission tomography. Nat. Commun., 2015, 6, 8448.
[http://dx.doi.org/10.1038/ncomms9448] [PMID: 26423607]
[48]
Heidt, T.; Ehrismann, S.; Hövener, J.B.; Neudorfer, I.; Hilgendorf, I.; Reisert, M.; Hagemeyer, C.E.; Zirlik, A.; Reinöhl, J.; Bode, C.; Peter, K.; von Elverfeldt, D.; von Zur Muhlen, C. Molecular imaging of activated platelets allows the detection of pulmonary embolism with magnetic resonance imaging. Sci. Rep., 2016, 6, 25044.
[http://dx.doi.org/10.1038/srep25044] [PMID: 27138487]
[49]
Lim, B.; Yao, Y.; Huang, A.L.; Yap, M.L.; Flierl, U.; Palasubramaniam, J.; Zaldivia, M.T.K.; Wang, X.; Peter, K. A unique recombinant fluoroprobe targeting activated platelets allows in vivo detection of arterial thrombosis and pulmonary embolism using a novel three-dimensional fluorescence emission computed tomography (FLECT) technology. Theranostics, 2017, 7(5), 1047-1061.
[http://dx.doi.org/10.7150/thno.18099] [PMID: 28435447]
[50]
Sheu, J.R.; Hsiao, G.; Chou, P.H.; Shen, M.Y.; Chou, D.S. Mechanisms involved in the antiplatelet activity of rutin, a glycoside of the flavonol quercetin, in human platelets. J. Agric. Food Chem., 2004, 52(14), 4414-4418.
[http://dx.doi.org/10.1021/jf040059f] [PMID: 15237945]
[51]
Hansson, G.K. Inflammation, atherosclerosis, and coronary artery disease. N. Engl. J. Med., 2005, 352(16), 1685-1695.
[http://dx.doi.org/10.1056/NEJMra043430] [PMID: 15843671]
[52]
Barrett, N.E.; Holbrook, L.; Jones, S.; Kaiser, W.J.; Moraes, L.A.; Rana, R.; Sage, T.; Stanley, R.G.; Tucker, K.L.; Wright, B.; Gibbins, J.M. Future innovations in anti-platelet therapies. Br. J. Pharmacol., 2008, 154(5), 918-939.
[http://dx.doi.org/10.1038/bjp.2008.151] [PMID: 18587441]
[53]
Badimón, L.; Vilahur, G.; Padró, T. Lipoproteins, platelets and atherothrombosis. Rev. Esp. Cardiol., 2009, 62(10), 1161-1178.
[PMID: 19793522]
[54]
Michelson, A.D. Antiplatelet therapies for the treatment of cardiovascular disease. Nat. Rev. Drug Discov., 2010, 9(2), 154-169.
[http://dx.doi.org/10.1038/nrd2957] [PMID: 20118963]
[55]
Bagatini, M.D.; Martins, C.C.; Battisti, V.; Gasparetto, D.; da Rosa, C.S.; Spanevello, R.M.; Ahmed, M.; Schmatz, R.; Schetinger, M.R.; Morsch, V.M. Oxidative stress versus antioxidant defenses in patients with acute myocardial infarction. Heart Vessels, 2011, 26(1), 55-63.
[http://dx.doi.org/10.1007/s00380-010-0029-9] [PMID: 20978900]
[56]
Borst, O.; Walker, B.; Münzer, P.; Russo, A.; Schmid, E.; Faggio, C.; Bigalke, B.; Laufer, S.; Gawaz, M.; Lang, F. Skepinone-L, a novel potent and highly selective inhibitor of p38 MAP kinase, effectively impairs platelet activation and thrombus formation. Cell. Physiol. Biochem., 2013, 31(6), 914-924.
[http://dx.doi.org/10.1159/000350110] [PMID: 23817201]
[57]
Bhatt, D.L.; Topol, E.J. Scientific and therapeutic advances in antiplatelet therapy. Nat. Rev. Drug Discov., 2003, 2(1), 15-28.
[http://dx.doi.org/10.1038/nrd985] [PMID: 12509756]
[58]
Mackman, N. Triggers, targets and treatments for thrombosis. Nature, 2008, 451(7181), 914-918.
[http://dx.doi.org/10.1038/nature06797] [PMID: 18288180]
[59]
Connolly, B.J.; Pearce, L.A.; Kurth, T.; Kase, C.S.; Hart, R.G. Aspirin therapy and risk of subdural hematoma: meta-analysis of randomized clinical trials. J. Stroke Cerebrovasc. Dis., 2013, 22(4), 444-448.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2013.01.007] [PMID: 23422345]
[60]
Kawaii, S.; Tomono, Y.; Katase, E.; Ogawa, K.; Yano, M. Quantitation of flavonoid constituents in citrus fruits. J. Agric. Food Chem., 1999, 47(9), 3565-3571.
[http://dx.doi.org/10.1021/jf990153+] [PMID: 10552686]
[61]
Xu, X.; Wang, H.J.; Murphy, P.A.; Cook, L.; Hendrich, S. Daidzein is a more bioavailable soymilk isoflavone than is genistein in adult women. J. Nutr., 1994, 124(6), 825-832.
[http://dx.doi.org/10.1093/jn/124.6.825] [PMID: 8207540]
[62]
Tsao, R.; Yang, R.; Young, J.C.; Zhu, H. Polyphenolic profiles in eight apple cultivars using high-performance liquid chromatography (HPLC). J. Agric. Food Chem., 2003, 51(21), 6347-6353.
[http://dx.doi.org/10.1021/jf0346298] [PMID: 14518966]
[63]
Ben Amor, N.; Bouaziz, A.; Romera-Castillo, C.; Salido, S.; Linares-Palomino, P.J.; Bartegi, A.; Salido, G.M.; Rosado, J.A. Characterization of the intracellular mechanisms involved in the antiaggregant properties of cinnamtannin B-1 from bay wood in human platelets. J. Med. Chem., 2007, 50(16), 3937-3944.
[http://dx.doi.org/10.1021/jm070508d] [PMID: 17602466]
[64]
Bouaziz, A.; Romera-Castillo, C.; Salido, S.; Linares-Palomino, P.J.; Altarejos, J.; Bartegi, A.; Rosado, J.A.; Salido, G.M. Cinnamtannin B-1 from bay wood exhibits antiapoptotic effects in human platelets. Apoptosis, 2007, 12(3), 489-498.
[http://dx.doi.org/10.1007/s10495-006-0014-z] [PMID: 17195094]
[65]
Bouaziz, A.; Salido, S.; Linares-Palomino, P.J.; Sanchez, A.; Altarejos, J.; Bartegi, A.; Salido, G.M.; Rosado, J.A. Cinnamtannin B-1 from bay wood reduces abnormal intracellular Ca2+ homeostasis and platelet hyperaggregability in type 2 diabetes mellitus patients. Arch. Biochem. Biophys., 2007, 457(2), 235-242.
[http://dx.doi.org/10.1016/j.abb.2006.10.020] [PMID: 17118329]
[66]
López, J.J.; Jardín, I.; Salido, G.M.; Rosado, J.A. Cinnamtannin B-1 as an antioxidant and platelet aggregation inhibitor. Life Sci., 2008, 82(19-20), 977-982.
[http://dx.doi.org/10.1016/j.lfs.2008.03.009] [PMID: 18433795]
[67]
Zhang, Y.; Shi, H.; Wang, W.; Ke, Z.; Xu, P.; Zhong, Z.; Li, X.; Wang, S. Antithrombotic effect of grape seed proanthocyanidins extract in a rat model of deep vein thrombosis. J. Vasc. Surg., 2011, 53(3), 743-753.
[http://dx.doi.org/10.1016/j.jvs.2010.09.017] [PMID: 21095090]
[68]
Tsao, R. Chemistry and biochemistry of dietary polyphenols. Nutrients, 2010, 2(12), 1231-1246.
[http://dx.doi.org/10.3390/nu2121231] [PMID: 22254006]
[69]
Wright, B.; Spencer, J.P.; Lovegrove, J.A.; Gibbins, J.M. Insights into dietary flavonoids as molecular templates for the design of anti-platelet drugs. Cardiovasc. Res., 2013, 97(1), 13-22.
[http://dx.doi.org/10.1093/cvr/cvs304] [PMID: 23024269]
[70]
Falcone Ferreyra, M.L.; Rius, S.P.; Casati, P. Flavonoids: biosynthesis, biological functions, and biotechnological applications. Front. Plant Sci., 2012, 3, 222.
[http://dx.doi.org/10.3389/fpls.2012.00222] [PMID: 23060891]
[71]
Bravo, L. Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutr. Rev., 1998, 56(11), 317-333.
[http://dx.doi.org/10.1111/j.1753-4887.1998.tb01670.x] [PMID: 9838798]
[72]
Kozłowska, A.; Szostak-Wegierek, D. Flavonoids--food sources and health benefits. Rocz. Panstw. Zakl. Hig., 2014, 65(2), 79-85.
[PMID: 25272572]
[73]
Ross, J.A.; Kasum, C.M. Dietary flavonoids: bioavailability, metabolic effects, and safety. Annu. Rev. Nutr., 2002, 22, 19-34.
[http://dx.doi.org/10.1146/annurev.nutr.22.111401.144957] [PMID: 12055336]
[74]
Perez-Vizcaino, F.; Duarte, J. Flavonols and cardiovascular disease. Mol. Aspects Med., 2010, 31(6), 478-494.
[http://dx.doi.org/10.1016/j.mam.2010.09.002] [PMID: 20837053]
[75]
Beretz, A.; Cazenave, J.P.; Anton, R. Inhibition of aggregation and secretion of human platelets by quercetin and other flavonoids: structure-activity relationships. Agents Actions, 1982, 12(3), 382-387.
[http://dx.doi.org/10.1007/BF01965408] [PMID: 6182778]
[76]
Landolfi, R.; Mower, R.L.; Steiner, M. Modification of platelet function and arachidonic acid metabolism by bioflavonoids. Structure-activity relations. Biochem. Pharmacol., 1984, 33(9), 1525-1530.
[http://dx.doi.org/10.1016/0006-2952(84)90423-4] [PMID: 6329230]
[77]
Hubbard, G.P.; Wolffram, S.; de Vos, R.; Bovy, A.; Gibbins, J.M.; Lovegrove, J.A. Ingestion of onion soup high in quercetin inhibits platelet aggregation and essential components of the collagen-stimulated platelet activation pathway in man: a pilot study. Br. J. Nutr., 2006, 96(3), 482-488.
[PMID: 16925853]
[78]
Guerrero, J.A.; Lozano, M.L.; Castillo, J.; Benavente-García, O.; Vicente, V.; Rivera, J. Flavonoids inhibit platelet function through binding to the thromboxane A2 receptor. J. Thromb. Haemost., 2005, 3(2), 369-376.
[http://dx.doi.org/10.1111/j.1538-7836.2004.01099.x] [PMID: 15670046]
[79]
Vaiyapuri, S.; Ali, M.S.; Moraes, L.A.; Sage, T.; Lewis, K.R.; Jones, C.I.; Gibbins, J.M. Tangeretin regulates platelet function through inhibition of phosphoinositide 3-kinase and cyclic nucleotide signaling. Arterioscler. Thromb. Vasc. Biol., 2013, 33(12), 2740-2749.
[http://dx.doi.org/10.1161/ATVBAHA.113.301988] [PMID: 24135020]
[80]
Choi, J.H.; Kim, D.W.; Park, S.E.; Lee, H.J.; Kim, K.M.; Kim, K.J.; Kim, M.K.; Kim, S.J.; Kim, S. Anti-thrombotic effect of rutin isolated from Dendropanax morbifera Leveille. J. Biosci. Bioeng., 2015, 120(2), 181-186.
[http://dx.doi.org/10.1016/j.jbiosc.2014.12.012] [PMID: 25777266]
[81]
Liang, M.L.; Da, X.W.; He, A.D.; Yao, G.Q.; Xie, W.; Liu, G.; Xiang, J.Z.; Ming, Z.Y. Pentamethylquercetin (PMQ) reduces thrombus formation by inhibiting platelet function. Sci. Rep., 2015, 5, 11142.
[http://dx.doi.org/10.1038/srep11142] [PMID: 26059557]
[82]
El Haouari, M.; Rosado, J.A. Modulation of platelet function and signaling by flavonoids. Mini Rev. Med. Chem., 2011, 11(2), 131-142.
[http://dx.doi.org/10.2174/138955711794519537] [PMID: 21222578]
[83]
Santhakumar, A.B.; Bulmer, A.C.; Singh, I. A review of the mechanisms and effectiveness of dietary polyphenols in reducing oxidative stress and thrombotic risk. J. Hum. Nutr. Diet., 2014, 27(1), 1-21.
[http://dx.doi.org/10.1111/jhn.12177] [PMID: 24205990]
[84]
Pignatelli, P.; Di Santo, S.; Buchetti, B.; Sanguigni, V.; Brunelli, A.; Violi, F. Polyphenols enhance platelet nitric oxide by inhibiting protein kinase C-dependent NADPH oxidase activation: effect on platelet recruitment. FASEB J., 2006, 20(8), 1082-1089.
[http://dx.doi.org/10.1096/fj.05-5269com] [PMID: 16770007]
[85]
Pignatelli, P.; Pulcinelli, F.M.; Celestini, A.; Lenti, L.; Ghiselli, A.; Gazzaniga, P.P.; Violi, F. The flavonoids quercetin and catechin synergistically inhibit platelet function by antagonizing the intracellular production of hydrogen peroxide. Am. J. Clin. Nutr., 2000, 72(5), 1150-1155.
[http://dx.doi.org/10.1093/ajcn/72.5.1150] [PMID: 11063442]
[86]
Wang, S.B.; Jang, J.Y.; Chae, Y.H.; Min, J.H.; Baek, J.Y.; Kim, M.; Park, Y.; Hwang, G.S.; Ryu, J.S.; Chang, T.S. Kaempferol suppresses collagen-induced platelet activation by inhibiting NADPH oxidase and protecting SHP-2 from oxidative inactivation. Free Radic. Biol. Med., 2015, 83, 41-53.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.01.018] [PMID: 25645952]
[87]
Oh, W.J.; Endale, M.; Park, S.C.; Cho, J.Y.; Rhee, M.H. Dual roles of quercetin in platelets: phosphoinositide-3-kinase and MAP kinases inhibition, and cAMP-dependent vasodilator-stimulated phosphoprotein stimulation. Evid. Based Complement. Alternat. Med., 2012, 2012485262
[http://dx.doi.org/10.1155/2012/485262] [PMID: 23304202]
[88]
Mosawy, S.; Jackson, D.E.; Woodman, O.L.; Linden, M.D. The flavonols quercetin and 3′,4′-dihydroxyflavonol reduce platelet function and delay thrombus formation in a model of type 1 diabetes. Diab. Vasc. Dis. Res., 2014, 11(3), 174-181.
[http://dx.doi.org/10.1177/1479164114524234] [PMID: 24623318]
[89]
Fuentes, E.; Pereira, J.; Alarcón, M.; Valenzuela, C.; Pérez, P.; Astudillo, L.; Palomo, I. Protective mechanisms of S. lycopersicum aqueous fraction (nucleosides and flavonoids) on platelet activation and thrombus formation: in vitro, ex vivo and in vivo studies. Evid. Based Complement. Alternat. Med., 2013, 2013609714
[http://dx.doi.org/10.1155/2013/609714] [PMID: 24159349]
[90]
Guerrero, J.A.; Navarro-Nuñez, L.; Lozano, M.L.; Martínez, C.; Vicente, V.; Gibbins, J.M.; Rivera, J. Flavonoids inhibit the platelet TxA(2) signalling pathway and antagonize TxA(2) receptors (TP) in platelets and smooth muscle cells. Br. J. Clin. Pharmacol., 2007, 64(2), 133-144.
[http://dx.doi.org/10.1111/j.1365-2125.2007.02881.x] [PMID: 17425630]
[91]
Hubbard, G.P.; Stevens, J.M.; Cicmil, M.; Sage, T.; Jordan, P.A.; Williams, C.M.; Lovegrove, J.A.; Gibbins, J.M. Quercetin inhibits collagen-stimulated platelet activation through inhibition of multiple components of the glycoprotein VI signaling pathway. J. Thromb. Haemost., 2003, 1(5), 1079-1088.
[http://dx.doi.org/10.1046/j.1538-7836.2003.00212.x] [PMID: 12871380]
[92]
Vilahur, G.; Badimon, L. Antiplatelet properties of natural products. Vascul. Pharmacol., 2013, 59(3-4), 67-75.
[http://dx.doi.org/10.1016/j.vph.2013.08.002] [PMID: 23994642]
[93]
Carnevale, R.; Loffredo, L.; Pignatelli, P.; Nocella, C.; Bartimoccia, S.; Di Santo, S.; Martino, F.; Catasca, E.; Perri, L.; Violi, F. Dark chocolate inhibits platelet isoprostanes via NOX2 down-regulation in smokers. J. Thromb. Haemost., 2012, 10(1), 125-132.
[http://dx.doi.org/10.1111/j.1538-7836.2011.04558.x] [PMID: 22066819]
[94]
Kuntić, V.; Filipović, I.; Vujić, Z. Effects of rutin and hesperidin and their Al(III) and Cu(II) complexes on in vitro plasma coagulation assays. Molecules, 2011, 16(2), 1378-1388.
[http://dx.doi.org/10.3390/molecules16021378] [PMID: 21301410]
[95]
Pearson, D.A.; Paglieroni, T.G.; Rein, D.; Wun, T.; Schramm, D.D.; Wang, J.F.; Holt, R.R.; Gosselin, R.; Schmitz, H.H.; Keen, C.L. The effects of flavanol-rich cocoa and aspirin on ex vivo platelet function. Thromb. Res., 2002, 106(4-5), 191-197.
[http://dx.doi.org/10.1016/S0049-3848(02)00128-7] [PMID: 12297125]
[96]
Kang, W.S.; Lim, I.H.; Yuk, D.Y.; Chung, K.H.; Park, J.B.; Yoo, H.S.; Yun, Y.P. Antithrombotic activities of green tea catechins and (-)-epigallocatechin gallate. Thromb. Res., 1999, 96(3), 229-237.
[http://dx.doi.org/10.1016/S0049-3848(99)00104-8] [PMID: 10588466]
[97]
Ikemura, M.; Sasaki, Y.; Giddings, J.C.; Yamamoto, J. Preventive effects of hesperidin, glucosyl hesperidin and naringin on hypertension and cerebral thrombosis in stroke-prone spontaneously hypertensive rats. Phytother. Res., 2012, 26(9), 1272-1277.
[http://dx.doi.org/10.1002/ptr.3724] [PMID: 22228501]
[98]
Murakami, A.; Nakamura, Y.; Torikai, K.; Tanaka, T.; Koshiba, T.; Koshimizu, K.; Kuwahara, S.; Takahashi, Y.; Ogawa, K.; Yano, M.; Tokuda, H.; Nishino, H.; Mimaki, Y.; Sashida, Y.; Kitanaka, S.; Ohigashi, H. Inhibitory effect of citrus nobiletin on phorbol ester-induced skin inflammation, oxidative stress, and tumor promotion in mice. Cancer Res., 2000, 60(18), 5059-5066.
[PMID: 11016629]
[99]
Lu, W.J.; Lin, K.C.; Liu, C.P.; Lin, C.Y.; Wu, H.C.; Chou, D.S.; Geraldine, P.; Huang, S.Y.; Hsieh, C.Y.; Sheu, J.R. Prevention of arterial thrombosis by nobiletin: in vitro and in vivo studies. J. Nutr. Biochem., 2016, 28, 1-8.
[http://dx.doi.org/10.1016/j.jnutbio.2015.09.024] [PMID: 26878777]
[100]
Chen, X.; Jin, J.; Chen, Y.; Peng, L.; Zhong, G.; Li, J.; Bi, H.; Cai, Y.; Huang, M. Effect of scutellarin on the metabolism and pharmacokinetics of clopidogrel in rats. Biopharm. Drug Dispos., 2015, 36(1), 64-68.
[http://dx.doi.org/10.1002/bdd.1918] [PMID: 25256597]
[101]
Wang, Z.Y.; Chen, M.; Zhu, L.L.; Yu, L.S.; Zeng, S.; Xiang, M.X.; Zhou, Q. Pharmacokinetic drug interactions with clopidogrel: updated review and risk management in combination therapy. Ther. Clin. Risk Manag., 2015, 11, 449-467.
[http://dx.doi.org/10.2147/TCRM.S80437] [PMID: 25848291]
[102]
Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: an overview. ScientificWorldJournal, 2013, 2013162750
[http://dx.doi.org/10.1155/2013/162750] [PMID: 24470791]
[103]
Dobrydneva, Y.; Williams, R.L.; Blackmore, P.F. Diethylstilbestrol and other nonsteroidal estrogens: novel class of store-operated calcium channel modulators. J. Cardiovasc. Pharmacol., 2010, 55(5), 522-530.
[http://dx.doi.org/10.1097/FJC.0b013e3181d64b33] [PMID: 20147843]
[104]
Mabberley, D.J. The plant book: A portable dictionary of the vascular plants; Cambridge University Press: Cambridge, 1997.
[105]
López-Lázaro, M. Distribution and biological activities of the flavonoid luteolin. Mini Rev. Med. Chem., 2009, 9(1), 31-59.
[http://dx.doi.org/10.2174/138955709787001712] [PMID: 19149659]
[106]
Bekendam, R.H.; Flaumenhaft, R. Inhibition of protein disulfide isomerase in thrombosis. Basic Clin. Pharmacol. Toxicol., 2016, 119(Suppl. 3), 42-48.
[http://dx.doi.org/10.1111/bcpt.12573] [PMID: 26919268]
[107]
Di Vito, C.; Bertoni, A.; Nalin, M.; Sampietro, S.; Zanfa, M.; Sinigaglia, F. The phytoestrogen 8-prenylnaringenin inhibits agonist-dependent activation of human platelets. Biochim. Biophys. Acta, 2012, 1820(11), 1724-1733.
[http://dx.doi.org/10.1016/j.bbagen.2012.06.018] [PMID: 22766195]
[108]
Benavente-García, O.; Castillo, J. Update on uses and properties of citrus flavonoids: new findings in anticancer, cardiovascular, and anti-inflammatory activity. J. Agric. Food Chem., 2008, 56(15), 6185-6205.
[http://dx.doi.org/10.1021/jf8006568] [PMID: 18593176]
[109]
Pinasseau, L.; Vallverdú-Queralt, A.; Verbaere, A.; Roques, M.; Meudec, E.; Le Cunff, L.; Péros, J.P.; Ageorges, A.; Sommerer, N.; Boulet, J.C.; Terrier, N.; Cheynier, V. Cultivar diversity of grape skin polyphenol composition and changes in response to drought investigated by LC-MS based metabolomics. Front. Plant Sci., 2017, 8, 1826.
[http://dx.doi.org/10.3389/fpls.2017.01826] [PMID: 29163566]
[110]
Rull, G.; Mohd-Zain, Z.N.; Shiel, J.; Lundberg, M.H.; Collier, D.J.; Johnston, A.; Warner, T.D.; Corder, R. Effects of high flavanol dark chocolate on cardiovascular function and platelet aggregation. Vascul. Pharmacol., 2015, 71, 70-78.
[http://dx.doi.org/10.1016/j.vph.2015.02.010] [PMID: 25869509]
[111]
Okuda-Tanino, A.; Sugawara, D.; Tashiro, T.; Iwashita, M.; Obara, Y.; Moriya, T.; Tsushima, C.; Saigusa, D.; Tomioka, Y.; Ishii, K.; Nakahata, N. Licochalcones extracted from Glycyrrhiza inflata inhibit platelet aggregation accompanied by inhibition of COX-1 activity. PLoS One, 2017, 12(3) e0173628
[http://dx.doi.org/10.1371/journal.pone.0173628] [PMID: 28282426]
[112]
Lee, J.H.; Kim, M.; Chang, K.H.; Hong, C.Y.; Na, C.S.; Dong, M.S.; Lee, D.; Lee, M.Y. Antiplatelet effects of Rhus verniciflua stokes heartwood and its active constituents--fisetin, butein, and sulfuretin--in rats. J. Med. Food, 2015, 18(1), 21-30.
[http://dx.doi.org/10.1089/jmf.2013.3116] [PMID: 25372471]
[113]
Alajmi, M.F.; Al-Hadiya, B.M.; El Tahir, K.E. Pharmacological studies on Myrica rubra Sieb et zucc. Effects on the cardiovascular system and platelets. Drug Res. (Stuttg.), 2013, 63(9), 439-444.
[http://dx.doi.org/10.1055/s-0033-1348246] [PMID: 23804250]
[114]
Zhou, F.H.; Deng, X.J.; Chen, Y.Q.; Ya, F.L.; Zhang, X.D.; Song, F.; Li, D.; Yang, Y. Anthocyanin cyanidin-3-glucoside attenuates platelet granule release in mice fed high-fat diets. J. Nutr. Sci. Vitaminol. (Tokyo), 2017, 63(4), 237-243.
[http://dx.doi.org/10.3177/jnsv.63.237] [PMID: 28978870]
[115]
Yao, Y.; Chen, Y.; Adili, R.; McKeown, T.; Chen, P.; Zhu, G.; Li, D.; Ling, W.; Ni, H.; Yang, Y. Plant-based food cyanidin-3-glucoside modulates human platelet glycoprotein vi signaling and inhibits platelet activation and thrombus formation. J. Nutr., 2017, 147(10), 1917-1925.
[http://dx.doi.org/10.3945/jn.116.245944] [PMID: 28855423]
[116]
Song, F.; Zhu, Y.; Shi, Z.; Tian, J.; Deng, X.; Ren, J.; Andrews, M.C.; Ni, H.; Ling, W.; Yang, Y. Plant food anthocyanins inhibit platelet granule secretion in hypercholesterolaemia: Involving the signalling pathway of PI3K-Akt. Thromb. Haemost., 2014, 112(5), 981-991.
[http://dx.doi.org/10.1160/th13-12-1002] [PMID: 25077916]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 26
ISSUE: 39
Year: 2019
Page: [7035 - 7047]
Pages: 13
DOI: 10.2174/0929867325666180417170218
Price: $65

Article Metrics

PDF: 26
HTML: 3