Functionalized Multi Walled Carbon Nanotubes-Reinforced Hollow Fiber Solid/Liquid Phase Microextraction and HPLC-DAD for Determination of Phenazopyridine in Urine

Author(s): Nabil N. Al-Hashimi*, Anas I. Awwad, Aqeel N. Al-Hashimi, Iman A. Mansi, Rand O. Shahin, Saja H. Hamed

Journal Name: Current Pharmaceutical Analysis

Volume 15 , Issue 5 , 2019

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Introduction: A sensitive analytical method based on functionalized multi walled carbon nanotubes reinforced hollow fiber solid/liquid phase microextraction (F-MWCNTs-HF-SLPME) forwarded with HPLC-DAD for analyzing phenazopyridine from urine is presented.

Materials and Methods: The extraction of phenazopyridine is performed using specially designed FMWCNTs- HF-SLPME device constructed as follows: the functionalized multi walled carbon nanotubes (F-MWCNTs) were immobilized into the pores of 2.5 cm hollow fiber micro-tube using capillary forces and ultrasonication, then, the lumen of the micro-tube was filled with 1-octanol with two ends sealed. Subsequently, the device was placed into 10-mL of urine sample containing the analyte with agitation. After ending extraction, the device was removed, rinsed, sonicated in 250 µL of organic solvent and analyzed directly by the separation system.

Results and Conclusion: Different parameters affecting the performance of the developed method were optimized. The method showed good linearity with (R2) 0.999 and good repeatability with (RSDs) from 3.7 to 0.9% at analyte concentration ranged from 0.01 to 10 µg L-1 of spiked urine samples. The limit of detection/ quantitation, LODs/LOQs was 0.02/0.09 µg L-1. In comparison with reference methods, the developed method is considered as a promising microextraction technique for determination of trace phenazopyridine in human urine using a common HPLC without further cleanup procedures.

Keywords: Functionalized multi-walled carbon nanotubes, liquid chromatography, phenazopyridine, reinforced solid/liquid phase microextraction, urine, HPLC-DAD.

Shang, E.; Xiang, B.; Liu, G.; Xie, S.; Wei, W.; Lu, J. Determination of phenazopyridine in human plasma via LC-MS and subsequent development of a pharmacokinetic model. Anal. Bioanal. Chem., 2005, 382, 216-222.
Tolba, M.M.; Salim, M.M. Derivative quotient spectrophotometry and an eco-friendly micellar chromatography approach with time-programmed UV-detection for the separation of two fluoroquinolones and phenazopyridine. JCS, 2016, 54, 776-789.
Gupta, O.P.; Aggarwal, K.K. Role of phenazopyridine in urinary tract infection. Int. J. Clin. Pract., 2012, 22, 437-441.
Shi, C-W.; Ash, S.M.; Fielder, E.; Gelberg, L.; Nichol, M.B. Consumer knowledge of over-the-counter phenazopyridine. Ann. Fam. Med., 2004, 3, 240-244.
Gao, Z.; Yu, L.; Clark, S.; Trehy, M.; Moore, T.; Westenberger, B.; Buhse, L.; Kauffman, J.; Bishop, B.; Velazquez, L.; Furness, S. Dissolution testing for bioavailability of over-the-counter (OTC) drugs-a technical note. AAPS PharmSciTech, 2015, 16, 1227-1233.
Deepalatha, C.; Deshpande, N. A comparative study of phenazopyridine (pyririum) and cystone as short-term analgesic in uncomplicated urinary tract infection. IJPPS, 2011, 3, 224-226.
Ensafi, A.A.; Arashpour, B.; Rezaei, B.; Allafchian, A.R. Highly selective differential pulse voltammetric determination of phenazopyridine using MgCr2O4 nanoparticales decorated MWCNTs-modified glassy carbon electrode. Colloids Surf. B Biointerfaces, 2013, 111, 270-276.
Singh, M.; Shailesh, F.; Tiwar, U.; Sharma, S.G.; Malik, B. Phenazopyridine associated acute interstitial nephritis and review of literature. Ren. Fail., 2014, 5, 804-807.
Attia, K.A.M.; El-abasawi, N.M.; El-Olemy, A.; Abdelazim, A.H. Application of HPLC method for selective determination of phenazopyridine hydrochloride: theoretical and practical investigations. J. AOAC Int, 2017. a head of print
Farin, D.; Piva, G.; Cohen, R.K. Determination of phenazopyridine in human plasma by high performance liquid chromatography. Chromatographia, 2000, 52, 179-180.
Jan, L.; Preez, S.D.; Botha, A.; Lötter, A.P. High-performance liquid chromatography determination of phenazopyridine hydrochloride, tetracycline hydrochloride and sulphamethizole in combination. J. Chromatogr. A, 1985, 333, 249-252.
Ensafi, A.A.; Mallakpour, S.; Doozandeh, F.; Alladchian, A.R.; Tirgir, F. Highly selective potentiometric sensor for determining phenazopyridine hydrochloride in biological fliding using N,N′-(pyromellitoyl)-bis-l-tyrosine dimethyl ester. Anal. Lett., 2010, 43, 2848-2858.
Saraji, M.; Bidgoli, A.A.H.; Farajmand, B. Hollow fiber-base liquid-liquid-liquid microextraction followed by flow injection analysis using column-less HPLC for the determination of phenazopyridine in plasma and urine. JSS, 2011, 34, 1708-1715.
Chen, Q.; Li, K.; Zhang, Z.; Li, P.; Liu, J.; Li, Q. Development and validation of a gas chromatography-mass spectrometry method for the determination of phenazopyridine in rat plasma: application to the pharmacokinetic study. Biopharm. Drug Dispos., 2007, 28, 439-444.
Farajzadeh, M.A.; Sorouraddin, S.M.; Mogaddam, M.R.A. Liquid phase microextraction of pesticides: a review on current methods. Mikrochim. Acta, 2014, 181, 829-851.
Lucena, R.; Cruz-Vere, M.; Cárdenas, S.; Valcárcel, M. Liquid-phase microextraction in bioanalytical sample preparation. Bioanalysis, 2009, 1, 135-149.
Hyötyläinen, T.; Riekkola, M. Approaches for on-line coupling of extraction and chromatography. Anal. Bioanal. Chem., 2004, 378, 1962-1981.
Jönsson, L.; Mathiasson, L. Liquid membrane extraction in analytical sample preparation. I principle. Trends Analyt. Chem., 1999, 18, 318-325.
Jönsson, L.; Mathiasson, L. Liquid membrane extraction in analytical sample preparation. II principle. Trends Analyt. Chem., 1999, 18, 325-334.
Sharifi, V.; Abbasi, A.; Nosrati, A. Application of hollow fiber liquid phase microextraction and dispersive liquid-liquid microextraction technique in analytical toxicology. J. Food Drug Anal., 2016, 24, 264-276.
Gjelstad, A.; Pedersen-Bjergaard, S. Perspective: hollow fibre liquid-phase microextraction-principle, performance, applicability, and future directions. Sci. Chromatogr., 2013, 5, 181-189.
Cui, S.; Tan, S.; Ouyang, G.; Pawliszyn, J. Automated polyvinylidene difluoride hollow fiber lquid-phase microextraction of flunitrazepam in plasma and urine samples for gas chromatography/tandem mass spectrometry. J. Chromatogr. A, 2009, 1216, 2241-2247.
Cui, S.; Ouyang, G.; Duan, G.; Hou, J.; Luan, T.; Zhang, X. The mass transfer dynamics of hollow fiber liquid-phase microextraction and its application for rapid analysis of biological samples. J. Chromatogr. A, 2012, 1266, 10-16.
Hasheminasab, K.S.; Fakhari, A.R.; Dhahsavani, A.; Ahmar, H. A new method for the enhancement of electromembrane extraction efficiency using carbon nanotube reinforced hollow fiber for the determination of acidic drugs in spiked plasma, urine, breast milk and wastewater samples. J. Chromatogr. A, 2013, 1285, 1-6.
Yang, Y.; Chen, J.; Shi, Y-P. Determination of diethylstilbestrol in milk using carbon nanotube-reinforced hollow fiber solid-phase microextraction combined with high-performance liquid chromatography. Talanta, 2012, 97, 222-228.
Es,haghi, A.; Golsefidi, M.A.; Saify, A.; Tanha, A.A.; Rezaeifar, Z.; Alian-Nezhadi, Z. Carbon nanotube reinforced hollow fiber solid/liquid phase microextraction: a novel extraction technique for the measurement of caffeic acid in Echinacea purpurea herbal extracts combined with high-performance chromatography. J. Chromatogr. A, 2010, 1217, 2768-2775.
Song, X-Y.; Shi, Y-P.; Chen, J. A novel extraction technique based on carbon nanotubes reinforced hollow fiber solid/liquid microextraction for the measurement of piroxicam and diclofenac combined with high performane liquid chromatography. Talanta, 2012, 100, 153-161.
Song, X-Y.; Shi, Y-P.; Chen, J. Carbon nanotubes reinforced hollow fiber solid phase microextraction for the determination of strychnine and brucine in urine. Talanta, 2013, 116, 188-194.
Song, X-Y.; Ha, W.; Chen, J.; Shi, Y-P. Application of β-cyclodextrin-modified, carbon nanotube-reinforced hollow fiber to solid-phase microextraction of plant hormone. J. Chromatogr. A, 2014, 1374, 23-30.
Sehati, N.; Dalali, N.; Soltanpour, S.; Seyed, M.S. Extraction and preconcentration of tylosin from milk samples through functionalized TiO2 nanoparticales reinforced with hollow fiber membrane as a novel solid/liquid-phase microextraction technique. J. Sep. Sci., 2014, 37, 2025-2031.
Es’haghi, Z.; Nezhadali, A.; Bahar, S.; Bohlooli, S.; Banaei, A. [PMIM]Br@TiO2 nanocomposite reinforced hollow fiber solid/liquid phase microextraction: An effective extraction technique for measurement of benzodiazepines in hair, urine and waswater samples combined with high-performance liquid chromatography. J. Chromatgr. B., 2015, 980, 55-64.
Forough, M.; Farhadi, K.; Molaei, R.; Khalili, H.; Shakeri, R.; Zamani, A.; Matin, A.A. Capillary electrophoresis with online stacking in combination with AgNPs@MCM-41 reinforced hollow fiber solid-liquid microextraction for quantitative analysis of capecitabine and its main metabolite 5-fluorouracil in plasma samples isolated from cancer patients. J. Chromatgr. B., 2017, 1040, 22-37.
Eatemadi, A.; Daraee, H.; Karimkhanloo, H.; Kouhi, M.; Zargami, N.; Akbarzadeh, A.; Abassi, M.; Hanifehpour, Y.; Joo, S.W. Carbon nanotubes: properties, synthesis, purification, and medical applications. Nanoscale Res. Lett., 2014, 9, 1-13.
Aqel, A.; Abou El-Nour, K.M.M.; Ammar, R.A.A.; Al-Warthan, A. Carbon nanotube, science and technology part (I) structure, synthesis and chracterisation. Arab. J. Chem., 2012, 5, 1-23.
Kukovecz, Á.; Kozma, G.; Kónya, Z. Multi-walled carbon nanotubes; Handbook of Nanomaterials. Springer. , 2013.
Yu, Y.; Ouyang, C.; Gao, Y.; Si, Z.; Chen, W. Synthesis and characterization of carbon nanotube/polypyrrole core-shell nanocomposites via in situ inverse microemulsion. J. Polym. Sci.Part A Polym. Chem., 2005, 43, 6105-6115.
Ruoff, R.S.; Qian, D.; Liu, W.K. Mechanical properties of carbon nanotubes: theoretical predictions and experimental measurements. C. R. Phys., 2003, 4, 993-1008.
Umbuzeiro, G.A.; Coluci, V.R.; Honório, J.G.; Giro, R.; Morales, D.A.; Lage, A.S.G.; Mazzei, J.L.; Felzenszwalb, I.; Souza Filho, A.G.; Stèfani, D.; Alves, O.L. Understanding the interaction of multi-walled carbon nanotube with mutagenic organic pollutants using computational modeling and biological experiments. Trends Analyt. Chem., 2011, 30, 437-446.
Ciulu, M.; Spano, N.; Pilo, M.I.; Sanna, G. Recent advances in the analysis of phenolic compounds in unifloral honeys. Molecules, 2016, 21, 1-32.
Den, W.; Liu, H-C.; Chan, S-F.; Kin, K.T.; Huang, C. Adsorption of phthalate esters with multiwalled carbon nanotubes and its application. Environ. Eng. Manag. J., 2006, 16, 275-282.
Xu, Q.; Yin, X.; Wu, S.; Wang, M.; Wen, Z.; Gu, Z. Determination of phthalate esters in water samples using nylon6 nanofibers mat-based solid-phase extraction coupled to liquid chromatography. Mikrochim. Acta, 2010, 168, 267-275.
Watkins, M.; Sizochenko, N.; Moore, Q.; Golebiowski, M. Chlorophenol sorption on multi-walled carbon nanotubes: DFT modeling and structure-property relationship analysis. J. Mol. Model., 2017, 23, 3204-3209.
Golebiowsk, M.; Stepnowski, P.; Leszczyñska, D. Application of carbon nanotubes as solid-phase extraction sorbent for analysis of chlorophenols in water samples. Chem. Pap., 2017, 71, 831-839.
Yang, D.; Zhang, X.; Wang, C.; Tang, Y.; Li, J.; Hu, J. Preparation of water-soluble multi-walled carbon nanotube by Ce(IV)-induced redox radical polymerization. Prog. Nat. Sci., 2009, 19, 991-996.
Kharisov, B.; Kharissova, O.V.; Gutierrez, H.L.; Mèndez, U.O. Recent advances on the soluble carbon nanotubes I&EC Research, 2009, 48 572-590.
Marsh, D.H.; Rance, G.A.; Zaka, M.H.; Whitby, R.J.; Khlobystov, A.N. Comparison of the stability of multiwalled carbon nanotube dispersions in water. Phys. Chem. Chem. Phys., 2007, 9, 5490-5496.
Zhao, Z.; Yang, Z.; Hu, Y.; Li, J.; Fan, X. Multiple functionalization of multi-walled carbon nanotube with carboxyl and amino groups. Appl. Surf. Sci., 2013, 276, 476-481.
Kar, P.; Choudhury, A. Carboxylic acid functionalized multi-walled carbon nanotube doped polyaniline for chloroform sensors. Sens. Actuators B Chem., 2013, 183, 25-33.
Song, X-Y.; Chen, J.; Shi, Y-P. Different configurations of carbon nanotubes reinforced solid-phase microextraction techniques and their applications in the environmental analysis. Trends Analyt. Chem., 2017, 86, 263-275.
Gao, C.; Guo, Z.; Liu, J-H.; Huang, X-J. The new age of carbon nanotubes: An updated review of functionalized carbon nanotubes in electrochemical sensors. Nanoscale, 2012, 4, 1948-1963.
Wang, Z.; Shirley, M.D.; Meikle, S.T.; Whiby, R.L.D.; Mikhalovsky, S.V. The surface acidity of acid oxidised multi-walled carbon nanotube and the influence of in-situ generated fulvic acids on their stability in aqueous dispersions. Carbon, 2009, 47, 73-79.
Samiei, N.; Foroutan, S.M.; Razipour, F.; Zarghi, A.; Shaati, A. An investigation into the ability of alendronate ion pairs to increase oral absorption. Int. J. Pharm., 2017, 527, 184-190.
Smallwood, I.M. Handbook of organic solvent properties, 1st ed; London/UK Amold, Hodder Headline Group, 1996.
Ensaf, A.A.; Lesan, S.; Amini, M.; Rezaei, B. Electrochemical ds-DNA-based biosensor decorated with chitosan modified multi walled carbon nanotubes for phenazopyridine biodetection. J. Taiwan Inst. Chem. Eng., 2015, 54, 165-169.
Sabry, S.M. Adsorptive stripping voltammetric assay of phenazopyridine hydrochloride in biological fluids and pharmaceutical preparations. Talanta, 1999, 50, 133-140.
Fotohi, L.; Yamini, Y.; Hosseini, R.; Rezazadeh, M. Determination of phenazopyridine in biological fluids using electromembrane extraction followed by high-performance liquid chromatography. Can. J. Chem., 2015, 93, 702-707.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2019
Published on: 22 May, 2019
Page: [447 - 455]
Pages: 9
DOI: 10.2174/1573412914666180329153443
Price: $65

Article Metrics

PDF: 62