Research Progress of Natural Polymers in Wastewater Treatment

Author(s): Xiang Li*, Baojun Yang, Li Feng, Huaili Zheng, Guoming Zeng, Pei Wu

Journal Name: Mini-Reviews in Organic Chemistry

Volume 16 , Issue 4 , 2019


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

With the development of industry, urbanization, increasingly stringent environmental protection requirements, and strengthening of people’s environmental awareness, green treatment of pollutants has become a research hotspot in the field of environmental protection. Accordingly, the study on natural non-toxic polymers has received increasing attention from researchers. This paper aims to provide the present research progress of natural polymers in environmental engineering, including the striking characteristics and modification methods of the most well-known natural polymers, as well as their applications in environmental protection field. Concluding remarks and future trends are also pointed out.

Keywords: Wastewater treatment, natural polymer, environmental protection, flocculants, absorbent, chitosan.

[1]
Lou, T.; Cui, G.; Xun, J.; Wang, X.; Feng, N.; Zhang, J. Synthesis of a terpolymer based on chitosan and lignin as an effective flocculant for dye removal. Coll. Surf. A, 2018, 537, 149-154.
[2]
Kim, S.; Chu, K.H.; Al-Hamadani, Y.A.J.; Park, C.M.; Jang, M.; Kim, D.H.; Yu, M.; Heo, J.; Yoon, Y. Removal of contaminants of emerging concern by membranes in water and wastewater: A review. Chem. Eng. J., 2018, 335, 896-914.
[3]
Ahmed, A.E.S.I.; Moustafa, H.Y.; El-Masry, A.M.; Hassan, S.A. Natural and synthetic polymers for water treatment against dissolved pharmaceuticals. J. Appl. Polym. Sci., 2014, 131.
[4]
Tu, H.; Yu, Y.; Chen, J.; Shi, X.; Zhou, J.; Deng, H.; Du, Y. Highly cost-effective and high-strength hydrogels as dye adsorbents from natural polymers: Chitosan and cellulose. Polym. Chem., 2017, 8, 2913-2921.
[5]
Zia, F.; Zia, K.M.; Zuber, M.; Kamal, S.; Aslam, N. Starch based polyurethanes: A critical review updating recent literature. Carbohydr. Polym., 2015, 134, 784-798.
[6]
Sanjay, M.R.; Madhu, P.; Jawaid, M.; Senthamaraikannan, P.; Senthil, S.; Pradeep, S. Characterization and properties of natural fiber polymer composites: A comprehensive review. J. Clean. Prod., 2018, 172, 566-581.
[7]
Sarkheil, H.; Rahbari, S. Fractal geometry analysis of chemical structure of natural starch modification as a green biopolymeric product. Arab. J. Chem., 2015, 18.
[8]
Li, X.; Zheng, H.; Wang, Y.; Sun, Y.; Xu, B.; Zhao, C. Fabricating an enhanced sterilization chitosan-based flocculants: Synthesis, characterization, evaluation of sterilization and flocculation. Chem. Eng. J., 2017, 319, 119-130.
[9]
Salehizadeh, H.; Yan, N.; Farnood, R. Recent advances in polysaccharide bio-based flocculants. Biotechnol. Adv., 2018, 36(1), 92-119.
[10]
Du, Q.; Wei, H.; Li, A.; Yang, H. Evaluation of the starch-based flocculants on flocculation of hairwork wastewater. Sci. Total Environ., 2017, 601-602, 1628-1637.
[11]
Liu, Q.; Li, F.; Lu, H.; Li, M.; Liu, J.; Zhang, S.; Sun, Q.; Xiong, L. Enhanced dispersion stability and heavy metal ion adsorption capability of oxidized starch nanoparticles. Food Chem., 2018, 242, 256-263.
[12]
Huang, L.; Xiao, C.; Chen, B. A novel starch-based adsorbent for removing toxic Hg(II) and Pb(II) ions from aqueous solution. J. Hazard. Mater., 2011, 192, 832-836.
[13]
Lapointe, M.; Barbeau, B. Dual starch-polyacrylamide polymer system for improved flocculation. Water Res., 2017, 124, 202-209.
[14]
Saedi, S.; Madaeni, S.S.; Seidi, F.; Shamsabadi, A.A.; Laki, S. Synthesis and application of a novel Amino-Starch derivative as a new polymeric additive for fixed facilitated transport of carbon dioxide through an asymmetric polyethersulfone (PES) membrane. Int. J. Greenh. G. Con., 2013, 19, 126-137.
[15]
Yuan, X.; Ju, B.; Zhang, S. Novel pH- and temperature-responsive polymer: Tertiary amine starch ether. Carbohyd. Polym., 2014, 114, 530-536.
[16]
Klimaviciute, R.; Bendoraitiene, J.; Lekniute, E.; Zemaitaitis, A. Non-stoichiometric complexes of cationic starch and 4-sulfophthalic acid and their flocculation efficiency. Coll. Surf. A, 2014, 457, 180-188.
[17]
Liu, Z.; Huang, M.; Li, A.; Yang, H. Flocculation and antimicrobial properties of a cationized starch. Water Res., 2017, 119, 57-66.
[18]
Ji, J.; Li, J.; Qiu, J.; Li, X. Polyacrylamide-starch composite flocculant as a membrane fouling reducer: Key factors of fouling reduction. Sep. Purif. Technol., 2014, 131, 1-7.
[19]
Canché-Escamilla, G.; Canché-Canché, M.; Duarte-Aranda, S.; Cáceres-Farfán, M.; Borges-Argáez, R. Mechanical properties and biodegradation of thermoplastic starches obtained from grafted starches with acrylics. Carbohyd. Polym., 2011, 86, 1501-1508.
[20]
Akhlaghi, S.P.; Zaman, M.; Mohammed, N.; Brinatti, C.; Batmaz, R.; Berry, R.; Loh, W.; Tam, K.C. Synthesis of amine functionalized cellulose nanocrystals: Optimization and characterization. Carbohyd. Res., 2015, 409, 48-55.
[21]
Sirviö, J.; Honka, A.; Liimatainen, H.; Niinimäki, J.; Hormi, O. Synthesis of highly cationic water-soluble cellulose derivative and its potential as novel biopolymeric flocculation agent. Carbohyd. Polym., 2011, 86, 266-270.
[22]
Zhou, C.; Lee, S.; Dooley, K.; Wu, Q. A facile approach to fabricate porous nanocomposite gels based on partially hydrolyzed polyacrylamide and cellulose nanocrystals for adsorbing methylene blue at low concentrations. J. Hazard. Mater., 2013, 263, 334-341.
[23]
Anirudhan, T.S.; Nima, J.; Divya, P.L. Adsorption of chromium(VI) from aqueous solutions by glycidylmethacrylate-grafted-densified cellulose with quaternary ammonium groups. Appl. Surf. Sci., 2013, 279, 441-449.
[24]
Lam, B.; Déon, S.; Morin-Crini, N.; Crini, G.; Fievet, P. Polymer-enhanced ultrafiltration for heavy metal removal: Influence of chitosan and carboxymethyl cellulose on filtration performances. J. Clean. Prod., 2018, 171, 927-933.
[25]
Salama, A. Preparation of CMC-g-P(SPMA) super adsorbent hydrogels: Exploring their capacity for MB removal from waste water. Int. J. Biol. Macromol., 2018, 106, 940-946.
[26]
Ding, C.; Li, Y.; Wang, Y.; Li, J.; Sun, Y.; Lin, Y.; Sun, W.; Luo, C. Highly selective adsorption of hydroquinone by hydroxyethyl cellulose functionalized with magnetic/ionic liquid. Int. J. Biol. Macromol., 2018, 107, 957-964.
[27]
Zhong, T.; Huang, R.; Sui, S.; Lian, Z.; Sun, X.; Wan, A.; Li, H. Effects of ultrasound treatment on lipid self-association and properties of methylcellulose/stearic acid blending films. Carbohyd. Polym., 2015, 131, 415-423.
[28]
Peng, X.; Ren, J.; Sun, R. An efficient method for the synthesis of hemicellulosic derivatives with bifunctional groups in butanol/water medium and their rheological properties. Carbohyd. Polym., 2011, 83, 1922-1928.
[29]
Mänttäri, M.; Al Manasrah, M.; Strand, E.; Laasonen, H.; Preis, S.; Puro, L.; Xu, C.; Kisonen, V.; Korpinen, R.; Kallioinen, M. Improvement of ultrafiltration performance by oxidation treatment in the recovery of galactoglucomannan from wood autohydrolyzate. Sep. Purif. Technol., 2015, 149, 428-436.
[30]
Xu, F.; Jiang, J.X.; Sun, R.C.; She, D.; Peng, B.; Sun, J.X.; Kennedy, J.F. Rapid esterification of wheat straw hemicelluloses induced by microwave irradiation. Carbohyd. Polym., 2008, 73, 612-620.
[31]
Dong, L.; Hu, H.; Yang, S.; Cheng, F. Grafted copolymerization modification of hemicellulose directly in the Alkaline Peroxide Mechanical Pulping (APMP) effluent and its surface sizing effects on corrugated paper. Ind. Eng. Chem. Res., 2014, 53, 6221-6229.
[32]
Wu, S.P.; Dai, X.Z.; Kan, J.R.; Shilong, F.D.; Zhu, M.Y. Fabrication of carboxymethyl chitosan-hemicellulose resin for adsorptive removal of heavy metals from wastewater. Chin. Chem. Lett., 2017, 28, 625-632.
[33]
Dax, D.; Chávez, M.S.; Xu, C.; Willför, S.; Mendonça, R.T.; Sánchez, J. Cationic hemicellulose-based hydrogels for arsenic and chromium removal from aqueous solutions. Carbohyd. Polym., 2014, 111, 797-805.
[34]
He, W.; Gao, W.; Fatehi, P. Oxidation of kraft lignin with hydrogen peroxide and its application as a dispersant for kaolin suspensions. ACS Sustain. Chem. Eng., 2017, 5, 10597-10605.
[35]
Aro, T.; Fatehi, P. Production and application of lignosulfonates and sulfonated lignin. Chem. Sus. Chem., 2017, 10, 1861-1877.
[36]
Nie, G.; Zhang, X.; Han, P.; Xie, J.; Pan, L.; Wang, L.; Zou, J.J. Lignin-derived multi-cyclic high density biofuel by alkylation and hydrogenated intramolecular cyclization. Chem. Eng. Sci., 2017, 158, 64-69.
[37]
Hu, L.Q.; Dai, L.; Liu, R.; Si, C.L. Lignin-graft-poly(acrylic acid) for enhancement of heavy metal ion biosorption. J. Mater. Sci., 2017, 52, 13689-13699.
[38]
Luo, X.; Liu, C.; Yuan, J.; Zhu, X.; Liu, S. Interfacial solid-phase chemical modification with mannich reaction and Fe(III) chelation for designing lignin-based spherical nanoparticle adsorbents for highly efficient removal of low concentration phosphate from water. ACS Sustain. Chem. Eng., 2017, 5, 6539-6547.
[39]
Qin, Y.; Yang, D.; Guo, W.; Qiu, X. Investigation of grafted sulfonated alkali lignin polymer as dispersant in coal-water slurry. J. Ind. Eng. Chem., 2015, 27, 192-200.
[40]
Şimşek, S.; Ulusoy, U. Adsorptive properties of sulfolignin-polyacrylamide graft copolymer for lead and uranium: Effect of hydroxylamine-hydrochloride treatment. React. Funct. Polym., 2013, 73, 73-82.
[41]
Santos, O.S.H.; Coelho da Silva, M.; Silva, V.R.; Mussel, W.N.; Yoshida, M.I. Polyurethane foam impregnated with lignin as a filler for the removal of crude oil from contaminated water. J. Hazard. Mater., 2017, 324 Part B, 406-413.
[42]
Arshanitsa, A.; Krumina, L.; Telysheva, G.; Dizhbite, T. Exploring the application potential of incompletely soluble organosolv lignin as a macromonomer for polyurethane synthesis. Ind. Crop Prod., 2016, 92, 1-12.
[43]
Pan, H.; Sun, G.; Zhao, T. Synthesis and characterization of aminated lignin. Int. J. Biol. Macromol., 2013, 59, 221-226.
[44]
Anirudhan, T.S.; Rejeena, S.R.; Tharun, A.R. Preparation, characterization and adsorption behavior of tannin-modified poly(glycidylmethacrylate)-grafted zirconium oxide-densified cellulose for the selective separation of bovine serum albumin. Coll. Surf. B, 2012, 93, 49-58.
[45]
Bridson, J.H.; Grigsby, W.J.; Main, L. One-pot solvent-free synthesis and characterisation of hydroxypropylated polyflavonoid compounds. Ind. Crops Prod., 2018, 111, 529-535.
[46]
Zhao, C.; Zheng, H.; Sun, Y.; Liu, B.; Zhou, Y.; Liu, Y.; Zheng, X. Fabrication of tannin-based dithiocarbamate biosorbent and its application for Ni(II) ion removal. Water Air Soil Poll., 2017, 228, 409.
[47]
Tondi, G. Tannin-based copolymer resins: Synthesis and characterization by solid state 13C NMR and FT-IR spectroscopy. Polymers , 2017, 9.
[48]
Sumathirathne, L.D.; Karunanayake, L. Synthesis of novel porous tannin-phenol-formaldehyde cation exchange resin from Terminalia arjuna (Kumbuk). J. Natl. Sci. Found. Sri., 2017, 45, 219-227.
[49]
Braghiroli, F.L.; Fierro, V.; Izquierdo, M.T.; Parmentier, J.; Pizzi, A.; Delmotte, L.; Fioux, P.; Celzard, A. High surface - Highly N-doped carbons from hydrothermally treated tannin. Ind. Crop Prod., 2015, 66, 282-290.
[50]
Kwon, S.G.; Bae, D.G. A Study on the sulfonation of persimmon tannin; Textil. Color. Finish, 2017, p. 29.
[51]
Wang, Y.; Cheng, S.; Wang, F.; Gao, M.; Cao, R. Synthesis and characterization of natural polymer/inorganic antibacterial nanocomposites. J. Wuhan Univer. Technol. Mater. Sci. Ed., 2013, 28, 1044-1047.
[52]
Zhang, Z.; Jin, F.; Wu, Z.; Jin, J.; Li, F.; Wang, Y.; Wang, Z.; Tang, S.; Wu, C.; Wang, Y. O-acylation of chitosan nanofibers by short-chain and long-chain fatty acids. Carbohyd. Polym., 2017, 177, 203-209.
[53]
Wang, Q.; Yan, X.; Chang, Y.; Ren, L.; Zhou, J. Fabrication and characterization of chitin nanofibers through esterification and ultrasound treatment. Carbohyd. Polym., 2018, 180, 81-87.
[54]
Lu, L.; Xing, C.; Xin, S.; Shitao, Y.; Feng, S.; Shiwei, L.; Fusheng, L.; Congxia, X. Alkyl chitosan film-high strength, functional biomaterials. J. Biomed. Mater. Res. A, 2017, 105, 3034-3041.
[55]
Xie, Y.; Liu, X.; Chen, Q. Synthesis and characterization of water-soluble chitosan derivate and its antibacterial activity. Carbohyd. Polym., 2007, 69, 142-147.
[56]
Beil, S.; Schamberger, A.; Naumann, W.; Machill, S.; van Pée, K.H. Determination of the degree of N-acetylation (DA) of chitin and chitosan in the presence of water by first derivative ATR FTIR spectroscopy. Carbohyd. Polym., 2012, 87, 117-122.
[57]
Abla, M.; Marmuse, L.; Delolme, F.; Vors, J.P.; Ladavière, C.; Trombotto, S. Access to tetra-N-acetyl-chitopentaose by chemical N-acetylation of glucosamine pentamer. Carbohyd. Polym., 2013, 98, 770-777.
[58]
Kurita, Y.; Isogai, A. N-Alkylations of chitosan promoted with sodium hydrogen carbonate under aqueous conditions. Int. J. Biol. Macromol., 2012, 50, 741-746.
[59]
Kurita, Y.; Isogai, A. Reductive N-alkylation of chitosan with acetone and levulinic acid in aqueous media. Int. J. Biol. Macromol., 2010, 47, 184-189.
[60]
Masina, N.; Choonara, Y.E.; Kumar, P.; du Toit, L.C.; Govender, M.; Indermun, S.; Pillay, V. A review of the chemical modification techniques of starch. Carbohyd. Polym., 2017, 157, 1226-1236.
[61]
Chen, Q.; Yu, H.; Wang, L.; Abdin, Z.; Chen, Y.; Wang, J.; Zhou, W.; Yang, X.; Khan, R.U.; Zhang, H.; Chen, X. Recent progress in chemical modification of starch and its applications. RSC Adv, 2015, 5, 67459-67474.
[62]
Simanaviciute, D.; Liudvinaviciute, D.; Klimaviciute, R.; Rutkaite, R. Cross-linked cationic starch derivatives for immobilization of chlorogenic acid. Eur. Polym. J., 2017, 93, 833-842.
[63]
Lekniute, E.; Peciulyte, L.; Klimaviciute, R.; Bendoraitiene, J.; Zemaitaitis, A. Structural characteristics and flocculation properties of amphoteric starch. Coll. Surf. A, 2013, 430, 95-102.
[64]
Peng, H.; Zhong, S.; Lin, Q.; Yao, X.; Liang, Z.; Yang, M.; Yin, G.; Liu, Q.; He, H. Removal of both cationic and anionic contaminants by amphoteric starch. Carbohyd. Polym., 2016, 138, 210-214.
[65]
Yang, Z.; Wu, H.; Yuan, B.; Huang, M.; Yang, H.; Li, A.; Bai, J.; Cheng, R. Synthesis of amphoteric starch-based grafting flocculants for flocculation of both positively and negatively charged colloidal contaminants from water. Chem. Eng. J., 2014, 244, 209-217.
[66]
Kumar, R.; Sharma, R.K.; Singh, A.P. Cellulose based grafted biosorbents. Journey from lignocellulose biomass to toxic metal ions sorption applications. A review. J. Mol. Liq., 2017, 232, 62-93.
[67]
Kono, H.; Ogasawara, K.; Kusumoto, R.; Oshima, K.; Hashimoto, H.; Shimizu, Y. Cationic cellulose hydrogels cross-linked by poly(ethylene glycol): Preparation, molecular dynamics, and adsorption of anionic dyes. Carbohyd. Polym., 2016, 152, 170-180.
[68]
Suopajärvi, T.; Sirviö, J.A.; Liimatainen, H. Cationic nanocelluloses in dewatering of municipal activated sludge. J. Environ. Chem. Eng., 2017, 5, 86-92.
[69]
Zhang, H.; Zeng, X.; Xie, J.; Li, Z.; Li, H. Study on the sorption process of triclosan on cationic microfibrillated cellulose and its antibacterial activity. Carbohyd. Polym., 2016, 136, 493-498.
[70]
Kemppainen, K.; Suopajärvi, T.; Laitinen, O.; Ämmälä, A.; Liimatainen, H.; Illikainen, M. Flocculation of fine hematite and quartz suspensions with anionic cellulose nanofibers. Chem. Eng. Sci., 2016, 148, 256-266.
[71]
Suopajärvi, T.; Koivuranta, E.; Liimatainen, H.; Niinimäki, J. Flocculation of municipal wastewaters with anionic nanocelluloses: Influence of nanocellulose characteristics on floc morphology and strength. J. Environ. Chem. Eng., 2014, 2, 2005-2012.
[72]
Hong, P.; Fa, C.; Wei, Y.; Sen, Z. Surface properties and synthesis of the cellulose-based amphoteric polymeric surfactant. Carbohyd. Polym., 2007, 69, 625-630.
[73]
Kono, H.; Kusumoto, R. Preparation, structural characterization, and flocculation ability of amphoteric cellulose. React. Funct. Polym., 2014, 82, 111-119.
[74]
Zhong, Q.Q.; Yue, Q.Y.; Li, Q.; Gao, B.Y.; Xu, X. Removal of Cu(II) and Cr(VI) from wastewater by an amphoteric sorbent based on cellulose-rich biomass. Carbohyd. Polym., 2014, 111, 788-796.
[75]
Figueiredo, P.; Lintinen, K.; Hirvonen, J.T.; Kostiainen, M.A.; Santos, H.A. Properties and chemical modifications of lignin: Towards lignin-based nanomaterials for biomedical applications. Prog. Mater. Sci., 2018, 93, 233-269.
[76]
Thakur, S.; Govender, P.P.; Mamo, M.A.; Tamulevicius, S.; Mishra, Y.K.; Thakur, V.K. Progress in lignin hydrogels and nanocomposites for water purification: Future perspectives. Vacuum, 2017, 146, 342-355.
[77]
Lü, Q.F.; Huang, Z.K.; Liu, B.; Cheng, X. Preparation and heavy metal ions biosorption of graft copolymers from enzymatic hydrolysis lignin and amino acids. Bioresource. Technol., 2012, 104, 111-118.
[78]
Bacelo, H.A.M.; Santos, S.C.R.; Botelho, C.M.S. Tannin-based biosorbents for environmental applications. A review. Chem. Eng. J., 2016, 303, 575-587.
[79]
Huang, Q.; Liu, M.; Zhao, J.; Chen, J.; Zeng, G.; Huang, H.; Tian, J.; Wen, Y.; Zhang, X.; Wei, Y. Facile preparation of polyethylenimine-tannins coated SiO2 hybrid materials for Cu2+ removal. Appl. Surf. Sci., 2018, 427, 535-544.
[80]
Wang, Z.; Li, X.; Liang, H.; Ning, J.; Zhou, Z.; Li, G. Equilibrium, kinetics and mechanism of Au3+, Pd2+and Ag+ ions adsorption from aqueous solutions by graphene oxide functionalized persimmon tannin. Mater. Sci. Eng. C, 2017, 79, 227-236.
[81]
Xu, Q.; Wang, Y.; Jin, L.; Wang, Y.; Qin, M. Adsorption of Cu(II), Pb(II) and Cr(VI) from aqueous solutions using black wattle tannin-immobilized nanocellulose. J. Hazard. Mater., 2017, 339, 91-99.
[82]
Paneysar, J.S.; Barton, S.; Chandra, S.; Ambre, P.; Coutinho, E. Novel thermoresponsive assemblies of co-grafted natural and synthetic polymers for water purification. Water Sci. Technol., 2017, 75, 1084.
[83]
Ahmad, M.; Manzoor, K.; Ikram, S. Versatile nature of hetero-chitosan based derivatives as biodegradable adsorbent for heavy metal ions; a review. Int. J. Biol. Macromol., 2017, 105, 190-203.
[84]
Bertoni, F.A.; González, J.C.; García, S.I.; Sala, L.F.; Bellú, S.E. Application of chitosan in removal of molybdate ions from contaminated water and groundwater. Carbohyd. Polym., 2018, 180, 55-62.
[85]
Adewuyi, S.; Jacob, J.M.; Olaleye, O.O.; Abdulraheem, T.O.; Tayo, J.A.; Oladoyinbo, F.O. Chitosan-bound pyridinedicarboxylate Ni(II) and Fe(III) complex biopolymer films as waste water decyanidation agents. Carbohyd. Polym., 2016, 151, 1235-1239.
[86]
Xiong, Y.; Song, Y.; Tong, Q.; Zhang, P.; Wang, Y.; Lou, Z.; Zhang, F.; Shan, W. Adsorption-controlled preparation of anionic imprinted amino-functionalization chitosan for recognizing rhenium(VII). Sep. Purif. Technol., 2017, 177, 142-151.
[87]
Zheng, X.; Li, X.; Li, J.; Wang, L.; Jin, W. liu, J.; Pei, Y.; Tang, K. Efficient removal of anionic dye (Congo red) by dialdehyde microfibrillated cellulose/chitosan composite film with significantly improved stability in dye solution. Int. J. Biol. Macromol., 2018, 107, 283-289.
[88]
Yu, Z.; Dang, Q.; Liu, C.; Cha, D.; Zhang, H.; Zhu, W.; Zhang, Q.; Fan, B. Preparation and characterization of poly(maleic acid)-grafted cross-linked chitosan microspheres for Cd(II) adsorption. Carbohyd. Polym., 2017, 172, 28-39.
[89]
Liu, B.; Chen, X.; Zheng, H.; Wang, Y.; Sun, Y.; Zhao, C.; Zhang, S. Rapid and efficient removal of heavy metal and cationic dye by carboxylate-rich magnetic chitosan flocculants: Role of ionic groups. Carbohyd. Polym., 2018, 181, 327-336.
[90]
Liu, T.; Han, X.; Wang, Y.; Yan, L.; Du, B.; Wei, Q.; Wei, D. Magnetic chitosan/anaerobic granular sludge composite: Synthesis, characterization and application in heavy metal ions removal. J. Colloid Interf Sci., 2017, 508, 405-414.
[91]
Rezgui, S.; Amrane, A.; Fourcade, F.; Assadi, A.; Monser, L.; Adhoum, N. Electro-fenton catalyzed with magnetic chitosan beads for the removal of Chlordimeform insecticide. Appl. Catal. BEnviron, 2018, 226, 346-359.
[92]
Taher, F.A.; Kamal, F.H.; Badawy, N.A.; Shrshr, A.E. Hierarchical magnetic/chitosan/graphene oxide 3D nanostructure as highly effective adsorbent. Mater. Res. Bull., 2018, 97, 361-368.
[93]
Zhang, B.; Huyan, Y.; Wang, J.; Chen, X.; Zhang, H.; Zhang, Q. Fe3O4@SiO2@CCS porous magnetic microspheres as adsorbent for removal of organic dyes in aqueous phase. J. Alloy Compd., 2018, 735, 1986-1996.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 4
Year: 2019
Published on: 19 March, 2019
Page: [335 - 344]
Pages: 10
DOI: 10.2174/1570193X15666180326120151
Price: $65

Article Metrics

PDF: 60
HTML: 3
EPUB: 2
PRC: 2