Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Review Article

Solid Lipid Nanoparticles: A Potential Approach for Drug Delivery System

Author(s): Babita Sarangi*, Utpal Jana, Narahari N. Palei, Guru P. Mohanta and Prabal K. Manna

Volume 9, Issue 2, 2019

Page: [142 - 156] Pages: 15

DOI: 10.2174/2210681208666180321144536

Price: $65

Abstract

The therapeutic efficacy of perorally administered drug is often concealed by their poor oral bioavailability (BA) and low metabolic stability in the gastrointestinal tract (GIT). Most of the newly discovered drug molecules are of high molecular weight and belong to biopharmaceutical classification system (BCS) – II. Poor aqueous solubility and high membrane permeability characteristics of BCS – II drugs limit BA after oral administration. Recently, lipid-based drug delivery (LBDD) systems have gained much importance due to their ability to improve the solubility and BA of poorly soluble drugs. Oral delivery of drugs incorporated in solid lipid nanoparticles (SLNs) has gained considerable interest since the last two decades. SLNs have advantages above the others, as compared to polymer toxicity which is low, as inexpensive excipients and organic solvents are not used. SLNs offer the possibility to develop new therapeutics due to their unique size-dependent properties. An attempt to incorporate drugs into SLNs offers a new prototype in drug delivery system which can be utilized for drug targeting to specific tissue. This review presents elaborate information of SLNs with their aim, advantages, challenges and limitations, the principle of formulation, routes of administration and their biodistribution. It also describes the gastrointestinal absorption and the factors affecting absorption of SLNs from GIT along with its application.

Keywords: Bioavailability (BA), Lipid-Based Drug Delivery (LBDD) systems, Solid Lipid Nanoparticle (SLN), dissolution, gastrointestinal absorption, Gastrointestinal Tract (GIT).

Graphical Abstract
[1]
Harde, H.; Das, M.; Jain, S. Solid lipid nanoparticles: An oral bioavailability enhancer vehicle. Expert Opin. Drug Deliv., 2011, 8(11), 1407-1424.
[2]
Kalepu, S.; Manthina, M.; Padavala, V. Oral lipid based drug delivery systems – an overview. Acta Pharm. Sin. B, 2013, 3(6), 361-372.
[3]
Zheng, C.; Wang, Y. Prediction of oral bioavailability: Challenges and strategies. J. Bioequivalence Bioavailab., 2013, 6, 1.
[4]
Caldwell, J.; Marsh, M.V. 2-metabolism of drugs by the gastrointestinal tract, in: C.F. George, D.G. Shand (Eds) Presystemic drug elimination, Butterworth-Heinemann. 1982, pp. 29-42.
[5]
Gavhane, Y.N.; Yadav, A.V. Loss of orally administered drugs in GI tract. Saudi Pharm. J., 2012, 20(4), 331-344.
[6]
Shen, D.D.; Kunze, K.L.; Thummel, K.E. Enzyme-catalyzed processes of first-pass hepatic and intestinal drug extraction. Adv. Drug Deliv. Rev., 1997, 27, 99-127.
[7]
Galetin, A.; Gertz, M.; Houston, J.B. Contribution of initestinal Cytochrome P450-mediated metabolism to drug-drug inhibition and induction. Drug Metab. Pharmacokinet., 2010, 25, 28-47.
[8]
Pouton, C.W. Formulation of poorly water-soluble drugs for oral administration:physicochemical and physiological issues and the lipid formulation classification system. Eur. J. Pharm. Sci., 2006, 29, 278-287.
[9]
Jannin, V.; Musakhanian, J.; Marchaud, D. Approaches for the development of solid and semi-solid lipid-based formulations. Adv. Drug Deliv. Rev., 2008, 60, 734-746.
[10]
Porter, C.J.; Charman, W.N. In vitro assessment of oral lipid based formulations. Adv. Drug Deliv. Rev., 2001, 50(Suppl. 1), 127-147.
[11]
Pouton, C.W. Lipid formulations for oral administration of drugs: Nonemulsifying,self-emulsifying and ‘self-microemulsifying’ drug delivery systems. Eur. J. Pharm. Sci., 2000, 11(Suppl. 2), 93-98.
[12]
Hauss, D.J.; Fogal, S.E.; Ficorilli, J.V.; Price, C.A.; Roy, T.; Jayaraj, A.A.; Keirns, J.J. Lipid-based delivery systems for improving the bioavailability and lymphatic transport of a poorly water-soluble LTB4 inhibitor. J. Pharm. Sci., 1998, 87, 164-169.
[13]
Schwarz, C.; Mehnert, W.; Lucks, J.S.; Muller, R.H. Solid Lipid Nanoparticles (SLN) for controlled drug delivery. Production, characterization and sterilization. J. Control. Release, 1994, 30, 83-96.
[14]
Muller, R.H.; Mader, K.; Gohla, S. Solid Lipid Nanoparticles (SLN) for controlled drug delivery: A review of the state of the art. Eur. J. Pharm. Biopharm., 2000, 50, 161-177.
[15]
Müller, R.H.; Runge, S.A.; Ravelli, V.; Thünemann, A.F.; Mehnert, W.; Souto, E.B. Cyclosporine-loaded solid lipid nanoparticles (SLN): Drug-lipid physicochemical interactions and characterization of drug incorporation. Eur. J. Pharm. Biopharm., 2008, 68, 535-544.
[16]
Muller, R.H.; Ruhl, D.; Runge, S.; Schulze-Forster, K.; Wolfgang, M. Cytotoxicity of solid lipid nanoparticles as a function of the lipid matrix and the surfactant. Pharm. Res., 1997, 14, 458-462.
[17]
Ma, P.; Dong, X.; Swadley, C.L.; Gupte, A.; Leggas, M.; Ledebur, H.C.; Mumper, R.J. Development of idarubicin and doxorubicin solid lipid nanoparticles to overcome PGP–mediated multiple drug resistance in leukemia. J. Biomed. Nanotechnol., 2009, 5(2), 151-161.
[18]
Dong, X.; Mattingly, C.A.; Tseng, M.; Cho, M.; Liu, Y.; Adams, V.R.; Mumper, R.J. Doxorubicin and paclitaxelloaded lipid-based nanoparticles overcome multidrug resistance by inhibiting P-gp via ATP depletion. Cancer Res., 2009, 69, 3918-3926.
[19]
Ugazio, E.; Cavalli, R.; Gasco, M.R. Incorporation of cyclosporin A in Solid Lipid Nanoparticles (SLN). Int. J. Pharm., 2002, 241, 341-344.
[20]
Yang, S.; Zhu, J.; Lu, Y.; Liang, B.; Yang, C. Body distribution of camptothecin solid lipid nanopa rticles after oral administration. Pharm. Res., 1999, 16, 751-757.
[21]
Zara, G.P.; Cavalli, R.; Fundaro, A.; Vighetto, D.; Gasco, M.R. Pharmacokinetics and tissue distribution of idarubicin-loaded solid lipid nanoparticles after duodenal administration to rats. J. Pharm. Sci., 2002, 91, 1324-1333.
[22]
Cavalli, R.; Zara, G.P.; Caputo, O.; Bargoni, A.; Fundarò, A.; Gasco, M.R. Transmucosal transport of tobramycin incorporated in solid lipid nanoparticles (SLN) after duodenal administration, Part I — a pharmacokinetic study. Pharmacol. Res., 2000, 42, 541-545.
[23]
Bargoni, A.; Cavalli, R.; Zara, G.P.; Fundaro, A.; Caputo, O.; Gasco, M.R. Transmucosal transport of tobramycin incorporated in Solid Lipid Nanoparticles (SLN) after duodenal administration, Part II — tissue distribution. Pharmacol. Res., 2001, 43, 497-502.
[24]
Pandey, R.; Sharma, S.; Khuller, G.K. Oral solid lipid nanoparticle-based antitubercular chemotherapy. Tuberculosis., 2005, 85, 415-420.
[25]
García-Fuentes, M.; Prego, C.; Torres, D.; Alonso, M.J. A comparative study of the potential of solid triglyceride nanostructures coated with chitosan or poly (ethyleneglycol) as carriers for oral calcitonin delivery. Eur. J. Pharm. Sci., 2005, 25, 133-143.
[26]
Zhang, N.; Ping, Q.; Huang, G.; Xu, W.; Cheng, Y.; Han, X. Lectin-modified solid lipid nanoparticles as carriers for oral administration of insulin. Int. J. Pharm., 2006, 327, 153-159.
[27]
Pinto, J.F.; Muller, R.H. Pellets as carriers of solid lipid nanoparticles (SLN) for oral administration of drugs. Die Pharm., 1999, 54, 506-509.
[28]
Kumar, S.; Randhawa, J.K. High melting lipid based approach for drug delivery: Solid lipid nanoparticles. Mater. Sci. Eng. C, 2013, 33, 1842-1852.
[29]
Naseri, N.; Valizadeh, H.; Zakeri-Milani, P. Solid lipid nanoparticles and nanostructured lipid carriers: Structure, preparation and application. Adv. Pharm. Bull., 2015, 5(3), 305-313.
[30]
Porter, C.J.; Trevaskis, N.L.; Charman, W.N. Lipids and lipid-based formulations: Optimizing the oral delivery of lipophilic drugs. Nat. Rev. Drug Discov., 2007, 6, 231-248.
[31]
Muller, R.H.; Runge, S.; Ravelli, V.; Mehnert, W.; Thunemann, A.F.; Souto, E.B. Oral bioavailability of cyclosporine: Solid lipid nanoparticles (SLN) versus drug nanocrystals. Int. J. Pharm., 2006, 317, 82-89.
[32]
Tsai, M.J.; Huang, Y.B.; Wu, P.C.; Fu, Y.S.; Kao, Y.R.; Fang, J.Y.; Tsai, Y.H. Oral apomorphine delivery from solid lipid nanoparticles with different monostearate emulsifiers: Pharmacokinetic and behavioral evaluations. J. Pharm. Sci., 2011, 100, 547-557.
[33]
Chen, C.C.; Tsai, T.H.; Huang, Z.R.; Fang, J.Y. Effects of lipophilic emulsifiers on the oral administration of lovastatin from nanostructured lipid carriers: Physicochemical characterization and pharmacokinetics. Eur. J. Pharm. Biopharm., 2010, 74, 474-482.
[34]
Yuan, H.; Chen, J.; Du, Y.Z.; Hu, F.Q.; Zeng, S.; Zhao, H.L. Studies on oral absorption of stearic acid SLN by a novel fluorometric method. Colloids Surf. B Biointerfaces, 2007, 58, 157-164.
[35]
Westesen, K.; Bunjes, H.; Koch, M.H.J. Physicochemical characterization of lipid nanoparticles and evaluation of their drug loading capacity and sustained release potential. J. Control. Release, 1997, 48(2-3), 223-236.
[36]
Chen, C.C.; Tsai, T.H.; Huang, Z.R.; Fang, J.Y. Effects of lipophilic emulsifiers on the oral administration of lovastatin from nanostructured lipid carriers: Physicochemical characterization and pharmacokinetics. Eur. J. Pharm. Biopharm., 2010, 74(3), 474-482.
[37]
Müller, R.H.; Radtke, M.; Wissing, S.A. Nanostructured lipid matrices for improved microencapsulation of drugs. Int. J. Pharm., 2002, 242(1-2), 121-128.
[38]
Radtke, M.; Souto, E.B.; Müller, R.H. Nanostructured lipid carriers: A novel generation of solid lipid drug carriers. Pharm. Technol. Eur, 2005, 17(4), 45-50.
[39]
Desai, N. Challenges in development of nanoparticle-based therapeutics. AAPS J., 2012, 14, 282-295.
[40]
Duncan, R.; Gaspar, R. Nanomedicine(s) under the microscope. Mol. Pharm., 2011, 8, 2101-2141.
[41]
Wei, A.; Mehtala, J.G.; Patri, A.K. Challenges and opportunities in the advancement of nanomedicines. J. Control. Release, 2012, 164, 236-246.
[42]
Jain, R.K.; Stylianopoulos, T. Delivering nanomedicine to solid tumors. Nat. Rev. Clin. Oncol., 2010, 7, 653-664.
[43]
Srinivas, P.R.; Philbert, M.; Vu, T.Q.; Huang, Q.; Kokini, J.L.; Saltos, E.; Chen, H.; Peterson, C.M.; Friedl, K.E.; McDade-Ngutter, C.; Hubbard, V.; Starke-Reed, P.; Miller, N.; Betz, J.M.; Dwyer, J.; Milner, J.; Ross, S.A. Nanotechnology research: Applications in nutritional sciences. J. Nutr., 2010, 140, 119-124.
[44]
Buzea, C.; Pacheco, I.; Robbie, K. Nanomaterials and nanoparticles: sources and toxicity. Biointerphases, 2007, 2(4), MR17-MR71.
[45]
Irving, B. Nanoparticle drug delivery systems. Inno. Pharm. Biotechnol., 2007, 24, 58-62.
[46]
Abhilash, M. Potential applications of nanoparticles. Int. J. Pharma Bio Sci., 2010, 1(1), 1-12.
[47]
Cavalli, R.; Morel, S.; Gasco, M.R.; Chetoni, P.; Saettone, M.F. Preparation and evaluation in vitro of colloidal lipospheres containing pilocarpine as ion pair. Int. J. Pharm., 1995, 117(2), 243-246.
[48]
Mu¨ller, R.H.; Mader, K.; Gohla, S. Solid Lipid Nanoparticles (SLN) for controlled drug delivery – a review of the state of the art. Eur. J. Pharm. Biopharm., 2000, 50(1), 161-177.
[49]
Yang, S.C.; Lu, L.F.; Cai, Y.; Zhu, J.B.; Liang, B.W.; Yang, C.Z. Body distribution in mice of intravenously injected camptothecin solid lipid nanoparticles and targeting effect on brain. J. Control. Release, 1999, 59(3), 299-307.
[50]
Mu¨hlen, A.; Schwarz, C.; Mehnert, W. Solid lipid nanoparticles (SLN) for controlled drug delivery-drug release and release mechanism. Eur. J. Pharm. Biopharm., 1998, 45(2), 149-155.
[51]
Desai, P.; Date, A.; Patravale, B. Overcoming poor oral bioavailability using nanoparticle formulations-opportunities and limitations. Drug Discov. Today. Technol., 2012, 9, 87-95.
[52]
Gursoy, R.N.; Benita, S. Self-emulsifying drug delivery systems (SEDDS) for improved oral delivery of lipophilic drugs. Biomed. Pharmacother., 2004, 58, 173-182.
[53]
Cornaire, G.; Woodley, J.; Hermann, P.; Cloarec, A.; Arellano, C.; Houin, G. Impact of excipients on the absorption of P-glycoprotein substrates in vitro and in vivo. Int. J. Pharm., 2004, 278, 119-131.
[54]
Wandel, C.; Kim, R.B.; Stein, C.M. Inactive excipients such as Cremophor can affect in vivo drug disposition. Clin. Pharmacol. Ther., 2003, 73, 394-396.
[55]
Yang, S.; Zhu, J.; Lu, Y.; Ling, B.; Yang, C. Body distribution of camptothecin solid lipid nanoparticles after oral administration. Pharm. Res., 1999, 16, 751-757.
[56]
Mukherjee, S.; Ray, S.; Thakur, R.S. Solid lipid nanoparticles: A modern formulation approach in drug delivery system. Indian J. Pharm. Sci., 2009, 71(4), 349-358.
[57]
Yang, S.C.; Lu, L.F.; Cai, Y.; Zhu, J.B.; Liang, B.W.; Yang, C.Z. Body distribution in mice of intravenously injected camptothecin solid lipid nanoparticles and targeting effect on brain. J. Control. Release, 1999, 59, 299-307.
[58]
Zur Muhlen, A.; Mehnert, W. Drug release and release mechanism of prednisolone loaded solid lipid nanoparticles. Pharmazie, 1998, 53, 552-555.
[59]
Prow, T.; Smith, J.N.; Grebe, R.; Salazar, J.H.; Wang, N.; Kotov, N.; Lutty, G.; Leary, J. Construction, gene delivery, and expression of DNA tethered nanoparticles. Mol. Vis., 2006, 12, 606-615.
[60]
Puri, A. Loomis, Kristin.; Smith, Brandon.; Lee, J.H.; Yavlovich, A.; Heldman, E.; Blumenthal, R. Lipid-based nanoparticles as pharmaceutical drug carriers: From concepts to clinic. Crit. Rev. Ther. Drug Carrier Syst., 2009, 26(6), 523-580.
[61]
Schubert, M.A.; Harms, M.; Muller-Goymann, C.C. Structural investigations on lipid nanoparticles containing high amounts of lecithin. Eur. J. Pharm. Sci., 2006, 27(2-3), 226-236.
[62]
Priyanka, K.; Abdul Hasan Sathali, A. Preparation and evaluation of montelukast sodium loaded solid lipid nanoparticles. J. Young Pharm., 2012, 4(3), 129-137.
[63]
Samein, L.H. Preparation and evaluation of Nystatin loaded-solid-lipid nanoparticles for topical delivery. Int. J. Pharm. Pharm. Sci., 2014, 6(2), 592-597.
[64]
Khameneh, B.; Halimi, V.; Jaafari, M.R.; Golmohammadzadeh, S. Safranal-loaded solid lipid nanoparticles: Evaluation of sunscreen and moisturizing potential for topical applications. Iran. J. Basic Med. Sci., 2015, 18(1), 58-63.
[65]
Gomes, M.J.; Martins, S.; Ferreira, D.; Segundo, M.A.; Reis, S. Lipid nanoparticles for topical and transdermal application for alopecia treatment: development, physicochemical characterization, and in vitro release and penetration studies. Int. J. Nanomedicine, 2014, 9, 1231-1242.
[66]
Khalil, R.M.; El-Bary, A.A.; Kassem, M.A.; Ghorab, M.M.; Ahmed, M.B. 1st Annual International Interdisciplinary Conference, AIIC. 2013, 24-26 April, Azores, Portugal.
[67]
Kumar, P.P.; Gayatri, P.; Reddy, S.; Jaganmohan, S.; Rao, Y.M. atorvastatin loaded solidlipid nanoparticles: Formulation, optimization, and in-vitro characterization. IOSR-PHR, 2012, 2(5), 23-32.
[68]
Vitthal, K.U.; Pillai, M.M.; Kininge, P. Study of solid lipid nanoparticles as a carrier for bacoside. IJPBS, 2013, 3(3), 414-426.
[69]
Vijayan, V.; Shaik Aafreen, S.; Sakthivel, K.; Reddy, R. Formulation and characterization of solid lipid nanoparticles loaded Neem oil for topical treatment of acne; JAD, 2013, pp. 282-286.
[70]
Mosallaei, N.; Malaekeh-Nikouei, B.; Golmohammadzadeh, S.; Jaafari, M.; Hanafi-Bojd, M. Docetaxel-Loaded Solid Lipid Nanoparticles: Preparation, Characterization. In vitro, and in vivo evaluations. J. Pharm. Sci., 2013, 102(6), 1994-2004.
[71]
Hao, J.; Fang, X.; Zhou, Y.; Wang, J.; Guo, F.; Li, F.; Peng, X. Development and optimization of solid lipid nanoparticle formulation for ophthalmic delivery of chloramphenicol using a Box-Behnken design. Int. J. Nanomedicine, 2011, 6, 683-692.
[72]
Li, S.; Ji, Z.; Zou, M.; Nie, X.; Shi, Y.; Cheng, G. Preparation, characterization, pharmacokinetics and tissue distribution of solid lipid nanoparticles loaded with tetrandrine. AAPS PharmSciTech, 2011, 12(3), 1011-1018.
[73]
Thatipamula, R.; Palem, C.; Gannu, R.; Mudragada, S.; Yamsani, M. Formulation and in vitro characterization of Domperidon loaded solid lipid nanoparticles and nanostructured lipid carriers. Daru, 2011, 19(1), 23-32.
[74]
Xie, S.; Zhu, L.; Dong, Z.; Wang, Y.; Wang, X.; Zhou, W.Z. Preparation and evaluation of ofloxacin-loaded palmitic acid solid lipid nanoparticles. Int. J. Nanomedicine, 2011, 6, 547-555.
[75]
Varshosaz, J.; Tabbakhian, M.; Mohammadi, M.Y. Formulation and optimization of solid lipid nanoparticles of buspirone HCl for enhancement of its oral bioavailability. J. Liposome Res., 2010, 20(4), 286-296.
[76]
Hu, L.; Xing, Q.; Meng, J.; Shang, C. Preparation and enhanced oral bioavailability of cryptotanshinone-loaded solid lipid nanoparticles. AAPS PharmSciTech, 2010, 11(2), 582-587.
[77]
Hu, L.; Jia, H.; Luo, Z.; Liu, C.; Xing, Q. Improvement of digoxin oral absorption in rabbits by incorporation into solid lipid nanoparticles. Pharmazie, 2010, 65(2), 110-113.
[78]
Varshosaz, J.; Minayian, M.; Moazen, E. Enhancement of oral bioavailability of pentoxifylline by solid lipid nanoparticles. J. Liposome Res., 2010, 20(2), 115-123.
[79]
Xie, S.; Pan, B.; Wang, M.; Zhu, L.; Wang, F.; Dong, Z.; Wang, X.; Zhou, W. Formulation, characterization and pharmacokinetics of praziquantel-loaded hydrogenated castor oil solid lipid nanoparticles. Nanomedicine (Lond.), 2010, 5(5), 693-701.
[80]
Ekambaram, P.; Abdul Hasan Sathali, A. Formulation and evaluation of solid lipid nanoparticles of Ramipril. J. Young Pharm., 2011, 3(3), 216-220.
[81]
Kumar, V.V.; Chandrasekar, D.; Ramakrishna, S.; Kishan, V.; Rao, Y.M.; Diwan, P.V. Development and evaluation of nitrendipine loaded solid lipid nanoparticles: Influence of wax and glyceride lipids on plasma pharmacokinetics. Int. J. Pharm., 2007, 335(1-2), 167-175.
[82]
Wang, D.; Wang, X.; Li, X.; Ye, L. Preparation and characterization of solid lipid nanoparticles loaded with alpha-asarone. PDA J. Pharm. Sci. Technol., 2008, 62(1), 56-65.
[83]
Suresh, G.; Manjunath, K.; Venkateswarlu, V.; Satyanarayana, V. Preparation, Characterization, and in vitro and in vivo evaluation of lovastatin solid lipid nanoparticles. AAPS PharmSciTech, 2007, 8(1), E162-E170.
[84]
Luo, Y.; Chen, D.; Ren, L.; Zhao, X.; Qin, J. Solid lipid nanoparticles for enhancing vinpocetine’s oral bioavailability. J. Control. Release, 2006, 114(1), 53-59.
[85]
Manjunath, K.; Venkateswarlu, V. Pharmacokinetics, tissue distribution and bioavailability of clozapine solid lipid nanoparticles after intravenous and intraduodenal administration. J. Control. Release, 2005, 107(2), 215-228.
[86]
Chakraborty, S.; Shukla, D.; Mishra, B.; Singh, S. Lipid-An emerging platform for oral delivery of drugs with poor bioavailability. Eur. J. Pharm. Biopharm., 2009, 73(1), 1-15.
[87]
Das, S.; Choudhary, A. Recent advances in lipid nanoparticle formulations with solid matrix for oral drug delivery. AAPS PharmSciTech, 2011, 12(1), 62-76.
[88]
Crounse, R.G. Human pharmacology of griseofulvin: The effect of fat intake on gastrointestinal absorption. J. Invest. Dermatol., 1961, 37, 529-533.
[89]
Horter, D.; Dressman, J.B. Influence of physicochemical properties on dissolution of drugs in the gastrointestinal tract. Adv. Drug Deliv. Rev., 2001, 46(1-3), 75-87.
[90]
Wagner, D.; Spahn-Langguth, H.; Hanafy, A.; Koggel, A.; Langguth, P. Intestinal drug efflux: Formulation and food effects. Adv. Drug Deliv. Rev., 2001, 50(1), S13-S31.
[91]
Touitou, E.; Barry, B.W. editors. Enhancement in drug delivery. Florida: CRC Press. 2006.
[92]
Liversidge, G.G.; Cundy, K.C. Particle size reduction for improvement of oral bioavailability of hydrophobic drugs: Absolute oral bioavailability of nanocrystalline danazol in beagle dogs. Int. J. Pharm., 1995, 125(1), 91-97.
[93]
Charman, W.N. Lipids, lipophilic drugs, and oral drug delivery-some emerging concepts. J. Pharm. Sci., 2000, 89(8), 967-978.
[94]
Charman, W.N.; Porter, C.J.H.; Mithani, S.; Dressman, J.B. Physicochemical and physiological mechanisms for the effects of food on drug absorption: The role of lipids and pH. J. Pharm. Sci., 1997, 86(3), 269-282.
[95]
Porter, C.J.H.; Charman, W.N. Intestinal lymphatic drug transport: An update. Adv. Drug Deliv. Rev., 2001, 50(1-2), 61-80.
[96]
Charman, S.A.; Charman, W.N.; Rogge, M.C.; Wilson, T.D.; Dutko, F.J.; Pouton, C.W. Self-emulsifying drug delivery systems: Formulation and biopharmaceutic evaluation of an investigational lipophilic compound. Pharm. Res., 1992, 9(1), 87-93.
[97]
Li, C.; Fleisher, D.; Li, L.; Schwier, J.R.; Sweetana, S.A.; Vasudevan, V.; Zornes, L.L.; Pao, L.H.; Zhou, S.Y.; Stratford, R.E. Regional-dependent intestinal absorption and meal composition effects on systemic availability of LY303366, a lipopeptide antifungal agent, in dogs. J. Pharm. Sci., 2001, 90(1), 47-57.
[98]
Martinez, M.; Amidon, G.; Clarke, L.; Jones, W.W.; Mitra, A.; Riviere, J. Applying the biopharmaceutics classification system to veterinary pharmaceutical products. Part II. Physiological considerations. Adv. Drug Deliv. Rev., 2002, 54(6), 825-850.
[99]
Sanjula, B.; Shah, F.M.; Javed, A.; Alka, A. Effect of poloxamer 188 on lymphatic uptake of carvedilol-loaded solid lipid nanoparticles for bioavailability enhancement. J. Drug Target., 2009, 17(3), 249-256.
[100]
Trevaskis, N.L.; Charman, W.N.; Porter, C.J. Lipid-based delivery systems and intestinal lymphatic drug transport: A mechanistic update. Adv. Drug Deliv. Rev., 2008, 60(6), 702-716.
[101]
Khoo, S.M.; Shackleford, D.M.; Porter, C.J.H.; Edwards, G.A.; Charman, W.N. Intestinal lymphatic transport of halofantrine occurs after oral administration of a unit-dose lipid-based formulation to fasted dogs. Pharm. Res., 2003, 20(9), 1460-145.
[102]
Porter, C.J.H.; Charman, W.N. Intestinal lymphatic drug transport: an update. Adv. Drug Deliv. Rev., 2001, 50(1-2), 61-80.
[103]
Florence, A.T. The oral absorption of micro-and nanoparticulates: neither exceptional nor unusual. Pharm. Res., 1997, 14, 259-266.
[104]
Bargoni, A.; Cavalli, R.; Caputo, O.; Fundarò, A.; Gasco, M.R.; Zara, G.P. Solid lipid nanoparticles in lymph and plasma after duodenal administration to rats. Pharm. Res., 1998, 15, 745-750.
[105]
Desai, M.P.; Labhasetwar, V.; Amidon, G.L.; Levy, R.J. Gastrointestinal uptake of biodegradable microparticles: Effect of particle size. Pharm. Res., 1996, 13, 1838-1845.
[106]
Mei, Z.; Li, X.; Wu, Q.; Hu, S.; Yang, X. The research on the anti-inflammatory activity and hepatotoxicity of triptolide-loaded solid lipid nanoparticle. Pharm. Res., 2005, 51, 345-351.
[107]
Jepson, M.A.; Clark, M.A.; Foster, N.; Mason, C.M.; Bennett, M.K.; Simmons, N.L.; Hirst, B.H. Targeting to intestinal M cells. J. Anat., 1996, 189, 507.
[108]
Rieux, A.D.; Fievez, V.; Garinot, M.; Schneider, Y.J.; Préat, V. Nanoparticles as potential oral delivery systems of proteins and vaccines: A mechanistic approach. J. Control. Release, 2006, 116, 1-27.
[109]
Goppert, T.M.; Muller, R.H. Adsorption kinetics of plasma proteins on solid lipid nanoparticles for drug targeting. Int. J. Pharm., 2005, 302, 172-186.
[110]
Kumar, V.V.; Chandrasekar, D.; Ramakrishna, S.; Kishan, V.; Rao, Y.M.; Diwan, P.V. Development and evaluation of nitrendipine loaded solid lipid nanoparticles: Influence of wax and glyceride lipids on plasma pharmacokinetics. Int. J. Pharm., 2007, 335(1-2), 167-175.
[111]
Wang, D.; Wang, X.; Li, X.; Ye, L. Preparation and characterization of solid lipid nanoparticles loaded with α-asarone. PDA J. Pharm. Sci. Technol., 2008, 62(1), 56-65.
[112]
Weiss, J.; Decker, E.A.; McClements, D.J.; Kristbergsson, K.; Helgason, T.; Awad, T. Solid lipid nanoparticles as delivery systems for bioactive food components. Food Biophys., 2008, 3(2), 146-154.
[113]
Almeida, A.J.; Runge, S.; Muller, R.H. Peptide-loaded solid lipid nanoparticles (SLN): Influence of production parameters. Int. J. Pharm., 1997, 149(2), 255-265.
[114]
Yang, S.; Zhu, J.; Lu, Y.; Liang, B.; Yang, C. Body distribution of camptothecin solid lipid nanoparticles after oral administration. Pharm. Res., 1999, 16, 751-757.
[115]
Mei, Z.; Li, X.; Wu, Q.; Hu, S.; Yang, S. The research on the anti-inflammatory activity and hepatotoxicity of tripolide-loaded solid lipid nanoparticle. Pharm. Res., 2005, 51(4), 345-351.
[116]
Ekambaram, P. Abdul Hasan sathali, A.; Priyanka, K.; Solid lipid nanoparticles: A review. Sci. Revs. Chem. Commun, 2012, 2(1), 80-102.
[117]
Mehnart, W.; Mader, K. Solid lipid nanoparticles: Production, characterization and applications. Adv. Drug Deliv. Rev., 2001, 47, 165-196.
[118]
Basu, B.; Garala, K.; Bhalodia, R.; Joshi, B.; Mehta, K. Solid lipid nanoparticles: A promising tool for drug delivery system. J. Pharm. Res., 2010, 3(1), 84-92.
[119]
Rudolph, C.; Schillinger, U.; Ortiz, A.; Tabatt, K.; Plank, C.; Muller, R.H.; Rosenecker, J. Application of novel Solid lipid nanoparticles (SLN)- gene vector formulations based on a diametric HIV-1 VAT-peptide in vitro and in vivo. Pharm. Res., 2004, 21, 1662-1669.
[120]
Hayes, M.E.; Drummond, D.C.; Kirpotin, D.B. Self-assembling nucleic acid-lipid nanoparticles suitable for targeted gene delivery. Gene Ther., 2006, 13, 646-651.
[121]
Pedersen, N.; Hansen, S.; Heydenreich, A.V.; Kristensen, H.G.; Poulsen, H.S. Solid lipid nanoparticles can effectively bind DNA, streptavidin and biotinylated ligands. Eur. J. Pharm. Biopharm., 2006, 62, 155-162.
[122]
Shenoy, V.S.; Vijay, I.K.; Murthy, R.S. Tumour targeting: Biological factors and formulation advances in injectable lipid nanoparticles. J. Pharm. Pharmacol., 2005, 57, 411-422.
[123]
Murthy, R.S. Solid lipid nanoparticles as carriers for anti-cancer drugs to solid tumours. Drug Deliv., 2005, 12, 385-392.
[124]
Ruckmani, K.; Sivakumar, M.; Ganeshkumar, P.A. Methotrexate loaded Solid Lipid Nanoparticles (SLN) for effective treatment of carcinoma. J. Nanosci. Nanotechnol., 2006, 6, 2991-2995.
[125]
Yang, S.C.; Lu, L.F.; Cai, Y.; Zhu, J.B.; Liang, B.W.; Yang, C.Z. Body distribution in mice of intravenously injected camptothecin solid lipid nanoparticles and targeting effect on brain. J. Control. Release, 1999, 59, 299-307.
[126]
Lu, B.; Xiong, S.B.; Yang, H.; Yin, X.D.; Chao, R.B. Solid lipid nanoparticles of mitoxantrone for local injection against breast cancer and its lymphnode metastases. Eur. J. Pharm. Sci., 2006, 28, 86-95.
[127]
Wong, H.L.; Rauth, A.M.; Bendayan, R. A new polymer-lipid hybrid nanoparticle system increases cytotoxicity of doxorubicin against multidrug-resistant human breast cancer cells. Pharm. Res., 2006, 23, 1574-1585.
[128]
Almeida, A.J.; Souto, E. Solid lipid nanoparticles as a drug delivery system for peptides and proteins. Adv. Drug Deliv. Rev., 2007, 59, 478-490.
[129]
Muller, R.H.; Mader, K.; Gohla, S. Solid Lipid Nanoparticles (SLN) for controlled drug delivery -a review of the state of the art. Eur. J. Pharm. Biopharm., 2000, 50(1), 161-177.
[130]
Venkateswarlu, V.; Manjunath, K. Preparation, characterization and in vitro release kinetics of clozapine solid lipid nanoparticles. J. Control. Release, 2004, 95, 627-638.
[131]
Vyas, S.P.; Khar, R.K. Controlled Drug Delivery - Concepts and Advances, 1st ed; Vallabh Prakashan, 2002, pp. 38-50.
[132]
Jain, N.K. Controlled and Novel Drug Delivery, 1st ed; CBS Publishers and Distributors, 1997, pp. 3-28.
[133]
Lang, S.C.; Lu, L.F.; Cai, Y.; Zhu, J.B.; Liang, B.W.; Yang, C.Z. Body distribution in mice of intravenously injected camptothecin solid lipid nanoparticles and targeting effect on brain. J. Control. Release, 1999, 59, 299-307.
[134]
Reddy, L.H.; Murthy, R.S.R. Etoposide-loaded nanoparticles made from glyceride lipids: Formulation, characterization, in vitro drug release, and stability evaluation. AAPS PharmSciTech, 2005, 6(2), 24.
[135]
Uner, M.; Yener, G. Importance of Solid Lipid Nanoparticles (SLN) in various administration routes and future perspectives. Int. J. Nanomedicine, 2007, 2(3), 289-300.
[136]
Kaur, S.; Nautyal, U.; Singh, R.; Singh, S.; Devi, A. Nanostructure Lipid Carrier (NLC): The new generation of lipid nanoparticles. Asian Pac. J. Health Sci, 2015, 2(2), 76-93.
[137]
Muller, R.H.; Radtke, M.; Wissing, S.A. Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC) in cosmetic and dermatological preparations. Adv. Drug Deliv. Rev., 2002, 54, S131-S155.
[138]
Mei, Z.; Wu, Q.; Hu, S.; Li, X.; Yang, X. Tripolide loaded solid lipid nanoparticle hydrogel for topical application. Drug Dev. Ind. Pharm., 2005, 31, 161-168.
[139]
Souto, E.B.; Muller, R.H. The use of SLN and NLC as topical particulate carriers for imidazole antifungal agents. Pharmazie, 2006, 61, 431-437.
[140]
Chen, H.; Chang, X.; Du, D.; Liu, W.; Liu, J.; Weng, T.; Yang, Y.; Xu, H.; Yang, X. Podophyllotoxin-loaded solid lipid nanoparticles for epidermal targeting. J. Control. Release, 2006, 110, 296-306.
[141]
Jenning, V.; Schafer-Korting, M.; Gohla, S. Vitamin A-loaded solid lipid nanoparticles for topical use: Drug release properties. J. Control. Release, 2000, 66, 115-126.
[142]
Liu, J.; Hu, W.; Chen, H.; Ni, Q.; Xu, H.; Yang, X. Isotretinoin-loaded solid lipid nanoparticles with skin targeting for topical delivery. Int. J. Pharm., 2007, 328(2), 191-195.
[143]
Choi, M.J.; Kim, J.H.; Maibach, H.I. Topical DNA vaccination with DNA/Lipid based complex. Curr. Drug Deliv., 2006, 3, 37-45.
[144]
Jain, S.K.; Chourasia, M.K.; Masuriha, R. Solid lipid nanoparticles bearing flurbiprofen for transdermal delivery. Drug Deliv., 2005, 12, 207-215.
[145]
Khameneh, B.; Halimi, V.; Jaafari, M.R.; Golmohammadzadeh, Sh. Safranal-loaded solid lipid nanoparticles: Evaluation of sunscreen and moisturizing potential for topical applications. Iran. J. Basic Med. Sci., 2015, 18, 58-63.
[146]
Lai, F.; Wissing, S.A.; Muller, R.H.; Fadda, A.M. Artemisia arborescens L essential oil-loaded solid lipid nanoparticles for potential agriculture application: Preparation and characterization. AAPS PharmSciTech, 2006, 7E2

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy