Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Review Article

Nanocarriers for Topical Drug Delivery: Approaches and Advancements

Author(s): Gautam Singhvi*, Shalini Patil, Vishal Girdhar and Sunil Kumar Dubey

Volume 9, Issue 3, 2019

Page: [329 - 336] Pages: 8

DOI: 10.2174/2210681208666180320122534

Price: $65

Abstract

Background: Delivery of drugs through the skin has been an attractive as well as a challenging area for research. Topical drug delivery has provided enormous advantages over the systemic route for various drugs and one of the important amongst them is reduced toxicity due to a minimum or zero exposure to non-target organs.

Methods: Various nanocarrier loaded topical preparations including organogels, emulgels, niosomal gel, lyotropic liquid crystal based gels, etc have been investigated for their topical application. Nanocarriers loaded topical preparation have been proven for improved permeation through the cutaneous barrier and delivering the drug at the target site. The objective of this review is to study the recent updates regarding newer topical gel formulations and highlighting their current potential and future scope of the same.

Results: The present work has summarized different studies related to nanotechnology derived topical gel formulations and also enlisted few drugs which have been successfully formulated as novel topical gels. Advancement in nanocarriers loaded topical preparations have also been reviewed with their permeation and efficacy compared to conventional formulations.

Conclusion: The present review will provide an overview of nanotechnology based topical preparation to the readers and will create curiosity for further development.

Keywords: Topical delivery, nanocarriers, organogels, emulgels, niosomal gel, lyotropic lipid crystals.

Graphical Abstract
[1]
Gupta, M.; Agrawal, U.; Vyas, S.P. Nanocarrier-based topical drug delivery for the treatment of skin diseases. Expert Opin. Drug Deliv., 2012, 9(7), 783-804.
[2]
Bouwstra, J.A.; Honeywell-Nguyen, P.L. Skin structure and mode of action of vesicles. Adv. Drug Deliv. Rev., 2002, 54, 41-55.
[3]
Akhoondinasab, M.R.; Khodarahmi, A.; Akhoondinasab, M.; Saberi, M.; Iranpour, M. Assessing effect of three herbal medicines in second and third degree burns in rats and comparison with silver sulfadiazine ointment. Burns, 2015, 41(1), 125-131.
[4]
Peter, M.E. Structure and function of the stratum corneum permeability barrier. Drug Devlop. Res., 1988, 13, 97-105.
[5]
Shrotriya, S.; Ranpise, N.; Satpute, P.; Vidhate, B. Skin targeting of curcumin solid lipid nanoparticles-engrossed topical gel for the treatment of pigmentation and irritant contact dermatitis. Artif. Cells Nanomed. Biotechnol., 2017, 44, 1-12.
[6]
Patwekar, S.L.; Pedewad, S.R.; Gattani, S. Development and evaluation of nanostructured lipid carriers-based gel of isotretinoin. Parti. Sci. Technol., 2017, 35, 1-12.
[7]
Rehman, K.; Zulfakar, M.H. Recent advances in gel technologies for topical and transdermal drug delivery. Drug Dev. Ind. Pharm., 2014, 40(4), 433-440.
[8]
Tokuyama, H.; Kato, Y. Preparation of thermosensitive polymeric organogels and their drug release behaviors. Eur. Polym. J., 2010, 46(2), 277-282.
[9]
Ibrahim, M.M.; Hafez, S.A.; Mahdy, M.M. Organogels, hydrogels and bigels as transdermal delivery systems for diltiazem hydrochloride. Asian J. Pharm. Sci., 2013, 8(1), 48-57.
[10]
Osmałek, T.; Milanowski, B.; Froelich, A.; Górska, S.; Białas, W.; Szybowicz, M.; Kapela, M. Novel organogels for topical delivery of naproxen: Design, physicochemical characteristics and in vitro drug permeation. Pharm. Dev. Technol., 2017, 22(4), 521-536.
[11]
Harwansh, R.K.; Mukherjee, P.K.; Bahadur, S.; Biswas, R. Enhanced permeability of ferulic acid loaded nanoemulsion based gel through skin against UVA mediated oxidative stress. Life Sci., 2015, 141, 202-211.
[12]
Hussain, A.; Samad, A.; Singh, S.K.; Ahsan, M.N.; Haque, M.W.; Faruk, A.; Ahmed, F.J. Nanoemulsion gel-based topical delivery of an antifungal drug: In vitro activity and in vivo evaluation. Drug Deliv., 2016, 23(2), 642-657.
[13]
Aparna, C.; Srinivas, P.; Patnaik, K.S.K.R. Enhanced transdermal permeability of telmisartan by a novel nanoemulsion gel. Int. J. Pharm. Pharm. Sci., 2015, 7(4), 335-342.
[14]
Mahtab, A.; Anwar, M.; Mallick, N.; Naz, Z.; Jain, G.K.; Ahmad, F.J. Transungual delivery of ketoconazole nanoemulgel for the effective management of onychomycosis. AAPS PharmSciTech, 2016, 17(6), 1477-1490.
[15]
Manosroi, A.; Chankhampan, C.; Manosroi, W.; Manosroi, J. Transdermal absorption enhancement of papain loaded in elastic niosomes incorporated in gel for scar treatment. Eur. J. Pharm. Sci., 2013, 48(3), 474-483.
[16]
Sohrabi, S.; Haeri, A.; Mahboubi, A.; Mortazavi, A.; Dadashzadeh, S. Chitosan gel-embedded moxifloxacin niosomes: An efficient antimicrobial hybrid system for burn infection. Int. J. Biol. Macromol., 2016, 85, 625-633.
[17]
Jacob, S.; Nair, A.B.; Al-Dhubiab, B.E. Preparation and evaluation of niosome gel containing acyclovir for enhanced dermal deposition. J. Liposome Res., 2016, 27(4), 283-292.
[18]
Meikle, T.G.; Zabara, A.; Waddington, L.J.; Separovic, F.A.; Drummond, C.J.; Conn, C.E. Incorporation of antimicrobial peptides in nanostructured lipid membrane mimetic bilayer Cubosomes. Colloids Surf. B , 2017, 152, 143-151.
[19]
Li, Y.; Dong, C.; Cun, D.; Liu, J.; Xiang, R.; Fang, L. Lamellar liquid crystal improves the skin retention of 3-O-Ethyl-Ascorbic acid and Potassium 4-Methoxysalicylate in vitro and in vivo for topical preparation. AAPS PharmSciTech, 2016, 17(3), 767-777.
[20]
Salah, S.; Mahmoud, S.A.; Kamel, A.O. Etodolac transdermal cubosomes for the treatment of rheumatoid arthritis: Ex vivo permeation and in vivo pharmacokinetic studies. Drug Deliv., 2017, 24(1), 846-856.
[21]
Zhang, Y.; Zhang, K.; Guo, T.; Li, Y.; Zhu, C.; Feng, N. Transdermal baicalin delivery using diethylene glycol monoethyl ether-mediated cubic phase gel. Int. J. Pharm., 2015, 479, 219-226.
[22]
Gaba, B.; Fazil, M.; Khan, S.; Ali, A.; Baboota, S.; Ali, J. Nanostructured lipid carrier system for topical delivery of terbinafine hydrochloride. Bull. Fac. Pharm. Cairo Univ., 2015, 53, 147-159.
[23]
Patel, D.; Dasgupta, S.; Dey, S.; Ramani, Y.R.; Ray, S.; Mazumder, B. Nanostructured Lipid Carriers (NLC)-based gel for the topical delivery of Aceclofenac: Preparation, characterization, and in vivo evaluation. Sci. Pharm., 2012, 80(3), 749-764.
[24]
Ying, S.C.; Ling, D.; De, S.B.; Xu, Z.; Xia, B.J.; He, X.; Yuan, L.V.Q.; Jin, H.; Long, Y.H. Nanostructured lipid carrier based topical gel of Ganoderma Triterpenoids for frostbite treatment. Chin. J. Nat. Med., 2015, 13(6), 454-460.
[25]
Khalil, R.M.; Abd-Elbary, A.; Kassem, M.A.; Ghorab, M.M.; Basha, M. Nanostructured lipid carriers (NLCs) versus solid lipid nanoparticles (SLNs) for topical delivery of meloxicam. Pharm. Dev. Technol., 2014, 19(3), 304-314.
[26]
Madan, J.R.; Khude, P.A.; Dua, K. Development and evaluation of solid lipid nanoparticles of mometasonefuroate for topical delivery. Int. J. Pharm. Investig., 2014, 4(2), 60-64.
[27]
Jain, S.; Khare, P.; Gulbake, A.; Bansal, D.; Jain, S.K. Design and development of solid lipid nanoparticles for topical delivery of an antifungal agent. Drug Deliv., 2010, 17(6), 443-451.
[28]
Puglia, C.; Offerta, A.; Tirendi, G.G.; Tarico, M.S.; Curreri, S.; Bonina, F.; Perrotta, R.E. Design of solid lipid nanoparticles for caffeine topical administration. Drug Deliv., 2016, 23(1), 36-40.
[29]
Bhatia, A.; Singh, B.; Wadhwa, S.; Raza, K.; Katare, O.P. Novel phospholipid-based topical formulations of tamoxifen: Evaluation for antipsoriatic activity using mouse-tail model. Pharm. Dev. Technol., 2014, 19(2), 160-163.
[30]
Parnami, N.; Garg, T.; Rath, G.; Goyal, A.K. Development and characterization of nanocarriers for topical treatment of psoriasis by using combination therapy. Artif. Cells Nanomed. Biotechnol., 2014, 42(6), 406-412.
[31]
Prasad, V.; Chaurasia, S. Performance evaluation of non-ionic surfactant based tazarotene encapsulated proniosomal gel for the treatment of psoriasis. Mater. Sci. Eng. C, 2017, 79, 168-176.
[32]
Gupta, A.; Eral, H.B.; Hatton, T.A.; Doyle, P.S. Nanoemulsions: Formation, properties and applications. Soft Matter, 2016, 12(11), 2826-2841.
[33]
Varma, V.N.S.K.; Maheshwari, P.V.; Navya, M.; Reddy, S.C.; Shivakumar, H.G.; Gowda, D.V. Calcipotriol delivery into the skin as emulgel for effective permeation. Saudi Pharm. J., 2014, 22(6), 591-599.
[34]
Arora, R.; Katiyar, S.S.; Kushwah, V.; Jain, S. Solid lipid nanoparticles and nanostructured lipid carrier-based nanotherapeutics in treatment of psoriasis: A comparative study. Expert Opin. Drug Deliv., 2016, 14(2), 165-177.
[35]
Avasatthi, V.; Pawar, H.; Dora, C.P.; Bansod, P.; Gill, M.S.; Suresh, S. A novel nanogel formulation of methotrexate for topical treatment of psoriasis: Optimization, in vitro and in vivo evaluation. Pharm. Dev. Technol., 2016, 21(5), 554-562.
[36]
Pradhan, M.; Singh, D.; Murthy, S.N.; Singh, M.R. Design, characterization and skin permeating potential of Fluocinoloneacetonide loaded nanostructured lipid carriers for topical treatment of psoriasis. Steroids, 2015, 101, 56-63.
[37]
Asthana, G.S.; Asthana, A.; Singh, D.; Sharma, P.K. Etodolac containing topical niosomal gel: Formulation development and evaluation. J. Drug Deliv., 2016, 9324567, 1-8.
[38]
Zidan, A.S.; Mokhtar, M. Multivariate optimization of formulation variables influencing flurbiprofen proniosomes characteristics. J. Pharm. Sci., 2011, 100(6), 2212-2221.
[39]
Ba, W.; Li, Z.; Wang, L.; Wang, D.; Liao, W.; Fan, W.; Wu, Y.; Liao, F.; Yu, J. Optimization and evaluation of pluronic lecithin organogels as a transdermal delivery vehicle for sinomenine. Pharm. Dev. Technol., 2016, 21(5), 535-545.
[40]
Raza, K.; Kumar, M.; Kumar, P.; Malik, R.; Sharma, G.; Kaur, M.; Katare, O.P. Topical delivery of Aceclofenac: Challenges and promises of novel drug delivery systems. BioMed Res. Int., 2014, 406731, 11.
[41]
Bhalekar, M.R.; Madgulkar, A.R.; Desale, P.S.; Marium, G. Formulation of piperine solid lipid nanoparticles (SLN) for treatment of rheumatoid arthritis. Drug Dev. Ind. Pharm., 2017, 43(6), 1003-1010.
[42]
Kaur, A.; Goindi, S.; Katare, O.P. Formulation, characterisation and in vivo evaluation of lipid-based nanocarrier for topical delivery of diflunisal. J. Microencapsul., 2016, 33(5), 475-486.
[43]
Garg, N.K.; Sharma, G.; Singh, B.; Nirbhavane, P.; Tyagi, R.K.; Shukla, R.; Katare, O.P. Quality by design (qbd)-enabled development of aceclofenac loaded-nano structured lipid carriers (NLCs): An improved dermatokinetic profile for,inflammatory disorder(s). Int. J. Pharm., 2017, 517(1), 413-431.
[44]
Mennini, N.; Cirri, M.; Maestrelli, F.; Mura, P. Comparison of liposomal and NLC (nanostructured lipid carrier) formulations for improving the transdermal delivery of oxaprozin: Effect of cyclodextrin complexation. Int. J. Pharm., 2016, 515(1-2), 684-691.
[45]
Lala, R.R.; Awari, N.G. Nanoemulsion-based gel formulations of COX-2 inhibitors for enhanced efficacy in inflammatory conditions. Appl. Nanosci., 2014, 4(2), 143-151.
[46]
Kassem, A.A.; El-Alim, S.H.A.; Asfour, M.H. Enhancement of 8-methoxypsoralen topical delivery via nanosized niosomal vesicles: Formulation development, in vitro and in vivo evaluation of skin deposition. Int. J. Pharm., 2017, 517, 256-268.
[47]
Mady, F.M.; Essa, H.; El-Ammawi, T.; Abdelkader, H.; Hussein, A.K. Formulation and clinical evaluation of silymarinpluronic-lecithin organogels for treatment of atopic dermatitis. Drug Des. Devel. Ther., 2016, 10, 1101-1110.
[48]
Pople, P.V.; Singh, K.K. Targeting tacrolimus to deeper layers of skin with improved safety for treatment of atopic dermatitis. Int. J. Pharm., 2010, 398, 165-178.
[49]
Maia, C.S.; Mehnert, W.; Scha¨fer-Korting, M. Solid lipid nanoparticles as drug carriers for topical Glucocorticoids. Int. J. Pharm., 2000, 196, 165-167.
[50]
Pople, P.V.; Singh, K.K. Development and evaluation of colloidal modified nanolipid carrier: Application to topical delivery of tacrolimus, Part II – In vivo assessment, drug targeting, efficacy and safety in treatment of atopic dermatitis. Eur. J. Pharm. Biopharm., 2013, 84(1), 72-83.
[51]
Nagaich, U.; Gulati, N. Nanostructured lipid carriers (NLC) based controlled release topical gel of clobetasol propionate: Design and in vivo characterization. Drug Deliv. Transl. Res., 2016, 6(3), 289-298.
[52]
Shirsand, S.B. Para1, M.S.; Nagendrakumar, D.; Kanani, K.M.; Keerthy, D. Formulation and evaluation of Ketoconazole niosomal gel drug delivery system. Int. J. Pharm. Invest., 2012, 2(4), 201-207.
[53]
Patil, M.P.; Shinde, G.P.; Kshirsagar, S.J.; Parakh, D.R. Development and characterization of Ketoconazole loaded organogel for topical drug delivery. Inventi Rapid NDDS, 2015, 3, 1-10.
[54]
Jadhav, K.R.; Kadam, V.J.; Pisal, S.S. Formulation and evaluation of lecithin organogel for topical delivery of Fluconazole. Curr. Drug Deliv., 2009, 6(2), 174-183.
[55]
Gupta, M.; Tiwari, S.; Vyas, S.P. Influence of various lipid core on characteristics of SLNs designed for topical delivery of fluconazole against cutaneous candidiasis. Pharm. Dev. Technol., 2013, 18(3), 550-559.
[56]
Ravani, L.; Esposito, E.; Bories, C.; Moal, V.L.; Loiseau, P.M.; Djabourov, M.; Cortesi, R.; Bouchemal, K. Clotrimazole-loaded nanostructured lipid carrier hydrogels: thermal analysis and in vitro studies. Int. J. Pharm., 2013, 454(2), 695-702.
[57]
Pinheiro, I.M.; Carvalho, I.P.; Sousa de Carvalho, C.E.; Brito, L.M.; Soares da Silva, A.B.; Conde Jr, A.M.; Amorim de Carvalho, F.A.; Menezes Carvalho, A.L. Evaluation of the in vivo leishmanicidal activity of amphotericin B emulgel: An alternative for the treatment of skin leishmaniasis. Exp. Parasitol., 2016, 164, 49-55.
[58]
Sagiri, S.S.; Behera, B.; Rafanan, R.R.; Bhattacharya, C.; Pal, K.; Banerjee, I.; Rousseau, D. Organogels as matrices for controlled drug delivery: A review on the current state. Soft Mater., 2014, 12(1), 47-72.
[59]
Bhatia, A.; Singh, B.; Wadhwa, S.; Raza, K.; Katare, O.P. Novel phospholipid-based topical formulations of tamoxifen: Evaluation for antipsoriatic activity using mouse-tail model. Pharm. Dev. Technol., 2014, 19(2), 160-163.
[60]
Baran, N.; Singh, V.K.; Pal, K.; Anis, A.; Pradhan, D.K.; Pramanik, K. Development and characterization of soy lecithin and palm oil-based organogels. Polym. Plast. Technol. Eng., 2014, 53(9), 865-879.
[61]
Satapathy, D.; Sagiri, S.S.; Pal, K.; Pramanik, K. Development of mustard oil- and groundnut oil-based span 40 organogels as matrices for controlled drug delivery. Des. Monomers Polym., 2014, 17(6), 545-556.
[62]
Fetih, G. Meloxicam formulations for transdermal delivery: Hydrogels versus organogels. J. Drug Del. Sci. Tech., 2010, 20(6), 451-456.
[63]
Liu, H.; Wang, Y.; Han, F.; Yao, H.; Li, S. Gelatin-stabilised microemulsion-based organogels facilitates percutaneous penetration of Cyclosporin A in vitro and dermal pharmacokinetics in vivo. J. Pharm. Sci., 2007, 96(11), 3000-3009.
[64]
Ajazuddin; Alexander, A.; Khichariya, A.; Gupta, S.; Patel, R.J.; Giri, T.K.; Tripathi, D.K. Recent expansions in an emergent novel drug delivery technology: Emulgel. J. Controlled. Release, 2013, 171(2), 122-132.
[65]
Jeengar, M.K.; Rompicharla, S.V.K.; Shrivastava, S.; Chella, N.; Shastri, N.R.; Naidu, V.G.M.; Sistla, R. Emu oil ased nano-emulgel for topical delivery of curcumin. Int. J. Pharm., 2016, 506(1), 222-236.
[66]
Syamala, U.S. Development & optimization of allyl amine antifungal nanoemulgel using 23 factorial design: For the treatment of Tinea pedis. Eur. Sci. J., 2013, 4, 597-605.
[67]
Pund, S.; Pawar, S.; Gangurde, S.; Divate, D. Transcutaneous delivery of leflunomidenanoemulgel: Mechanistic investigation into physicomechanical characteristics, in vitro anti-psoriatic and anti-melanoma activity. Int. J. Pharm., 2015, 487(1), 148-156.
[68]
Hamishehkar, H.; Rahimpour, Y.; Kouhsoltani, M. Niosomes as a propitious carrier for topical drug delivery. Expert Opin. Drug Deliv., 2013, 10(2), 261-272.
[69]
Qumbar, M. Ameeduzzafar; Imam, S.S.; Ali, J.; Ahmad, J.; Alia, A. Formulation and optimization of lacidipine loaded niosomal gel for transdermal delivery: In-vitro characterization and in vivo activity. Biomed. Pharmacother., 2013, 93, 255-266.
[70]
Dharashivkar, S.S.; Sahasrabuddhe, S.H.; Saoji, A.N. Niosomally encapsulated silver sulfadiazine gel for burn treatment. J. Microencapsul., 2015, 32(2), 137-142.
[71]
Goyal, G.; Garg, T.; Malik, B.; Chauhan, G.; Rath, G.; Goyal, A.K. Development and characterization of niosomal gel for topical delivery of benzoyl peroxide. Drug Deliv., 2015, 22(8), 1027-1042.
[72]
Mali, N.; Darandale, S.; Vavia, P. Niosomes as a vesicular carrier for topical administration of minoxidil: formulation and in vitro assessment. Drug Deliv. Transl. Res., 2012, 3(6), 587-592.
[73]
Ning, M.; Guo, Y.; Pan, H.; Chen, X.; Gu, Z. Preparation, in vitro and in vivo evaluation of liposomal/niosomal gel delivery systems for clotrimazole. Drug Dev. Ind. Pharm., 2005, 31(4-5), 375-383.
[74]
Zidan, A.S.; Ibrahim, M.M.; El-Megrab, N.A. Optimization of Methotrexate loaded niosomes by Box Behnken design: An understanding of solvent effect and formulation variability. Drug Dev. Ind. Pharm., 2017, 43(9), 1450-1459.
[75]
Karami, Z.; Hamidi, M. Cubosomes: Remarkable drug delivery potential. Drug Discov. Today, 2016, 21(5), 789-801.
[76]
Morsi, N.M.; Abdelbary, G.A.; Ahmed, M.A. Silver sulfadiazine based cubosome hydrogels for topical treatment of burns: Development and in vitro/in vivo characterization. Eur. J. Pharm. Biopharm., 2014, 86(2), 178-189.
[77]
Venkatesh, B.; Indira, S.; Srinivas, P. Formulation and evaluation of Miconazole Nitrate as a cubosomal topical gel. J. Global. Trends Pharm. Sci., 2014, 5(4), 2037-2047.
[78]
Kakadia, P.G.; Conway, B.R. Solid lipid nanoparticles: A potential approach for dermal drug delivery. Am. J. Pharmacol. Sci., 2014, 2(5), 1-7.
[79]
Sonawane, R.; Harde, H.; Katariya, M.; Agrawal, S.; Jain, S. Solid lipid nanoparticles-loaded topical gel containing combination drugs: an approach to offset psoriasis. Expert Opin. Drug Deliv., 2014, 11(12), 1833-1847.
[80]
Bikkad, M.L.; Nathani, A.H.; Mandlik, S.K.; Shrotriya, S.N.; Ranpise, N.S. Halobetasol propionate-loaded solid lipid nanoparticles (SLN) for skin targeting by topical delivery. J. Liposome Res., 2014, 24(2), 113-123.
[81]
Iqbal, M.A.; Md, S.; Sahni, J.K.; Baboota, S.; Dang, S.; Ali, J. Nanostructured lipid carriers system: Recent advances in drug delivery. J. Drug Target., 2012, 20(10), 813-830.
[82]
Han, F.; Yin, R.; Che, X.; Yuan, C.; Cui, Y.; Yin, H.; Li, S. Nanostructured lipid carriers (NLC) based topical gel of flurbiprofen: Design, characterization and in vivo evaluation. Int. J. Pharm., 2013, 439(1-2), 349-357.
[83]
Chen, P.; Zhang, H.; Cheng, S.; Zhai, G.; Shen, C. Development of curcumin loaded nanostructured lipid carrier based thermosensitive in situ gel for dermal delivery. Colloids Surf. A., 2016, 506, 356-362.
[84]
Khurana, S.; Jain, N.K.; Bedi, P.M.S. Nanostructured lipid carriers based nanogel for meloxicam delivery: Mechanistic, in-vivo and stability evaluation. Drug Dev. Ind. Pharm., 2015, 41(8), 1368-1375.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy