Metal Ion Complexes with Pyrazoles, Aziridines and Diaziridines – Synthesis and Biological Activity

Author(s): Katarzyna Malinowska, Ingo-Peter Lorenz, Beata Sadowska, Paulina Mucha*

Journal Name: Current Medicinal Chemistry

Volume 26 , Issue 4 , 2019

  Journal Home
Translate in Chinese
Become EABM
Become Reviewer

Abstract:

Heterocyclic compounds containing nitrogen ions, like pyrazoles, aziridines, diaziridines and their metal ion complexes with Cu(II), Zn(II) and Ru(III) and others exhibit a wide range of biological activity, including mainly anti-inflammatory, antioxidant, anticancer, and antimicrobial properties. Biological significance of these molecules and thus their potential use in medicine has driven growing interest into their coordination chemistry. A knowledge of the relationship between the structure of chemical compounds and their activity is needed for the synthesis of the preparations possessing the most beneficial features. The choice of interposed substituents may improve biocidal and antitumor action, reduce the toxicity of the initial substance, or even completely eliminate its adverse effects for healthy tissues. The main aim of this review paper is to present the current state of knowledge concerning the synthesis and biological activity of complexes with small heterocyclic ligands containing transition metal ions.

Keywords: Synthesis ligand, complexes, metal ions, pyrazole, aziridine, diaziridine, antioxidant, antimicrobial.

[1]
Ciolkowski, M.; Paneth, P.; Lorenz, I.P.; Mayer, P.; Rozalski, M.; Krajewska, U.; Budzisz, E. Tautomeric forms study of 1H-(2′-pyridyl)-3-methyl-5-hydroxypyrazole and 1H-(2′-pyridyl)-3-phenyl-5-hydroxypyrazole. Synthesis, structure, and cytotoxic activity of their complexes with palladium(II) ions. J. Enzyme Inhib. Med. Chem., 2009, 24(6), 1257-1268.
[2]
Grazul, M.; Besic-Gyenge, E.; Maake, C.; Ciolkowski, M.; Czyz, M.; Sigel, R.K.; Budzisz, E. Synthesis, physico-chemical properties and biological analysis of newly obtained copper(II) complexes with pyrazole derivatives. J. Inorg. Biochem., 2014, 135, 68-76.
[3]
Schepetkin, I.; Potapov, A.; Khlebnikov, A.; Korotkova, E.; Lukina, A.; Malovichko, G.; Kirpotina, L.; Quinn, M.T. Decomposition of reactive oxygen species by copper(II) bis(1-pyrazolyl)methane complexes. J. Biol. Inorg. Chem., 2006, 11(4), 499-513.
[4]
Budzisz, E.; Krajewska, U.; Rozalski, M.; Szulawska, A.; Czyz, M.; Nawrot, B. Biological evaluation of novel Pt(II) and Pd(II) complexes with pyrazole-containing ligands. Eur. J. Pharmacol., 2004, 502(1-2), 59-65.
[5]
Budakoti, A.; Abid, M.; Azam, A. Syntheses, characterization and in vitro antiamoebic activity of new Pd(II) complexes with 1-N-substituted thiocarbamoyl-3,5-diphenyl-2-pyrazoline derivatives. Eur. J. Med. Chem., 2007, 42(4), 544-551.
[6]
Castagnolo, D.; De Logu, A.; Radi, M.; Bechi, B.; Manetti, F.; Magnani, M.; Supino, S.; Meleddu, R.; Chisu, L.; Botta, M. Synthesis, biological evaluation and SAR study of novel pyrazole analogues as inhibitors of Mycobacterium tuberculosis. Bioorg. Med. Chem., 2008, 16(18), 8587-8591.
[7]
Ciesielska, E.; Szulawska, A.; Studzian, K.; Ochocki, J.; Malinowska, K.; Kik, K.; Szmigiero, L. Comparative studies on the mechanism of cytotoxic action of novel platinum II complexes with pyrazole ligands. J. Inorg. Biochem., 2006, 100(10), 1579-1585.
[8]
Pérez, J.; Riera, L. Pyrazole Complexes and Supramolecular Chemistry. Eur. J. Inorg. Chem., 2009, 4913-4925.
[9]
Fustero, S.; Sánchez-Roselló, M.; Barrio, P.; Simón-Fuentes, A. From 2000 to mid-2010: a fruitful decade for the synthesis of pyrazoles. Chem. Rev., 2011, 111(11), 6984-7034.
[10]
David, S.; Perkins, R.S.; Fronczek, F.R.; Kasiri, S.; Mandal, S.S.; Srivastava, R.S. Synthesis, characterization, and anticancer activity of ruthenium-pyrazole complexes. J. Inorg. Biochem., 2012, 111, 33-39.
[11]
Malinowska, K.; Modranka, R.; Kubiak, K.; Mrowicka, M.; Klimczak, A.; Kedziora, J.; Rutkowski, M. [Testing antineoplastic activity of new platinum(II) and palladium(II) complex compounds]. Pol. Merkuriusz Lek., 2009, 26(151), 57-61.
[12]
Polshettiwar, V.; Varma, R.S. Greener and rapid access to bio-active heterocycles: room temperature synthesis of pyrazoles and diazepines in aqueous medium. Tetrahedron Lett., 2008, 49, 397-400.
[13]
Deng, X.; Mani, N.S. Reaction of N-monosubstituted hydrazones with nitroolefins: a novel regioselective pyrazole synthesis. Org. Lett., 2006, 8(16), 3505-3508.
[14]
Dadiboyena, S.; Valente, E.J.; Hamme, A.T., II Synthesis of novel pyrazoles via [2+3]-dipolar cycloaddition using alkyne surrogates. Tetrahedron Lett., 2010, 51(9), 1341-1343.
[15]
Zhang, H.; Liu, C-S.; Bu, X-H.; Yang, M. Synthesis, crystal structure, cytotoxic activity and DNA-binding properties of the copper (II) and zinc (II) complexes with 1-[3-(2-pyridyl)pyrazol-1-ylmethyl]naphthalene. J. Inorg. Biochem., 2005, 99(5), 1119-1125.
[16]
Gama, S.; Mendes, F.; Marques, F.; Santos, I.C.; Carvalho, M.F.; Correia, I.; Pessoa, J.C.; Santos, I.; Paulo, A. Copper(II) complexes with tridentate pyrazole-based ligands: synthesis, characterization, DNA cleavage activity and cytotoxicity. J. Inorg. Biochem., 2011, 105(5), 637-644.
[17]
Singh, K.; Kumar, Y.; Puri, P.; Kumar, M.; Sharma, C. Cobalt, nickel, copper and zinc complexes with 1,3-diphenyl-1H-pyrazole-4-carboxaldehyde Schiff bases: antimicrobial, spectroscopic, thermal and fluorescence studies. Eur. J. Med. Chem., 2012, 52, 313-321.
[18]
Tribó, R.; Muñoz, S.; Pons, J.; Yáñez, R.; Álvarez-Larena, Á.; Piniella, J.F.; Ros, J. Synthesis and characterization of new pyrazole-phospinite ligands and their ruthenium(II) arene complexes. J. Organomet. Chem., 2005, 690, 4072-4079.
[19]
Dougan, S.J.; Melchart, M.; Habtemariam, A.; Parsons, S.; Sadler, P.J. Phenylazo-pyridine and phenylazo-pyrazole chlorido ruthenium(II) arene complexes: arene loss, aquation, and cancer cell cytotoxicity. Inorg. Chem., 2006, 45(26), 10882-10894.
[20]
Kupcewicz, B.; Sobiesiak, K.; Malinowska, K.; Koprowska, K.; Czyz, M.; Keppler, B.; Budzisz, E. Copper(II) complexes with derivatives of pyrazole as potential antioxidant enzyme mimics. Med. Chem. Res., 2013, 22(5), 2395-2402.
[21]
Malinowska, K.; Modranka, R.; Kubiak, K.; Mrowicki, J.; Klimczak, A.; Mrowicka, M. Wpływ związków koordynacyjnych na aktywność enzymów antyoksydacyjnych w chorobach nowotworowych przewodu pokarmowego. PML, 2009, 27(158), 97-100.
[22]
Malinowska, K.; Kędziora, J.; Gałecka, E.; Miernicka, M.; Budzisz, E. Pro-and antioxidant activity of Cu (II) complexes with pyrazole derivate ligands. Intern. Med. Chem., 2007, 7, 8-11.
[23]
Lin, M.T.; Beal, M.F. Mitochondrial dysfunction and oxidative stress in neuro-degenerative diseases.Nature, 2006. 19, 443(7113), 787-95.
[24]
Misra, H.P.; Fridovich, I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J. Biol. Chem., 1972, 247(10), 3170-3175.
[25]
Beers, R.F., Jr; Sizer, I.W. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J. Biol. Chem., 1952, 195(1), 133-140.
[26]
Little, C.; O’Brien, P.J. An intracellular GSH-peroxidase with a lipid peroxide substrate. Biochem. Biophys. Res. Commun., 1968, 31(2), 145-150.
[27]
Malinowska, K.; Modranka, R. Dichlorido[(-3,5-dimethyl-1H-pyrazol-1-y)methane] copper(II). Acta Crystallogr., 2007, 63(11), 2783-2784.
[28]
Mrowicka, M.; Bortnik, K.; Malinowska, K.; Kędziora, J.; Mrowicki, J. Całkowity potencjał antyoksydacyjny w osoczu sportowców po dozowanym wysiłku fizycznym. PML, 2009, 27(157), 22-25.
[29]
Malinowska, K.; Zielińska-Bliżniewska, H.; Majsterek, I.; Olszewski, J. [Influence of complex deacon-tetra (N1,3-triazole,кN2) copper (II) on the barrier and antioxidant pro people with nasal polyps]. Otolaryngol. Pol., 2013, 67(5), 228-232.
[30]
Kubiak, K.; Klimczak, A.; Dziki, Ł.; Modranka, R.; Malinowska, K. Wpływ kompleksu miedzi(II) na aktywność wybranych enzymów antyoksydacyjnych. PML, 2010, 28(163), 22-25.
[31]
Kubiak, K.; Malinowska, K.; Langer, E.; Dziki, Ł.; Dziki, A.; Majsterek, I. Effect of Cu(II) coordination compounds on the activity of antioxidant enzymes catalase and superoxide dismutase in patients with colorectal cancer. Pol. Przegl. Chir., 2011, 83(3), 155-160.
[32]
J aćimović, Ż.; Bogdanović, G.A.; Holló, B.; Leovac, V.M.; Szécsényi, K.M. Transition metal complexes with pyrazole-based ligands. Part. 29. Reaction of zinc (II) and mercury(II) thiocyanate with 4-acetyl-3-amino-5-methylpyrazole. J. Serb. Chem. Soc., 2009, 74(11), 1259-1271.
[33]
Keter, F.K.; Darkwa, J. Perspective: the potential of pyrazole-based compounds in medicine. Biometals, 2012, 25(1), 9-21.
[34]
Kumar, K.A.; Jayaroopa, P. Pyrazoles: Synthetic Strategies and Their Pharmaceutical Applications – An Overview. Int. J. Pharm. Tech. Res., 2013, 5, 1473-1486.
[35]
Tanitame, A.; Oyamada, Y.; Ofuji, K.; Terauchi, H.; Kawasaki, M.; Wachi, M.; Yamagishi, J. Synthesis and antibacterial activity of a novel series of DNA gyrase inhibitors: 5-[(E)-2-arylvinyl]pyrazoles. Bioorg. Med. Chem. Lett., 2005, 15(19), 4299-4303.
[36]
Chande, M.S.; Thakkar, N.V.; Patil, D.V. Synthesis and antimicrobial activity of bis[6-phenyl-4-methyl-3-substituted-pyrazo[4,5-d] pyrazol-1-yl]thioketones. Acta Pol. Pharm., 1999, 56(3), 207-210.
[37]
Manikannan, R.; Venkatesan, R.; Muthusubramanian, S.; Yogeeswari, P.; Sriram, D. Pyrazole derivatives from azines of substituted phenacyl aryl/cyclohexyl sulfides and their antimycobacterial activity. Bioorg. Med. Chem. Lett., 2010, 20(23), 6920-6924.
[38]
Jayaroopa, P.; Vasanth Kumar, G.; Renuka, N.; Harish Nayaka, M.A.; Ajay Kumar, K. Evaluation of new pyrazole derivatives for their biological activity: structure-activity relationship. Intern. J. PharmTech Res., 2013, 5(2), 819-826.
[39]
Lemire, J.A.; Harrison, J.J.; Turner, R.J. Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat. Rev. Microbiol., 2013, 11(6), 371-384.
[40]
Kothari, R.; Sharma, B.; Sahawal, S.; Neha, K.; Mandal, S.K.; Birthare, S.; Shivhare, V. Synthesis, characterization and antimicrobial evaluation of copper (II) complex with ciprofloxacin antibiotic. World J. Pharm. Pharm. Sci., 2015, 4(06), 696-707.
[41]
Pillai, M.S.; Latha, S.P. Designing of some novel metallo antibiotics tuning biochemical behaviour towards therapeutics: synthesis, characterisation and pharmacological studies of metal complexes of cefixime. J. Saudi Chem. Soc., 2016, 20, S60-S66.
[42]
Damljanović, I.; Vukićević, M.; Radulović, N.; Palić, R.; Ellmerer, E.; Ratković, Z.; Joksović, M.D.; Vukićević, R.D. Synthesis and antimicrobial activity of some new pyrazole derivatives containing a ferrocene unit. Bioorg. Med. Chem. Lett., 2009, 19(4), 1093-1096.
[43]
Fonteh, P.N.; Keter, F.K.; Meyer, D.; Guzei, I.A.; Darkwa, J. Tetra-chloro-(bis-(3,5-dimethylpyrazolyl)methane)gold(III) chloride: An HIV-1 reverse transcriptase and protease inhibitor. J. Inorg. Biochem., 2009, 103(2), 190-194.
[44]
Sau, D.K.; Butcher, R.J.; Chaudhuri, S.; Saha, N. Spectroscopic, structural and antibacterial properties of copper(II) complexes with bio-relevant 5-methyl-3-formylpyrazole N(4)-benzyl-N(4)-methylthiosemicarbazone. Mol. Cell. Biochem., 2003, 253(1-2), 21-29.
[45]
Gibbons, S. Phytochemicals for bacterial resistance--strengths, weaknesses and opportunities. Planta Med., 2008, 74(6), 594-602.
[46]
Jung, N.; Bräse, S. New catalysts for the transition-metal-catalyzed synthesis of aziridines. Angew. Chem. Int. Ed. Engl., 2012, 51(23), 5538-5540.
[47]
Budzisz, E.; Bobka, R.; Hauss, A.; Roedel, J.N.; Wirth, S.; Lorenz, I.P.; Rozalska, B.; Więckowska-Szakiel, M.; Krajewska, U.; Rozalski, M. Synthesis, structural characterization, antimicrobial and cytotoxic effects of aziridine, 2-aminoethylaziridine and azirine complexes of copper(II) and palladium(II). Dalton Trans., 2012, 41(19), 5925-5933.
[48]
Chakraborty, B.; Chhetri, M.S.; Chhetri, E. Highly stereoselective synthesis of new aziridines via Baldwin rearrangement and their potential biological activities., 2015.
[49]
Giovine, A.; Muraglia, M.; Florio, M.A.; Rosato, A.; Corbo, F.; Franchini, C.; Musio, B.; Degennaro, L.; Luisi, R. Synthesis of functionalized arylaziridines as potential antimicrobial agents. Molecules, 2014, 19(8), 11505-11519.
[50]
Goodenough, K.M.; Moran, W.J.; Raubo, P.; Harrity, J.P.A. Development of a flexible approach to Nuphar alkaloids via two enantiospecific piperidine-forming reactions. J. Org. Chem., 2005, 70(1), 207-213.
[51]
Kamuf, M.; Trapp, O. Stereodynamics of small 1,2-dialkyldiaziridines. Chirality, 2013, 25(4), 224-229.
[52]
Lykke, L.; Halskov, K.S.; Carlsen, B.D.; Chen, V.X.; Jørgensen, K.A. Catalytic asymmetric diaziridination. J. Am. Chem. Soc., 2013, 135(12), 4692-4695.
[53]
Zawatzky, K.; Kamuf, M.; Trapp, O. Chiral 1,2-dialkenyl diaziridines: synthesis, enantioselective separation, and nitrogen inversion barriers. Chirality, 2015, 27(2), 156-162.
[54]
Trapp, O.; Sahraoui, L.; Hofstadt, W.; Könen, W. The stereodynamics of 1,2-dipropyldiaziridines. Chirality, 2010, 22(2), 284-291.
[55]
Carroccia, L.; Fioravanti, S.; Pellacani, L.; Sadun, C.; Tardella, P.A. Synthesis of optically active trifluoromethyl substituted diaziridines and oxaziridines. Tetrahedron, 2011, 67, 5375-5381.
[56]
Aresu, E.; Fioravanti, S.; Pellacani, L.; Sciubba, F.; Trulli, L. Water-controlled chiral inversion of a nitrogen atom during the synthesis of diaziridines from α-branched N,N′-dialkyl α-diimines. New J. Chem., 2013, 37, 4125-4129.
[57]
Lanners, S.; Hanquet, G. Asymmetric synthesis of three- and four-membered ring heterocycles with more than one heteroatom; Asymmetric Synthesis of Nitrogen Heterocycles, 2009, pp. 189-222.
[58]
Trapp, O.; Schurig, V.; Kostyanovsky, R.G. The control of the nitrogen inversion in alkyl-substituted diaziridines. Chemistry, 2004, 10(4), 951-957.
[59]
Watson, I.D.G.; Yu, L.; Yudin, A.K. Advances in nitrogen transfer reactions involving aziridines. Acc. Chem. Res., 2006, 39(3), 194-206.
[60]
Degennaro, L.; Trinchera, P.; Luisi, R. Recent advances in the stereoselective synthesis of aziridines. Chem. Rev., 2014, 114(16), 7881-7929.
[61]
Li, X.; Chen, N.; Xu, J. An Improved and Mild Wenker Synthesis of Aziridines. Synthesis, 2010, 20, 3423-3428.
[62]
Makhova, N.N.; Petukhova, V.Y.; Kuznetsov, V.V. Synthesis of monocyclic diaziridines and their fused derivatives. ARKIVOC, 2008, (i), 128-152.
[63]
Hieber, W.; Wiesboeck, R. Reaktionen des Kobalttetracarbonyls mit verschiedenartigen Basen. Chem. Ber., 1958, 91, 1146-1155.
[64]
Rödel, J.N. Contributions to the coordination chemistry of aziridines, 2H-azirines and phosphiranes, PhD Thesis,Ludwig-Maximilians-University, Munich, Germany,. 2008.
[65]
Bobka, R.; Rödel, J.N.; Neumann, B.; Krinninger, C.; Mayer, P.; Wunderlich, S.; Penger, A.; Lorenz, I-P. Neutral Mono- and Cationic Bis-Aziridine d6-Metal Complexes of the Type [(π-arene)M(Az)Cl2] and [(π-arene)M(Az)2Cl]Cl (π-arene/M = η6-C6Me6/Ru; η5-C5Me5/Rh, Ir). Z. Anorg. Allg. Chem., 2007, 633, 1985-1994.
[66]
Rödel, J.N.; Bobka, R.; Neumann, B.; Weber, B.; Mayer, P.; Lorenz, I-P. Synthesis, Characterization and Structure of Bis- and Tetrakis-Aziridine-Nickel(II) and Copper(II). Complexes. Z. Anorg. Allg. Chem., 2007, 633, 1171-1177.
[67]
Fielden, J.; Sprott, J.; Long, D-L.; Kögerler, P.; Cronin, L. Controlling aggregation of copper(II)-based coordination compounds: From mononuclear to dinuclear, tetranuclear, and polymeric copper complexes. Inorg. Chem., 2006, 45(7), 2886-2895.
[68]
Lopez, N.; Vos, T.E.; Arif, A.M.; Shum, W.W.; Noveron, J.C.; Miller, J.S. Structure and magnetic properties of a hydroxo-bridged copper(II) distorted cubane stabilized via supramolecular hydrogen bonding with an ionic hexafluoroacetylacetonate. Inorg. Chem., 2006, 45(11), 4325-4327.
[69]
Shevtsov, A.V.; Petukhova, V.Y.; Kutepov, S.A.; Kuznetsov, V.V.; Makhova, N.N.; Kugzmina, N.E.; Aleksandrov, G.G. Synthesis, structures of complexes of N-(-aminoethyl)diaziridines, with transition metal salts. Russ. Chem. Bull., 2000, 49, 1882-1886.
[70]
Skrupskaya, T.V.; Kislukhin, A.A.; Shevtsov, A.V.; Petukhova, V.Y.; Lyssenko, K.A.; Makhova, N.N. Complexes of α,ω-bis(3,3-dialkyldiaziridin-1-yl)alkanes and their bis(2-arylcarbamoyl) derivatives with cadmium and nickel salts. Russ. Chem. Bull. Int. Ed., 2008, 57, 56-62.
[71]
Kostyanovsky, R.G.; Lyssenko, K.A.; Kostyanovsky, V.R. Homochiral and pseudoracemic 3,3- and 1,2-dimethyldiaziridine-silver nitrate complex. Mendeleev Commun., 2000, 10, 44-46.
[72]
Shustov, G.V.; Zolotoi, A.B.; Konovalikhin, S.V.; Atovmyan, L.O.; Kostyanovsky, R.G. A Novel trans-1,2-Dimethyldiaziridine-Silver Nitrate Complex: Synthesis and Molecular and Crystal Structure. Mendeleev Commun., 1995, 5, 218-219.
[73]
Sosnovsky, G.; Lukszo, J. In theSearch for New Anticancer Drugs. J. Cancer Res. Clin. Oncol., 1984, 107, 217-220.
[74]
Adedapo, A.; Avent, A.G.; Carmichael, D.; Chaloner, P.A.; Hitchcock, P.B. Novel Mono- and Bis-metallated Complexes of Dialkyldiaziridines; X-Ray Diffraction Structures of Three Platinum Complexes. J. Chem. Soc. Chem. Commun., 1993, 186-187.
[75]
Syroeshkina, Y.S.; Fershtat, L.L.; Syroeshkin, M.A.; Kuznatsov, V.V.; Lyssenko, K.A.; Makhova, N.N. First¶ synthesis of 1,5-diazabicyclo[3.1.0]heksane complexes with cadmium salts. Russian Chemical Bulletin, International Edition 2009, 58, 1002-1006.
[76]
Fürmeier, S.; Metzger, J.O. Fat-derived aziridines and their N-substituted derivatives: biologically active compounds based on renewable raw materials. Eur. J. Org. Chem., 2003, 649-659.
[77]
Keniche, A.; Mezrai, A.; Mulengi, J.K. Synthesis of a novel class of phosphonoaziridines as interesting antibacterial agents. Open Conf. Proc. J., 2011, 2, 28-35.
[78]
Sharma, P.; Kumar, A.; Upadhyay, S.; Sahu, V.; Singh, J. Synthesis and QSAR modeling of 2-acetyl-2-ethoxycarbonyl-1-[4(4′-arylazo)-phenyl]-N,N-dimethylaminophenyl aziridines as potential antibacterial agents. Eur. J. Med. Chem., 2008, XX, 1-9.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 26
ISSUE: 4
Year: 2019
Page: [648 - 663]
Pages: 16
DOI: 10.2174/0929867325666180221124447
Price: $65

Article Metrics

PDF: 47
HTML: 5
EPUB: 4
PRC: 4