Modifications in the Structural and Optical Properties of ZnO Nanophosphor on Doping with Tb

Author(s): Suman Rani, Bansi Lal*, Sumit Saxena, Shobha Shukla

Journal Name: Nanoscience & Nanotechnology-Asia

Volume 9 , Issue 3 , 2019

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Background: The characteristic visible emission from ZnO being attributed to the defect energy states can be tailored by doping as well as by synthesis techniques. Rare-earth elements, among various dopants, are interesting because of their unique emission properties in the visible region. Terbium (Tb), in particular, is reported to contribute significantly to the creation of the defect energy states when doped in ZnO. This study investigated the Tb concentration dependent modifications in the structural and optical properties of ZnO nanophosphor.

Methods: Tb (0.1, 0.5, 01.0 mol%) doped nanophosphor powder samples prepared by low temperature precipitation method, were sintered in air at 700oC using a home-built temperature controlled (±1oC) muffle furnace. Powder XRD and EDX spectra at room temperature were recorded using Philips X perts x-ray spectrometer while Jeol JSM-7600F was used to record SEM images. Photoluminescence spectra excited by the 280, 300, 380 and 460nm radiation from a Xe lamp were recorded using Carry 8000 spectrophotometer. Raman spectra excited by 514.5nm radiation from an Ar-ion laser, was investigated using Morrison microscope Olympus Bx 41 while UV-VIS absorption spectra were recorded on UV- 1800 UV-VIS Spectrophotometer.

Results: FTIR and XRD spectra showed that the basic ZnO wurtzite crystal structure remained unchanged on doping. However, XRD data analysis indicated that the 0.1 mol% Tb might be incorporated in ZnO unit cell at an interstitial and / or substitutional site(s) while at 0.5 and 1.0 mol% doping levels migration of Tb to the surface could be the dominant process. This was further confirmed by Raman and photoluminescence studies. Broad emission (122nm FWHM) peaking around 510nm was observed when the doped samples were excited with 280 and 300nm radiation while characteristic ZnO emission was observed with 380 and 460nm radiation. The calculated chromaticity color coordinates (x,y) of the emission excited by 280nm in 0.5 mol% doped ZnO were: x=0.29 and y=0.31, which are very close to those of the daylight at noon.

Conclusion: Concentration dependent lattice distortions were observed; it was concluded that at 0.1mol% concentration level Tb was incorporated in ZnO lattice resulting in interstitial or substitutional defects. On the other hand, at 0.5 and 1.0 mol% doping levels diffusion of Tb to the surface producing strain due to "hydrostatic like pressure" seemed to be the dominating process; maximum strain was observed at 0.5mol% doping. The calculated chromaticity color coordinates of the 280nm excited emission from ZnO:Tb (0.5mol%) were found to be very close to those of the "day light at noon” indicating the suitability of the material for the realization of white light sources.

Keywords: Ceramics, Zinc Oxide, terbium, optical materials, luminescence, white light sources.

Zhu, Y.; Apostoluk, A.; Gautier, P.; Valette, A.; Omar, L.; Cornier, T.; Bluet, J.M.; Masenelli-Varlot, K.; Daniele, S.; Masenelli, B. Intense visible emission from ZnO/PAAX (X = H or Na) nanocomposite synthesized via a simple and scalable sol-gel method. Sci. Reports., 2016, 6, 23557.
Khan, T.M.; Bibi, T.; Hussain, B. Synthesis and optical study of heat-treated ZnO nanopowder for optoelectronic applications. Bull. Mater. Sci., 2015, 38, 1851-1858.
Oliva, J.; Mayen, L.P.; De la Rosa, E.; Diaz-Torres, L.A.; Castro, A.T.; Salas, P. Tunable white light from photo- and electroluminescence of ZnO nanoparticles. J. Phys. D Appl. Phys., 2014, 47, 015104.
Radzimska, A.K.; Jesionowski, T. Zinc Oxide-from synthesis to application: A review. Materials, 2014, 7, 2833-2881.
Apostoluk, A.; Zhu, Y.; Canut, B.; Masenelli, B.; Delaunay, J-J.; Znajdek, K.; Sibiński, M. Investigation of luminescent properties of ZnO nanoparticles for their use as a down-shifting layer on solar cells. Phys. Status Solodi, 2013, C10, 1301-1307.
Moezzi, A.; McDonagh, A.M.; Cortie, M.B. Zinc oxide particles: Synthesis, properties and applications. Chem. Eng. J., 2012, 185-186, 1-22.
Rodyni, P.A.; Khodyuk, I.V. Optical and luminescence properties of zinc oxide Review. Opt. Spectrosc., 2011, 111, 776-785.
Smith, J.; Akbari-Sharbaf, A.; Ward, M.J.; Murphy, M.W.; Fanchini, G.; Sham, T.K. Luminescence properties of defects in nanocrystalline ZnO. J. Appl. Phys., 2013, 113, 093104.
Alvi, N.H.; Hasan, K.; Nur, O.; Willander, M. The origin of the red emission in n-ZnO nanotubes/p-GaN white light emitting diodes. Nanoscale Res. Lett., 2011, 6, 130.
Bhaskar, R.; Lakshmanan, A.; Marimuthu, S.; Nariangadu, L. Mechanism of green luminescence in ZnO. Indian J. Pure Appl. Phys., 2009, 47, 772-774.
Reshchikova, M.A.; Morkoçab, H.; Nemethc, B.; Nausec, J.; Xied, J.; Hertogd, B.; Osinskyd, A. Luminescence properties of defects in ZnO. Phys. B, 2007, 401-402, 358-361.
Ahn, C.H.; Kim, Y.Y.; Kim, D.C.; Mohanta, S.K.; Choa, H.K. A comparative analysis of deep level emission in ZnO layers deposited by various methods. J. Appl. Phys., 2009, 105, 013502.
Grigorjeva, L.; Millers, D.; Grabis, J.; Monty, C.; Kalinko, A.; Smits, K.; Pankratov, V.; Lojkowski, W. Luminescence properties of ZnO nanocrystals and ceramics. IEEE Trans. Nucl. Sci., 2008, 55, 1551-1555.
Scepanovic, M.; Sreckovic, T.; Vojisavljevic, K.; Ristić, M.M. Modification of the structural and optical properties of commercial ZnO powder by mechanical activation. Sci. Sinter., 2006, 38, 169-175.
Lin, K.F.; Cheng, H-M.; Hsu, H-C.; Lin, L-J.; Hsieh, W-F. Band gap variation of size-controlled ZnO quantum dots synthesized by sol–gel method. Chem. Phys. Lett., 2005, 409, 208-211.
Roy, V.A.L.; Djurišić, A.B.; Chan, W.K.; Gao, J.; Lui, H.F.; Surya, C. Luminescent and structural properties of ZnO nanorods prepared under different conditions. Appl. Phys. Lett., 2003, 83, 141-143.
Zamiri, R.; Lemos, A.F.; Reblo, A.; Ahangar, H.A.; Ferreira, J.M.F. Effects of rare-earth (Er, La and Yb) doping on morphology and structure properties of ZnO nanostructures prepared by wet chemical method. Ceram. Int., 2014, 40, 523-529.
Honglin, L.; Yingbo, L.; Jinzhu, L.; Ke, Y. Experimental and first-principles studies of structural and optical properties of rare earth (RE=La, Er, Nd) doped ZnO. J. Alloys Compd., 2014, 617, 102-107.
Honglin, L.; Zhang, Z.; Huang, J.; Liu, R.; Wang, Q. Optical and structural analysis of rare earth and Li co-doped. ZnO nanoparticles. J. Alloys Compd., 2013, 550, 526-530.
Zeng, X.; Yuan, J.; Zhang, L. Synthesis and photoluminescent properties of rare earth doped ZnO hierarchical microspheres. J. Phys. Chem. C, 2008, 112, 3503-3508.
Geburt, S.; Stichtenoth, D.; Müller, S.; Dewald, W.; Ronning, C.; Wang, J.; Jiao, Y.; Rao, Y.Y.; Hark, S.K.; Li, Q. Rare earth doped zinc oxide nanowires. J. Nanosci. Nanotechnol., 2008, 8, 244-2451.
Bhushan, S.; Pandy, A.N.; Kaza, B.R. Photo- and electroluminescence of undoped and rare earth doped ZnO electroluminors. J. Lumin., 1979, 20, 29-38.
Koao, L.F.; Dejene, B.F.; Swart, H.C.; Motloung, S.V.; Motaung, T.E.; Hlangothi, S.P. Effect of Tb3+ions on the ZnO nanoparticles synthesized by chemical bath deposition method. Adv. Mater. Lett, 2016, 7, 529-535.
Hastir, A.; Kohali, N.; Singh, R.C. Temperature dependent selective and sensitive terbium doped ZnO nanostructures. Actuators B, 2016, 231, 110-119.
Kabongo, G.L.; Mhlongo, G.H.; Malwela, T.; Mothudi, B.M.; Hillie, K.T.; Dhlamini, M.S. Microstructural and photoluminescence properties of sol-gel derived Tb3+ doped ZnO nanocrystals. J. Alloys Compd., 2014, 591, 156-163.
Pal, P.P.; Manam, J. Enhanced luminescence of ZnO:RE 3+ (RE=Eu, Tb) nanorods by Li+ doping and calculations of kinetic parameters. J. Lumin., 2014, 145, 340-350.
Zhang, X.; Zhou, L.; Shi, J.; Gong, M. Luminescence and energy transfer of a color tunable phosphor Tb3+, Eu3+ co-doped KCaY(PO4)2. Mater. Lett., 2014, 124, 32-35.
Singh, N.S.; Singh, S.D.; Meetei, S.D. Structural and photoluminescence properties of terbium-doped zinc oxide nanoparticles. Chin. Phys. B, 2014, 23, 058104.
Urbieta, A.; del Campo, R.; Pérez, R.; Fernández, P.; Piqueras, J. Luminescence and waveguiding behavior in Tb doped ZnO micro and nanostructures. J. Alloys Compd., 2014, 610, 416-421.
Sharma, A.; Dhar, S.; Singh, B.P.; Kundu, T.; Spasova, M.; Farle, M. Influence of Tb doping on the luminescence characteristics of ZnO nanoparticles. J. Nanopart. Res., 2012, 14, 676.
Jia, T.; Wang, W.; Long, F.; Fu, Z.; Wang, H.; Zhang, Q. Synthesis, characterization and luminescence properties of Y-doped and Tb-doped ZnO nanocrystals. Mater. Sci. Eng. B, 2009, 162, 179-184.
Teng, X.M.; Fan, H.T.; Pan, S.S.; Ye, C.; Li, G.H. Influence of annealing on the structural and optical properties of ZnO:Tb thin films. J. Appl. Phys., 2006, 100, 053507.
Alexander, A.; Klug, H.P. Determination of crystallite size with the X‐ray spectrometer. J. Appl. Phys., 1950, 21, 137-142.
Castro, T.J.; Franco, A., Jr; Pessoni, H.V.S.; Rodrigues, P.A.M.; Morais, P.C.; da Silva, S.W. Investigation of additional Raman modes in ZnO and Eu0.01Zn0.99O nanoparticles synthesized by the solution combustion method. J. Alloys Compd., 2017, 691, 416-421.
Kumar, B.; Cong, H. Photoluminescence and multiphonon resonant Raman scattering in low-temperature grown ZnO nanostructures. Appl. Phys. Lett., 2006, 89, 071922.
Alim, K.A.; Fonoberov, V.A.; Shams, M.; Balandin, A.A. Micro-raman investigation of optical phonons in ZnO nanocrystals. J. Appl. Phys., 2005, 97, 124313.
Huang, Y.; Liu, M.; Li, Z.; Zeng, Y.; Liu, S. Raman spectroscopy study of ZnO-based ceramic films fabricated by novel sol-gel process. Mater. Sci. Eng., 2003, B97, 111-116.
Damen, T.C.; Porto, S.P.S.; Tell, B. Raman effect in zinc oxide. Phy. Rev., 1966, 142, 570-574.
Dieke, G.H. Spectra and energy levels of rare earth ions in crystals. Am. J. Phys., 1970, 38, 399.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2019
Page: [353 - 361]
Pages: 9
DOI: 10.2174/2210681208666180221123044
Price: $25

Article Metrics

PDF: 17
PRC: 1