Generic placeholder image

Current Vascular Pharmacology

Editor-in-Chief

ISSN (Print): 1570-1611
ISSN (Online): 1875-6212

Review Article

Prevention of Vascular Complications in Diabetes Mellitus Patients: Focus on the Arterial Wall

Author(s): Mojca Lunder, Miodrag Janić and Mišo Šabovič*

Volume 17, Issue 1, 2019

Page: [6 - 15] Pages: 10

DOI: 10.2174/1570161116666180206113755

Price: $65

Abstract

In Diabetes Mellitus (DM), hyperglycaemia and insulin resistance progressively lead to both microvascular and macrovascular complications. Whereas the incidence of microvascular complications is closely related to tight glycaemic control, this does not apply to macrovascular complications. Hyperglycaemia influences many interweaving molecular pathways that initially lead to increased oxidative stress, increased inflammation and endothelial dysfunction. The latter represents the initial in both types of vascular complications; it represents the “obligatory damage” in microvascular complications development and only “introductory damage” in macrovascular complications development. Other risk factors, such as arterial hypertension and dyslipidaemia, also play an important role in the progression of macrovascular complications. All these effects accumulate and lead to functional and structural arterial wall damage. In the end, all factors combined lead to the promotion of atherosclerosis and consequently major adverse cardiovascular events. If we accept the pivotal role of vascular wall impairment in the pathogenesis and progression of microvascular and macrovascular complications, treatment focused directly on the arterial wall should be one of the priorities in prevention of vascular complications in patients with DM. In this review, an innovative approach aimed at improving arterial wall dysfunction is described, which may show efficacy in clinical studies. In addition, the potential protective effects of current treatment approaches targeting the arterial wall are summarised.

Keywords: Diabetes mellitus, chronic complications, macrovascular complications, treatment, prevention, endothelial dysfunction.

Graphical Abstract
[1]
Zimmet P, Alberti KG, Magliano DJ, Bennett PH. Diabetes mellitus statistics on prevalence and mortality: Facts and fallacies. Nat Rev Endocrinol 2016; 12(10): 616-22.
[2]
International Diabetes Federation IDF Diabetes Atlas 2016 Available from: http://www.diabetesatlas.org/
[3]
Balakumar P, Maung UK, Jagadeesh G. Prevalence and prevention of cardiovascular disease and diabetes mellitus. Pharmacol Res 2016. 113(Pt A): 600-09
[4]
Paneni F, Beckman JA, Creager MA, Cosentino F. Diabetes and vascular disease: Pathophysiology, clinical consequences, and medical therapy: Part I. Eur Heart J 2013; 34(31): 2436-43.
[5]
Beckman JA, Paneni F, Cosentino F, Creager MA. Diabetes and vascular disease: Pathophysiology, clinical consequences, and medical therapy: Part II. Eur Heart J 2013; 34(31): 2444-52.
[6]
Khalil H. Diabetes microvascular complications-A clinical update. Diabetes Metab Syndr 2017; 11(Suppl. 1): 133-9.
[7]
Chawla A, Chawla R, Jaggi S. Microvasular and macrovascular complications in diabetes mellitus: Distinct or continuum? Indian J Endocrinol Metab 2016; 20(4): 546-51.
[8]
Li TC, Kardia SL, Li CI, et al. Glycemic control paradox: Poor glycemic control associated with higher one-year and eight-year risks of all-cause hospitalization but lower one-year risk of hypoglycemia in patients with type 2 diabetes. Metabolism 2015; 64(9): 1013-21.
[9]
Zoungas S, Chalmers J, Ninomiya T, et al. Association of HbA1c levels with vascular complications and death in patients with type 2 diabetes: Evidence of glycaemic thresholds. Diabetologia 2012; 55(3): 636-43.
[10]
Beckman JA, Creager MA. Vascular complications of diabetes. Circ Res 2016; 118(11): 1771-85.
[11]
Lin EH, Rutter CM, Katon W, et al. Depression and advanced complications of diabetes: A prospective cohort study. Diabetes Care 2010; 33(2): 264-9.
[12]
Chaturvedi N, Bandinelli S, Mangili R, Penno G, Rottiers RE, Fuller JH. Microalbuminuria in type 1 diabetes: Rates, risk factors and glycemic threshold. Kidney Int 2001; 60(1): 219-27.
[13]
Adler AI, Stevens RJ, Manley SE, et al. Development and progression of nephropathy in type 2 diabetes: The United Kingdom Prospective Diabetes Study (UKPDS 64). Kidney Int 2003; 63(1): 225-32.
[14]
Zhang X, Saaddine JB, Chou CF, et al. Prevalence of diabetic retinopathy in the United States, 2005-2008. JAMA 2010; 304(6): 649-56.
[15]
Tesfaye S, Chaturvedi N, Eaton SE, et al. Vascular risk factors and diabetic neuropathy. N Engl J Med 2005; 352(4): 341-50.
[16]
UK Prospective Diabetes Study Group (UKPDS 38). Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes. BMJ 1998; 317(7160): 703-13.
[17]
DCCT Research Group.Factors in development of diabetic neuropathy. Baseline analysis of neuropathy in feasibility phase of (DCCT). Diabetes 1988; 37(4): 476-81.
[18]
Nordwall M, Abrahamsson M, Dhir M, Fredrikson M, Ludvigsson J, Arnqvist HJ. Impact of HbA1c, followed from onset of type 1 diabetes, on the development of severe retinopathy and nephropathy: The VISS study (Vascular Diabetic Complications in Southeast Sweden). Diabetes Care 2015; 38(2): 308-15.
[19]
Callaghan BC, Cheng HT, Stables CL, Smith AL, Feldman EL. Diabetic neuropathy: Clinical manifestations and current treatments. Lancet Neurol 2012; 11(6): 521-34.
[20]
UK Prospective Diabetes Study (UKPDS) Group(UKPDS 33). Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes. Lancet 1998; 352(9131): 837-53.
[21]
Gerstein HC, Miller ME, Byington RP, et al. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med 2008; 358(24): 2545-59.
[22]
Duckworth W, Abraira C, Moritz T, et al. Glucose control and vascular complications in veterans with type 2 diabetes. N Engl J Med 2009; 360(2): 129-39.
[23]
Group AC, Patel A, MacMahon S, et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med 2008; 358(24): 2560-72.
[24]
Rahimi-Madiseh M, Malekpour-Tehrani A, Bahmani M, Rafieian-Kopaei M. The research and development on the antioxidants in prevention of diabetic complications. Asian Pac J Trop Med 2016; 9(9): 825-31.
[25]
Fiorentino TV, Prioletta A, Zuo P, Folli F. Hyperglycemia-induced oxidative stress and its role in diabetes mellitus related cardiovascular diseases. Curr Pharm Des 2013; 19(32): 5695-703.
[26]
Jakus V, Sandorova E, Kalninova J, Krahulec B. Monitoring of glycation, oxidative stress and inflammation in relation to the occurrence of vascular complications in patients with type 2 diabetes mellitus. Physiol Res 2014; 63(3): 297-309.
[27]
Litwinoff E, Hurtado Del Pozo C, Ramasamy R, Schmidt AM. Emerging targets for therapeutic development in diabetes and its complications: The RAGE signaling pathway. Clin Pharmacol Ther 2015; 98(2): 135-44.
[28]
Shi Y, Vanhoutte PM. Macro- and microvascular endothelial dysfunction in diabetes. J Diabetes 2017; 9(5): 434-49.
[29]
Derosa G, Maffioli P. A review about biomarkers for the investigation of vascular function and impairment in diabetes mellitus. Vasc Health Risk Manag 2016; 12: 415-9.
[30]
Cardoso CR, Salles GF. Aortic stiffness as a surrogate endpoint to micro- and macrovascular complications in patients with type 2 diabetes. Int J Mol Sci 2016; 17(12): 2044.
[31]
Gordin D, Groop PH. Aspects of hyperglycemia contribution to arterial stiffness and cardiovascular complications in patients with type 1 diabetes. J Diabetes Sci Technol 2016; 10(5): 1059-64.
[32]
Vinik AI, Erbas T, Park TS, Nolan R, Pittenger GL. Platelet dysfunction in type 2 diabetes. Diabetes Care 2001; 24(8): 1476-85.
[33]
UK Prospective Diabetes Study (UKPDS 34) group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes. Lancet 1998; 352(9131): 854-65.
[34]
Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HA. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med 2008; 359(15): 1577-89.
[35]
Stocker DJ, Taylor AJ, Langley RW, Jezior MR, Vigersky RA. A randomized trial of the effects of rosiglitazone and metformin on inflammation and subclinical atherosclerosis in patients with type 2 diabetes. Am Heart J 2007; 153(3): 445.
[36]
Erem C, Ozbas HM, Nuhoglu I, Deger O, Civan N, Ersoz HO. Comparison of effects of gliclazide, metformin and pioglitazone monotherapies on glycemic control and cardiovascular risk factors in patients with newly diagnosed uncontrolled type 2 diabetes mellitus. Exp Clin Endocrinol Diabetes 2014; 122(5): 295-302.
[37]
Hanefeld M, Pfutzner A, Forst T, Kleine I, Fuchs W. Double-blind, randomized, multicentre, and active comparator controlled investigation of the effect of pioglitazone, metformin, and the combination of both on cardiovascular risk in patients with type 2 diabetes receiving stable basal insulin therapy: The PIOCOMB study. Cardiovasc Diabetol 2011; 10: 65.
[38]
Khan S, Khan S, Imran M, Pillai KK, Akhtar M, Najmi AK. Effects of pioglitazone and vildagliptin on coagulation cascade in diabetes mellitus--targeting thrombogenesis. Expert Opin Ther Targets 2013; 17(6): 627-39.
[39]
Makdissi A, Ghanim H, Vora M, et al. Sitagliptin exerts an antinflammatory action. J Clin Endocrinol Metab 2012; 97(9): 3333-41.
[40]
Matsubara J, Sugiyama S, Akiyama E, et al. Dipeptidyl peptidase-4 inhibitor, sitagliptin, improves endothelial dysfunction in association with its anti-inflammatory effects in patients with coronary artery disease and uncontrolled diabetes. Circ J 2013; 77(5): 1337-44.
[41]
Rizzo MR, Barbieri M, Marfella R, Paolisso G. Reduction of oxidative stress and inflammation by blunting daily acute glucose fluctuations in patients with type 2 diabetes: Role of dipeptidyl peptidase-IV inhibition. Diabetes Care 2012; 35(10): 2076-82.
[42]
Satoh-Asahara N, Sasaki Y, Wada H, et al. A dipeptidyl peptidase-4 inhibitor, sitagliptin, exerts anti-inflammatory effects in type 2 diabetic patients. Metabolism 2013; 62(3): 347-51.
[43]
Ceriello A, Novials A, Canivell S, et al. Simultaneous GLP-1 and insulin administration acutely enhances their vasodilatory, antiinflammatory, and antioxidant action in type 2 diabetes. Diabetes Care 2014; 37(7): 1938-43.
[44]
Hogan AE, Gaoatswe G, Lynch L, et al. Glucagon-like peptide 1 analogue therapy directly modulates innate immune-mediated inflammation in individuals with type 2 diabetes mellitus. Diabetologia 2014; 57(4): 781-4.
[45]
Krasner NM, Ido Y, Ruderman NB, Cacicedo JM. Glucagon-like peptide-1 (GLP-1) analog liraglutide inhibits endothelial cell inflammation through a calcium and AMPK dependent mechanism. PLoS One 2014; 9(5): e97554.
[46]
Shiraki A, Oyama J, Komoda H, et al. The glucagon-like peptide 1 analog liraglutide reduces TNF-alpha-induced oxidative stress and inflammation in endothelial cells. Atherosclerosis 2012; 221(2): 375-82.
[47]
Tomiyama H, Yambe M, Yamada J, et al. Discrepancy between improvement of insulin sensitivity and that of arterial endothelial function in patients receiving antihypertensive medication. J Hypertens 2007; 25(4): 883-9.
[48]
Yavuz D, Koc M, Toprak A, et al. Effects of ACE inhibition and AT1-receptor antagonism on endothelial function and insulin sensitivity in essential hypertensive patients. J Renin Angiotensin Aldosterone Syst 2003; 4(3): 197-203.
[49]
Janic M, Lunder M, Sabovic M. Arterial stiffness and cardiovascular therapy. BioMed Res Int 2014; 2014: 621437.
[50]
Beishuizen ED, Tamsma JT, Jukema JW, et al. The effect of statin therapy on endothelial function in type 2 diabetes without manifest cardiovascular disease. Diabetes Care 2005; 28(7): 1668-74.
[51]
Economides PA, Caselli A, Tiani E, Khaodhiar L, Horton ES, Veves A. The effects of atorvastatin on endothelial function in diabetic patients and subjects at risk for type 2 diabetes. J Clin Endocrinol Metab 2004; 89(2): 740-7.
[52]
Koh KK, Quon MJ, Han SH, et al. Simvastatin improves flow-mediated dilation but reduces adiponectin levels and insulin sensitivity in hypercholesterolemic patients. Diabetes Care 2008; 31(4): 776-82.
[53]
Freidja ML, Tarhouni K, Toutain B, Fassot C, Loufrani L, Henrion D. The AGE-breaker ALT-711 restores high blood flow-dependent remodeling in mesenteric resistance arteries in a rat model of type 2 diabetes. Diabetes 2012; 61(6): 1562-72.
[54]
Matsui T, Yamagishi S, Ueda S, et al. Telmisartan, an angiotensin II type 1 receptor blocker, inhibits advanced glycation end-product (AGE)-induced monocyte chemoattractant protein-1 expression in mesangial cells through downregulation of receptor for AGEs via peroxisome proliferator-activated receptor-gamma activation. J Int Med Res 2007; 35(4): 482-9.
[55]
Zieman SJ, Melenovsky V, Clattenburg L, et al. Advanced glycation endproduct crosslink breaker (alagebrium) improves endothelial function in patients with isolated systolic hypertension. J Hypertens 2007; 25(3): 577-83.
[56]
Giorgino F, Home PD, Tuomilehto J. Glucose control and vascular outcomes in type 2 diabetes: Is the picture clear? Diabetes Care 2016; 39(Suppl. 2): S187-95.
[57]
Scirica BM, Bhatt DL, Braunwald E, et al. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med 2013; 369(14): 1317-26.
[58]
White WB, Cannon CP, Heller SR, et al. Alogliptin after acute coronary syndrome in patients with type 2 diabetes. N Engl J Med 2013; 369(14): 1327-35.
[59]
Green JB, Bethel MA, Armstrong PW, et al. Effect of sitagliptin on cardiovascular outcomes in type 2 diabetes. N Engl J Med 2015; 373(3): 232-42.
[60]
Pfeffer MA, Claggett B, Diaz R, et al. Lixisenatide in patients with type 2 diabetes and acute coronary syndrome. N Engl J Med 2015; 373(23): 2247-57.
[61]
Marso SP, Daniels GH, Brown-Frandsen K, et al. Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med 2016; 375(4): 311-22.
[62]
Marso SP, Bain SC, Consoli A, et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med 2016; 375(19): 1834-44.
[63]
Fitchett D, Zinman B, Wanner C, et al. Heart failure outcomes with empagliflozin in patients with type 2 diabetes at high cardiovascular risk: Results of the EMPA-REG OUTCOME(R) trial. Eur Heart J 2016; 37(19): 1526-34.
[64]
Neal B, Perkovic V, Mahaffey KW, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med 2017; 377(7): 644-57.
[65]
LeBras MH, Barry AR, Koshman SL. Cardiovascular safety outcomes of new antidiabetic therapies. Am J Health Syst Pharm 2017; 74(13): 970-6.
[66]
Holman RR, Paul SK, Bethel MA, Neil HA, Matthews DR. Long-term follow-up after tight control of blood pressure in type 2 diabetes. N Engl J Med 2008; 359(15): 1565-76.
[67]
Heart Outcomes Prevention Evaluation Study Investigators.Effects of ramipril on cardiovascular and microvascular outcomes in people with diabetes mellitus: Results of the HOPE study and MICRO-HOPE sub study. Lancet 2000; 355(9200): 253-9.
[68]
Yusuf S, Sleight P, Pogue J, Bosch J, Davies R, Dagenais G. Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. N Engl J Med 2000; 342(3): 145-53.
[69]
Patel A, Group AC, MacMahon S, et al. Effects of a fixed combination of perindopril and indapamide on macrovascular and microvascular outcomes in patients with type 2 diabetes mellitus (The ADVANCE trial): A randomised controlled trial. Lancet 2007; 370(9590): 829-40.
[70]
Fox KM. Efficacy of perindopril in reduction of cardiovascular events among patients with stable coronary artery disease: Randomised, double-blind, placebo-controlled, multicentre trial (the EUROPA study). Lancet 2003; 362(9386): 782-8.
[71]
Lindholm LH, Ibsen H, Dahlof B, et al. Cardiovascular morbidity and mortality in patients with diabetes in the Losartan Intervention for endpoint reduction in hypertension study (LIFE): A randomised trial against atenolol. Lancet 2002; 359(9311): 1004-10.
[72]
Collins R, Armitage J, Parish S, Sleigh P, Peto R. MRC/BHF Heart Protection Study of cholesterol-lowering with simvastatin in 5963 people with diabetes: A randomised placebo-controlled trial. Lancet 2003; 361(9374): 2005-16.
[73]
Colhoun HM, Betteridge DJ, Durrington PN, et al. Primary prevention of cardiovascular disease with atorvastatin in type 2 diabetes in the Collaborative Atorvastatin Diabetes Study (CARDS): Multicentre randomised placebo-controlled trial. Lancet 2004; 364(9435): 685-96.
[74]
Fellstrom BC, Jardine AG, Schmieder RE, et al. Rosuvastatin and cardiovascular events in patients undergoing hemodialysis. N Engl J Med 2009; 360(14): 1395-407.
[75]
Group AS, Ginsberg HN, Elam MB, et al. Effects of combination lipid therapy in type 2 diabetes mellitus. N Engl J Med 2010; 362(17): 1563-74.
[76]
Besseling J, Kastelein JJ, Defesche JC, Hutten BA, Hovingh GK. Association between familial hypercholesterolemia and prevalence of type 2 diabetes mellitus. JAMA 2015; 313(10): 1029-36.
[77]
Ridker PM, Pradhan A, MacFadyen JG, Libby P, Glynn RJ. Cardiovascular benefits and diabetes risks of statin therapy in primary prevention: An analysis from the JUPITER trial. Lancet 2012; 380(9841): 565-71.
[78]
Ogawa H, Nakayama M, Morimoto T, et al. Low-dose aspirin for primary prevention of atherosclerotic events in patients with type 2 diabetes: A randomized controlled trial. JAMA 2008; 300(18): 2134-41.
[79]
Belch J, MacCuish A, Campbell I, et al. The prevention of progression of arterial disease and diabetes (POPADAD) trial: Factorial randomised placebo controlled trial of aspirin and antioxidants in patients with diabetes and asymptomatic peripheral arterial disease. BMJ 2008; 337: a1840.
[80]
Pignone M, Alberts MJ, Colwell JA, et al. Aspirin for primary prevention of cardiovascular events in people with diabetes: A position statement of the American diabetes association, a scientific statement of the American heart association, and an expert consensus document of the American college of cardiology foundation. Diabetes Care 2010; 33(6): 1395-402.
[81]
Yusuf S, Zhao F, Mehta SR, et al. Effects of clopidogrel in addition to aspirin in patients with acute coronary syndromes without ST-segment elevation. N Engl J Med 2001; 345(7): 494-502.
[82]
Wiviott SD, Braunwald E, Angiolillo DJ, et al. Greater clinical benefit of more intensive oral antiplatelet therapy with prasugrel in patients with diabetes mellitus in the trial to assess improvement in therapeutic outcomes by optimizing platelet inhibition with prasugrel-thrombolysis in myocardial infarction 38. Circulation 2008; 118(16): 1626-36.
[83]
Roe MT, Armstrong PW, Fox KA, et al. Prasugrel versus clopidogrel for acute coronary syndromes without revascularization. N Engl J Med 2012; 367(14): 1297-309.
[84]
Wallentin L, Becker RC, Budaj A, et al. Ticagrelor versus clopidogrel in patients with acute coronary syndromes. N Engl J Med 2009; 361(11): 1045-57.
[85]
James S, Angiolillo DJ, Cornel JH, et al. Ticagrelor vs. clopidogrel in patients with acute coronary syndromes and diabetes: A substudy from the Platelet inhibition and patient outcomes (PLATO) trial. Eur Heart J 2010; 31(24): 3006-16.
[86]
Cavender MA, Scirica BM, Bonaca MP, et al. Vorapaxar in patients with diabetes mellitus and previous myocardial infarction: findings from the thrombin receptor antagonist in secondary prevention of atherothrombotic ischemic events-TIMI 50 trial. Circulation 2015; 131(12): 1047-53.
[87]
Wing RR, Look ARG. Implications of look ahead for clinical trials and clinical practice. Diabetes Obes Metab 2014; 16(12): 1183-91.
[88]
Armstrong EJ, Wu J, Singh GD, et al. Smoking cessation is associated with decreased mortality and improved amputation-free survival among patients with symptomatic peripheral artery disease. J Vasc Surg 2014; 60(6): 1565-71.
[89]
Song YM, Cho HJ. Risk of stroke and myocardial infarction after reduction or cessation of cigarette smoking: A cohort study in korean men. Stroke 2008; 39(9): 2432-8.
[90]
Wannamethee SG, Shaper AG, Whincup PH, Walker M. Smoking cessation and the risk of stroke in middle-aged men. JAMA 1995; 274(2): 155-60.
[91]
Manson JE, Ajani UA, Liu S, Nathan DM, Hennekens CH. A prospective study of cigarette smoking and the incidence of diabetes mellitus among US male physicians. Am J Med 2000; 109(7): 538-42.
[92]
Bennet AM, Brismar K, Hallqvist J, Reuterwall C, De Faire U. The risk of myocardial infarction is enhanced by a synergistic interaction between serum insulin and smoking. Eur J Endocrinol 2002; 147(5): 641-7.
[93]
Bajaj H, Zinman B. Diabetes: Steno-2 a small study with a big heart. Nat Rev Endocrinol 2016; 12(12): 692-4.
[94]
Janic M, Lunder M, Sabovic M. A new anti-ageing strategy focused on prevention of arterial ageing in the middle-aged population. Med Hypotheses 2013; 80(6): 837-40.
[95]
Janic M, Lunder M, Sabovic M. A low-dose combination of fluvastatin and valsartan: A new “drug” and a new approach for decreasing the arterial age. BioMed Res Int 2015; 2015: 235709.
[96]
Savic V, Erzen B, Janic M, et al. Improvement of arterial wall characteristics by the low-dose fluvastatin and valsartan combination in type 1 diabetes mellitus patients. Diab Vasc Dis Res 2013; 10(5): 420-5.
[97]
Savic V, Janic M, Lunder M, et al. Long-term improvement of arterial wall characteristics in patients with diabetes mellitus type 1 using cyclic, intermittent treatment with a low-dose fluvastatin and valsartan combination. Exp Ther Med 2015; 10(3): 1207-11.
[98]
Boncelj Svetek M, Erzen B, Kanc K, Sabovic M. Impaired endothelial function and arterial stiffness in patients with type 2 diabetes. The effect of a very low-dose combination of fluvastatin and valsartan. J Diabetes Complications 2017; 31(3): 544-50.
[99]
Lunder M, Janic M, Savic V, Janez A, Kanc K, Sabovic M. Very low-dose fluvastatin-valsartan combination decreases parameters of inflammation and oxidative stress in patients with type 1 diabetes mellitus. Diabetes Res Clin Pract 2017; 127: 181-6.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy