3D Visualization of Brain Tumors Using MR Images: A Survey

Author(s): Dina Mohammed Sherif El-Torky*, Maryam Nabil Al-Berry, Mohammed Abdel-Megeed Salem, Mohamed Ismail Roushdy

Journal Name: Current Medical Imaging
Formerly: Current Medical Imaging Reviews

Volume 15 , Issue 4 , 2019

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Background: Three-Dimensional visualization of brain tumors is very useful in both diagnosis and treatment stages of brain cancer.

Discussion: It helps the oncologist/neurosurgeon to take the best decision in Radiotherapy and/or surgical resection techniques. 3D visualization involves two main steps; tumor segmentation and 3D modeling.

Conclusion: In this article, we illustrate the most widely used segmentation and 3D modeling techniques for brain tumors visualization. We also survey the public databases available for evaluation of the mentioned techniques.

Keywords: Brain tumor, segmentation, magnetic resonance images, visualization, reconstruction, treatment.

Chen YT. Brain tumor detection using three-dimensional Bayesian level set method with volume rendering. In: International Conference on Wavelet Analysis and Pattern Recognition; IEEE. Xian: China 2012; pp. 158-63.
Hsieh TM, Liu YM, Liao CC, et al. Automatic segmentation of meningioma from non-contrasted brain MRI integrating fuzzy clustering and region growing. BMC Med Inform Decis Mak 2011; 11: 54.
Gordillo N, Montseny E, Sobrevilla P. State of the art survey on MRI brain tumor segmentation. Magn Reson Imaging 2013; 31(8): 1426-38.
Gonzlez-Villà, Oliver A, Valverde S, Wang L, Zwiggelaar R, Llad X. A review on brain structures segmentation in magnetic resonance imaging. Artif Intell Med 2016; 73: 45-69.
Mohammed AM, Shams AAM. In: Hassanien AE Ed. Recent survey on medical image segmentation. Ismailia: IGI Global 2017.
Boberek M, Saeed K. In: Filipczuk P, Kowal M, Obuchowicz A, Ed. Segmentation of MRI brain images for automatic detection and precise localization of tumor. Springer 2011; pp. 333-41.
Adams R, Bischof L. Seeded region growing. IEEE Trans Pattern Anal Mach Intell 1994; 16(6): 641-7.
Kaus MR, Warfield SK, Nabavi A, Black PM, Jolesz FA, Kikinis R. Automated segmentation of mr images of brain tumors 1. Radiology 2001; 218(2): 586-91.
Sato M, Lakare S, Wan M, Kaufman A, Nakajima M. A gradient magnitude based region growing algorithm for accurate segmentation. In: International Conference on Image Processing (Image Process). IEEE 2000; pp. 448-51.
Lakare S, Kaufman A. 3D segmentation techniques for medical volumes. Center for Visual Computing, State University of New York 2000.
Salman YM. Modified technique for volumetric brain tumor measurements. J Biomed Sci Eng 2009; 2(01): 16-9.
Dam E, Loog M, Letteboer M. Integrating automatic and interactive brain tumor segmentation. Proceedings of the 17th International Conference on Pattern Recognition; 2004; Cambridge, UK. IEEE 2004.
Cates JE, Whitaker RT, Jones GM. Case study: An evaluation of user-assisted hierarchical watershed segmentation. Med Image Anal 2005; 9(6): 566-78.
Supot S, Thanapong C, Chuchart P, Manas S. Segmentation of magnetic resonance images using discrete curve evolution and fuzzy clustering. In: IEEE International Conference on Integration Technology; 2007 Mar 20-24; Shenzhen, China. IEEE 2007.
Szilgyi L, Sndor Szilgyi, Zoltn Beny. A modified fuzzy C-means algorithm for MR brain image segmentation. In: 4th International Conference on Image Analysis and Recognition; 2007 Aug 22-24; Montreal, Canada.
Capelle AS, Alata O, Fernandez C, Lefvre S, Ferrie JC. Unsupervised segmentation for automatic detection of brain tumors in MRI. International Conference on Image Processing; 2000 10-13 Sep; Vancouver, BC: Canada. IEEE 2000.
Gering DT, Grimson WE, Kikinis R. Recognizing deviations from normalcy for brain tumor segmentation. In: Dohi T, Kikinis R, Eds. Medical Image Computing and Computer-Assisted Intervention-MICCAI 2002 Oct 10. Springer, Berlin, Heidelberg 2002.
Bauer S, Nolte LP, Reyes M. Segmentation of brain tumor images based on atlas-registration combined with a Markov-Random-Field lesion growth model. IEEE International Symposium on Biomedical Imaging: From Nano to Macro 2011 30 Mar-2 Apr; Chicago, IL, USA 2011.
Clarke LP. MR image segmentation using MLM and artificial neural nets. Med Phys 1991; 18(3): 673.
Ozkan M, Dawant BM, Maciunas RJ. Neural-network-based segmentation of multi-modal medical images: A comparative and prospective study. IEEE Trans Med Imaging 1993; 12(3): 534-44.
Solomon JM. Computer-assisted segmentation and tracking of brain lesions in magnetic resonance images based on probabilistic reasoning in space and time. George Mason University 2005.
Prastawa M, Bullitt E, Ho S, Gerig G. A brain tumor segmentation framework based on outlier detection. Med Image Anal 2004; 8(3): 275-83.
Zhu SC, Yuille A. Region competition: Unifying snakes, region growing, and Bayes/MDL for multiband image segmentation. IEEE Trans Pattern Anal Mach Intell 1996; 18(9): 884-900.
Moon TK. The expectation-maximization algorithm. IEEE Signal Process Mag 1996; 13(6): 47-60.
Tolba MF, Mostafa MG, Gharib TF, Salem MA-MM. MR-brain image segmentation using gaussian multiresolution analysis and the EM algorithm. In: International Conference on Enterprise Information Systems (ICEIS) 2003; pp. 165-70.
Saeed M. Maximum likelihood parameter estimation of mixture models and its application to image segmentation and restoration. Massachusetts Institute of Technology 1997.
Saeed M, Karl WC, Nguyen TQ, Rabiee HR. A new multiresolution algorithm for image segmentation. Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98; 1998 May 15-15; Seattle, WA, USA. IEEE 1998; pp. 2753-6.
Salem MA-M. Medical Image Segmentation: Multiresolution-based Algorithms. VDM Verlag 2011.
Kaufhold J, Schneider M, Karl WC, Willsky A. MR image segmentation and data fusion using a statistical approach. In: International Conference on Image Processing (ICIP’97) 1997 Oct.. Santa Barbara, California, USA 1997.
Pien HH, Gauch JM. Variational segmentation of multi-channel MRI images. In: Proceedings of 1st International Conference on Image Processing; Austin, TX: USA. IEEE; 1994; pp. 508-12.
Ye Z, Lu CC. An unsupervised multiresolution textured image segmentation using wavelet-domain classification. In: Proceedings of the International Conference of Image Science, System, and Technology 2001.
Al-Tamimi MSH, Sulong G, Shuaib IL. Alpha shape theory for 3D visualization and volumetric measurement of brain tumor progression using magnetic resonance images. Magn Reson Imaging 2015; 33(6): 787-803.
Edelsbrunner H, Mucke EP. Three-dimensional alpha shapes. ACM Trans Graph 1994; 13(1): 43-72.
Angelopoulou A, Psarrou A, Garcia-Rodriguez J, Orts-Escolano S, Azorin-Lopez J, Revett K. 3D reconstruction of medical images from slices automatically landmarked with growing neural models. Neurocomputing 2015; 150: 16-25.
Lorensen WE, Cline HE. Marching cubes: A high resolution 3D surface construction algorithm. In: Proceedings of the 14th annual conference on Computer graphics and interactive techniques 1987; ACM New York, NY, USA 1987: pp. 163-9.
Hoppe H, DeRose T, Duchamp T, McDonald J, Stuetzle W. Surface reconstruction from unorganized points. 26th ed. ACM 1992.
Carr JC, Beatson RK, Cherrie JB, et al. Reconstruction and representation of 3D objects with radial basis functions. In: Proceedings of the 28th Annual Conference on Computer graphics and Interactive Techniques; 2001. ACM; New York: USA 2001; pp. 67-76.
Shen C, O’Brien JF, Shewchuk JR. Interpolating and approximating implicit surfaces from polygon soup. In: Proceedings on Annual Conference Series on Computer Graphics; 2004; Los Angeles: California 2004; pp. 204
Fleishman S, Cohen-Or D, Silva CT. Robust moving least-squares fitting with sharp features. In: Proceeding of SIGGRAPH '05. ACM; Los Angeles: California 2005; pp. 544-52
Walder C, Scholkopf B, Chapelle O. Implicit surface modelling with a globally regularised basis of compact support. Wiley Online Library 2006; pp. 635-44.
Kazhdan M, Bolitho M, Hoppe H. Poisson surface reconstruction. 2006. Available from: http://hhoppe.com/poissonrecon.pdf
Wang CC. Incremental reconstruction of sharp edges on mesh surfaces. Comput Aided Des 2006; 38(6): 689-702.
Connolly CI. Cumulative generation of octree models from range data. In: Proceedings of the International Conference on Robotics and Automation. 1984 Mar 13-15; Atlanta, GA: USA. 1984; 25-32.
Kobbelt L, Botsch M. A survey of point-based techniques in computer graphics. Comput Graph 2004; 28(6): 801-14.
Grevera GJ, Udupa JK. An objective comparison of 3-D image interpolation methods. IEEE Trans Med Imaging 1998; 17(4): 642-52.
Herman GT, Rowland SW, Yau Mm. A comparative study of the use of linear and modified cubic spline interpolation for image reconstruction. IEEE Trans Nucl Sci 1979; 26(2): 2879-94.
Lehmann TM, Gnner C, Spitzer K. Survey: Interpolation methods in medical image processing. IEEE Trans Med Imaging 1999; 18(11): 1049-75.
Stytz MR, Parrott RW. Using kriging for 3D medical imaging. Comput Med Imaging Graph 1993; 17(6): 421-42.
Dhawan AP, Arata L. Knowledge-based 3D analysis from 2D medical images. IEEE Eng Med Biol 1991; 10(4): 30-7.
Goshtasby A, Turner DA, Ackerman LV. Matching of tomographic slices for interpolation. IEEE Trans Med Imaging 1992; 11(4): 507-16.
Higgins WE, Orlick CJ, Ledell BE. Nonlinear filtering approach to 3-D gray-scale image interpolation. IEEE Trans Med Imaging 1996; 15(4): 580-7.
Chuang KS, Chen CY, Yuan LJ, Yeh CK. Shape-based grey-level image interpolation. Phys Med Biol 1999; 44(6): 1565.
Chatzis V, Pitas I. Interpolation of 3-D binary images based on morphological skeletonization. IEEE Trans Med Imaging 2000; 19(7): 699-710.
Lee TY, Lin CH. Feature-guided shape-based image interpolation. IEEE Trans Med Imaging 2002; 21(12): 1479-89.
Penney GP, Schnabel JA, Rueckert D, Viergever MA, Niessen WJ. Registration-based interpolation. IEEE Trans Med Imaging 2004; 23(7): 922-6.
Penney GP, Schnabel JA, Rueckert D, Hawkes DJ, Niessen WJ. Registration-based interpolation using a high-resolution image for guidance. In: International Conference on Medical Image Computing and Computer-Assisted Intervention Springer, Berlin: Heidelberg. 2004; 558-65.
Leng J, Xu G, Zhang Y. Medical image interpolation based on multi-resolution registration. Comput Math Appl 2013; 66(1): 1-18.
Sebastian MTG. Neuroimage experimental data base resources. Grup Intel Comput UPV/EHU Contents 2007; 1-17. Aavailabe from: http://www.ehu.eus/ccwintco/uploads/a/a7/GIC-RR-2009-03-03.pdf
Laboratory of Neuro Imaging, 2016. Available from: https://www.loni.usc.edu/
The Cancer Imaging Archive, 2016. Available from: http://www. cancerimagingarchive.net/

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2019
Published on: 10 April, 2019
Page: [353 - 361]
Pages: 9
DOI: 10.2174/1573405614666180111142055
Price: $65

Article Metrics

PDF: 53
PRC: 1