Electrochemical Determination of Rivastigmine Hydrogen Tartrate at β-Cyclodextrin/Multi-Walled Carbon Nanotubes Modified Electrode

Author(s): Bugçe Kılıçyaldır, Asiye Aslıhan Avan, Kubilay Güçlü, Mustafa Özyürek, Hayati Filik*

Journal Name: Current Pharmaceutical Analysis

Volume 15 , Issue 3 , 2019

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Background: Electrochemical techniques can easily be adopted to solve many problems of pharmaceutical interest. The implementation of electroanalytical methods in the assay of pharmaceutical formulations has increased greatly. Nowadays, owing to the critical importance of electron transfer and surface properties, chemically modified electrodes have been employed in electrochemical sensors. The chemically modified electrode is one of the most popular electroanalytical sensors and used in several applications.

Methods: In this work, a β-cyclodextrine/multi-walled carbon nanotubes (β-CD/MWCNTs) composite modified glassy carbon electrode (GCE) was produced and applied to the detection of Rivastigmine hydrogen tartrate (RVT) in pharmaceutical formulations. The voltammetric feature of RVT at this β- CD/MWCNTs modified electrode was evaluated using cyclic voltammetry and square wave voltammetry.

Results: The β-cyclodextrin and multi-walled carbon nanotubes modified glassy carbon electrode displayed good electrocatalytic activity in the oxidation of rivastigmine hydrogen tartrate with relatively high sensitivity, stability and lifetime. The calibration graph of the analyte was linear over the range 10- 1500 µM with two linear segments and the detection limit was obtained as 2.0 µM (S/N=3). The results showed that the electrochemical sensor has good sensitivity and selectivity.

Conclusion: The β-CD/MWCNTs modified electrode displayed a high electrochemical activity and good sensitivity toward the oxidation of RVT. Compared with the bare MWCNTs coated sensor, the response of analyte increased soundly and the response potential of target analyte shifted negatively. The results indicated that the β-CD/MWCNTs film coated electrode had good catalysis to the voltammetric oxidation of RVT. The prepared sensor was applied to determine RVT in pharmaceutical samples with satisfactory yields. The outcomes indicate that β-CD/MWCNTs coated electrode is a safe choice for the detection of RVT.

Keywords: Rivastigmine, voltammetry, β-cyclodextrin, carbon nanotubes, pharmaceutical analysis, electrode.

Aschenbrenner, D.S.; Venable, S.J. Drug Therapy in Nursing, 4th ed; Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins , 2012.
Spironelli, C.; Bergamaschi, S.; Mondini, S.; Villani, D.; Angrilli, A. Functional plasticity in Alzheimer’s disease: effect of cognitive training on language-related ERP components. Neuropsychologia, 2013, 51(8), 1638-1648.
D’Errico, G.; Vitiello, G.; Ortona, O.; Tedeschi, A.; Ramunno, A.; D’Ursi, A.M. Interaction between alzheimer’s A β(25-35) peptide and phospholipid bilayers: the role of cholesterol. Biochim. Biophys. Acta, 2008, 1778(12), 2710-2716.
Thomas, S.; Shandilya, S.; Bharati, A.; Paul, S.K.; Agarwal, A.; Mathela, C.S. Identification, characterization and quantification of new impurities by LC-ESI/MS/MS and LC-UV methods in rivastigmine tartrate active pharmaceutical ingredient. J. Pharm. Biomed. Anal., 2012, 57, 39-51.
Bhatt, J.; Subbaiah, G.; Kambli, S.; Shah, B.; Nigam, S.; Patel, M.; Saxena, A.; Baliga, A.; Parekh, H.; Yadav, G. A rapid and sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the estimation of rivastigmine in human plasma. J. Chromatogr. B., 2007, 852(1-2), 115-121.
Pommier, F.; Frigola, R. Quantitative determination of rivastigmine and its major metabolite in human plasma by liquid chromatography with atmospheric pressure chemical ionization tandem mass spectrometry. J. Chromatogr. B., 2003, 784(2), 301-313.
Karthik, A.; Subramanian, G.S.; Musmade, P.; Ranjithkumar, A.; Surulivelrajan, M.; Udupa, N. Stability-indicating HPTLC determination of rivastigmine in the bulk drug and in pharmaceutical dosage forms. J. Planar Chromatogr. Mod. TLC, 2007, 20(6), 457-461.
Sha, Y.; Deng, C.; Liu, Z.; Huang, T.; Yang, B.; Duan, G. Headspace solid-phase microextraction and capillary gas chromatographic-mass spectrometric determination of rivastigmine in canine plasma samples. J. Chromatogr. B ., 2004, 806(2), 271-276.
El-Kosasy, A.M.; Salem, M.Y.; El-Bardicy, M.G.; Abd El-Rahman, M.K. Miniaturized membrane sensors for the determination of rivastigmine hydrogen tartrate. Chem. Pharm. Bull., 2008, 56(6), 753-757.
Salem, M.Y.; El-Kosasy, A.M.; El-Bardicy, M.G.; Abd El-Rahman, M.K. Spectrophotometric and spectrodensitometric methods for the determination of rivastigmine hydrogen tartrate in presence of its degradation product. Drug Test. Anal., 2010, 2(5), 225-233.
Kutner, W.; Wang, J.; L’her, M.; Buck, R.P. Analytical aspects of chemically modifıed electrodes: classifıcation, critical evaluation and recommendations. Pure App. Chem., 1998, 70(6), 1301-1318.
March, G.; Nguyen, T.D.; Piro, B. Modified electrodes used for electrochemical detection of metal ions in environmental analysis. Biosensors, 2015, 5(2), 241-275.
Kalambate, P.K.; Biradar, M.R.; Karna, S.P.; Srivastava, A.K. Adsorptive stripping differential pulse voltammetry determination of rivastigmine at graphene nanosheet-gold nanoparticle/carbon paste electrode. J. Electroanal. Chem, 2015, 757, 150-158.
Arvand, M.; Fallahi, P. Voltammetric determination of rivastigmine in pharmaceutical and biological samples using molecularly imprinted polymer modified carbon paste electrode. Sens. Actuators B Chem., 2013, 188, 797-805.
Arvand, M.; Fallahi, P. Man-tailored biomimetic sensor of molecularly imprinted materials for the potentiometric measurement of rivastigmine in tablets and biological fluids and employing the taguchi optimization methodology to optimize the MIP-based membranes. Electroanalysis, 2012, 24(9), 1852-1863.
Dermis, S. Voltammetric behaviour of rivastigmine hydrogen tartrate and its determination in capsule dosage form. Hacettepe University J. Fac. Pharm., 2006, 26, 1-12.
Cayuela, A.; Benítez-Martínez, S.; Soriano, M.L. Carbon nanotools as sorbents and sensors of nanosized objects: The third way of analytical nanoscience and nanotechnology. Trends Anal. Chem., 2016, 84, 172-180.
Sitko, R.; Zawisza, B.; Malicka, E. Modification of carbon nanotubes for preconcentration, separation and determination of trace-metal ions. Trends Anal. Chem., 2012, 37, 22-31.
Wang, Z.; Xiao, S.; Chen, Y. β-Cyclodextrin incorporated carbon nanotubes-modified electrodes for simultaneous determination of adenine and guanine. J. Electroanal. Chem., 2006, 589(2), 237-242.
Shen, Q.; Wang, X. Simultaneous determination of adenine, guanine and thymine based on β-cyclodextrin/MWNTs modified electrode. J. Electroanal. Chem., 2009, 632(1-2), 149-153.
Rahemi, V.; Vandamme, J.J.; Garrido, J.M.P.J.; Borges, F.; Brett, C.M.A.; Garrido, E.M.P.J. Enhanced host-guest electrochemical recognition of herbicide MCPA using a β-cyclodextrin carbon nanotube sensor. Talanta, 2012, 99, 288-293.
He, J.L.; Yang, Y.; Yang, X.; Liu, Y.L.; Liu, Z.H.; Shen, G.L.; Yu, R.Q. β-Cyclodextrin incorporated carbon nanotube-modified electrode as an electrochemical sensor for rutin. Sens. Actuators B Chem., 2006, 114(1), 94-100.
Jin, J.H.; Kim, H.; Jung, S. Electrochemical selectivity enhancement by using monosuccinyl beta-cyclodextrin as a dopant for multi-wall carbon nanotube-modified glassy carbon electrode in simultaneous determination of quercetin and rutin. Biotechnol. Lett., 2009, 31(11), 1739-1744.
Wang, G.; Liu, X.; Yu, B.; Luo, G. Electrocatalytic response of norepinephrine at a β-cyclodextrin incorporated carbon nanotube modified electrode. J. Electroanal. Chem., 2004, 567(2), 227-231.
Abbaspour, A.; Noori, A. A cyclodextrin host-guest recognition approach to an electrochemical sensor for simultaneous quantification of serotonin and dopamine. Biosens. Bioelectron., 2011, 26, 4674-4680.
Khaled, E.; Kamel, M.S.; Hassan, H.N.A.; Haroun, A.A.; Youssef, A.M.; Aboul-Enein, H.Y. Novel multi walled carbon nanotubes/β-cyclodextrin based carbon paste electrode for flow injection potentiometric determination of piroxicam. Talanta, 2012, 97, 96-101.
Yu, Q.; Liu, Y.; Liu, X.; Zeng, X.; Luo, S.; Wei, W. Simultaneous determination of dihydroxybenzene isomers at MWCNTs/β-cyclodextrin modified carbon ionic liquid electrode in the presence of cetylpyridinium bromide. Electroanalysis, 2010, 22(9), 1012-1018.
Abbaspour, A.; Noori, A. Cyclodextrin host-guest recognition approach to a label-free electrochemical DNA hybridization biosensor. Analyst, 2012, 137(8), 1860-1865.
Alarcón-Ángeles, G.; Guix, M.; Silva, W.C.; Ramírez-Silva, M.T.; Palomar-Pardavé, M.; Romero-Romo, M.; Merkoçi, A. Enzyme entrapment by β-cyclodextrin electropolymerization onto a carbon nanotubes-modified screen-printed electrode. Biosens. Bioelectron., 2010, 26(4), 1768-1773.
Kor, K.; Zarei, K. β-Cyclodextrin incorporated carbon nanotube paste electrode as electrochemical sensor for nifedipine. Electroanalysis, 2013, 25(6), 1497-1504.
Bard, A.J.; Faulkner, L.R. Electrochemical Methods: Fundamentals and Applications, 2nd ed; New York: Wiley, 2001.
Bond, A.M. Modern polarographic methods in analytical chemistry; Marcel Dekker: New York, 1980.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2019
Published on: 11 February, 2019
Page: [211 - 216]
Pages: 6
DOI: 10.2174/1573412913666171115162250
Price: $65

Article Metrics

PDF: 35