Electronic Noses in Medical Diagnostics

Author(s): Wojciech Wojnowski*, Tomasz Dymerski*, Jacek Gębicki, Jacek Namieśnik

Journal Name: Current Medicinal Chemistry

Volume 26 , Issue 1 , 2019

  Journal Home
Translate in Chinese
Become EABM
Become Reviewer

Abstract:

Background: Electronic nose technology is being developed in order to analyse complex mixtures of volatiles in a way parallel to biologic olfaction. When applied in the field of medicine, the use of such devices should enable the identification and discrimination between different diseases. In this review, a comprehensive summary of research in medical diagnostics using electronic noses is presented. A special attention has been paid to the application of these devices and sensor technologies, in response to current trends in medicine.

Methods: Peer-reviewed research literature pertaining to the subject matter was identified based on a search of bibliographic databases. The quality and relevance of retrieved papers was assessed using standard tools. Their content was critically reviewed and certain information contained therein was compiled in tabularized form.

Results: The majority of reviewed studies show promising results, often surpassing the accuracy and sensitivity of established diagnostic methods. However, only a relatively small number of devices have been field tested. The methods used for sample collection and data processing in various studies were listed in a table, together with electronic nose models used in these investigations.

Conclusion: Despite the fact that devices equipped with arrays of chemical sensors are not routinely used in everyday medical practice, their prospective use would solve some established issues in medical diagnostics, as well as lead to developments in prophylactics by facilitating a widespread use of non-invasive screening tests.

Keywords: Diagnostics, Breath analysis, Non-invasive diagnostic method, Electronic noses, Chemical sensor arrays, cancer detection.

[1]
Arshak, K.; Moore, E.; Lyons, G.M.; Harris, J.; Clifford, S.; de Lacy Costello, B.; Amann, A.; Al-Kateb, H.; Flynn, C.; Filipiak, W.; Khalid, T.; Osborne, D.; Ratcliffe, N.M. A review of the volatiles from the healthy human Body. J. Breath Res., 2014, 8, 014001.
[2]
Teranishi, R.; Mon, T.R.; Robinson, A.B.; Cary, P.; Pauling, L. Gas chromatography of volatiles from breath and urine. Anal. Chem., 1972, 44, 18-20.
[3]
Manolis, A. The diagnostic potential of breath analysis. Clin. Chem., 1983, 29, 5-15.
[4]
Pebay-Peyroula, F.; Nicaise, A.M. Pulmonary elimination of toxic substances. Measurement and toxological applications. Poumon Coeur, 1970, 26, 853-866.
[5]
Jansson, B.O.; Larsson, B.T. Analysis of organic compounds in human breath by gas chromatography-mass spectrometry. J. Lab. Clin. Med., 1969, 74, 961-966.
[6]
Lovett, A.M.; Reid, N.M.; Buckley, J.A.; French, J.B.; Cameron, D.M. Real-time analysis of breath using an atmospheric pressure ionization Mass Spectrometer. Biomed. Mass Spectrom., 1979, 6, 91-97.
[7]
Czerska, M.; Mikołajewska, K.; Zieliński, M.; Gromadzińska, J.; Wąsowicz, W. Today’s oxidative stress markers. Med. Pr., 2015, 66, 393-405.
[8]
Marchetti, E.; Tecco, S.; Santonico, M.; Vernile, C.; Ciciarelli, D.; Tarantino, E.; Marzo, G.; Pennazza, G. Multi-sensor approach for the monitoring of halitosis treatment via lactobacillus brevis (cd2)-containing lozenges-a randomized, double-blind placebo-controlled clinical trial. Sensors (Basel), 2015, 15, 19583-19596.
[9]
Machado, R.F.; Laskowski, D.; Deffenderfer, O.; Burch, T.; Zheng, S.; Mazzone, P.J.; Mekhail, T.; Jennings, C.; Stoller, J.K.; Pyle, J.; Duncan, J.; Dweik, R.A.; Erzurum, S.C. Detection of lung cancer by sensor array analyses of exhaled breath. Am. J. Respir. Crit. Care Med., 2005, 171, 1286-1291.
[10]
Chapman, E.A.; Thomas, P.S.; Stone, E.; Lewis, C.; Yates, D.H. A breath test for malignant mesothelioma using an electronic nose. Eur. Respir. J., 2012, 40, 448-454.
[11]
Wilson, A.D.; Baietto, M. Advances in electronic-nose technologies developed for biomedical applications. Sensors (Basel), 2011, 11, 1105-1176.
[12]
Fend, R. Development of Medical Point-of-Care Applications for Renal Medicine and Tuberculosis Based on Electronic Nose Technology., 2004. Available at: http://hdl.handle.net/ 1826/806 [Accessed: December 21st 2015]
[13]
Dragonieri, S.; Annema, J.T.; Schot, R.; van der Schee, M.P.C.; Spanevello, A.; Carratú, P.; Resta, O.; Rabe, K.F.; Sterk, P.J. An electronic nose in the discrimination of patients with non-small cell lung cancer and COPD. Lung Cancer, 2009, 64, 166-170.
[14]
Peng, G.; Hakim, M.; Broza, Y.Y.; Billan, S.; Abdah-Bortnyak, R.; Kuten, A.; Tisch, U.; Haick, H. Detection of lung, breast, colorectal, and prostate cancers from exhaled breath using a single array of nanosensors. Br. J. Cancer, 2010, 103, 542-551.
[15]
Montuschi, P.; Mores, N.; Trové, A.; Mondino, C.; Barnes, P.J.; Santonico, M.; Mondino, C.; Pennazza, G.; Mantini, G.; Martinelli, E.; Capuano, R.; Ciabattoni, G.; Paolesse, R.; Di Natale, C.; Barnes, P.J.; D’Amico, A. Diagnostic performance of an electronic nose, fractional exhaled nitric oxide, and lung function testing in asthma. CHEST J., 2010, 137, 790.
[16]
Kolk, A.; Hoelscher, M.; Maboko, L.; Jung, J.; Kuijper, S.; Cauchi, M.; Bessant, C.; van Beers, S.; Dutta, R.; Gibson, T.; Reither, K. Electronic-nose technology using sputum samples in diagnosis of patients with tuberculosis. J. Clin. Microbiol., 2010, 48, 4235-4238.
[17]
Moncrieff, R.W. An instrument for measuring and classifying odors. J. Appl. Physiol., 1961, 16, 742-749.
[18]
Wilkens, W.F.; Hartman, J.D. An electronic analog for the olfactory processes? Ann. N. Y. Acad. Sci., 1964, 116, 608-612.
[19]
Buck, T.; Allen, F.; Dalton, J. Detection of chemical species by surface effects on metals and semiconductors; Surface Effects in Detection, 1965.
[20]
Dravnieks, A.; Trotter, P.J. Polar vapour detector based on thermal modulation of contact potential. J. Sci. Instrum., 1965, 42, 624-627.
[21]
Persaud, K.; Dodd, G. Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose. Nature, 1982, 299, 352-355.
[22]
Gardner, J.W.; Bartlett, P.N. A brief history of electronic noses. Sens. Actuators B Chem., 1994, 18, 210-211.
[23]
Dymerski, T.M.; Chmiel, T.M.; Wardencki, W. Invited review article: an odor-sensing system--powerful technique for foodstuff studies. Rev. Sci. Instrum., 2011, 82, 111-101.
[24]
Fens, N.; van der Schee, M.P.; Brinkman, P.; Sterk, P.J. Exhaled breath analysis by electronic nose in airways disease. established issues and key questions. Clin. Exp. Allergy, 2013, 43, 705-715.
[25]
McEntegart, C.; Penrose, W.; Strathmann, S.; Stetter, J. Detection and discrimination of coliform bacteria with gas sensor arrays. Sens. Actuators B Chem., 2000, 70, 170-176.
[26]
Santonico, M.; Pennazza, G.; Grasso, S.; D’Amico, A.; Bizzarri, M. Design and test of a biosensor-based multisensorial system: a proof of concept study. Sensors (Basel), 2013, 13, 16625-16640.
[27]
Röck, F.; Barsan, N.; Weimar, U. Electronic nose: current status and future trends. Chem. Rev., 2008, 108, 705-725.
[28]
Pomerantz, A.; Blachman-Braun, R.; Galnares-Olalde, J.A.; Berebichez-Fridman, R.; Capurso-García, M. The possibility of inventing new technologies in the detection of cancer by applying elements of the canine olfactory apparatus. Med. Hypotheses, 2015, 85, 160-172.
[29]
James, D.; Scott, S.M.; Ali, Z.; O’Hare, W.T. Chemical sensors for electronic nose systems. Mikrochim. Acta, 2005, 149, 1-17.
[30]
Kodogiannis, V.S. Point-of-care diagnosis of bacterial pathogens in vitro, utilising an electronic nose and wavelet neural Networks. Neural Comput. Appl., 2014, 25(2), 353-366.
[31]
Capelli, L.; Sironi, S.; Del Rosso, R. Electronic noses for environmental monitoring applications. Sensors (Basel), 2014, 14, 19979-20007.
[32]
Cheng, Z.J.; Warwick, G.; Yates, D.H.; Thomas, P.S. An electronic nose in the discrimination of breath from smokers and non-smokers: a model for toxin exposure. J. Breath Res., 2009, 3, 036003.
[33]
Dymerski, T.; Gębicki, J.; Wiśniewska, P.; Sliwińska, M.; Wardencki, W.; Namieśnik, J. Application of the electronic nose technique to differentiation between model mixtures with COPD markers. Sensors (Basel), 2013, 13, 5008-5027.
[34]
Dymerski, T.; Gębicki, J.; Wardencki, W.; Namieśnik, J. Application of an electronic nose instrument to fast classification of polish honey types. Sensors (Basel), 2014, 14, 10709-10724.
[35]
Ampuero, S.; Bosset, J.O. The electronic nose applied to dairy products: a review. Sens. Actuators B Chem., 2003, 94, 1-12.
[36]
Chen, S.; Wang, Y.; Choi, S. Applications and technology of electronic nose for clinical diagnosis. Open J. Appl. Biosens., 2013, 02, 39-50.
[37]
Wilson, A.D.; Baietto, M. Applications and advances in electronic-nose technologies. Sensors (Basel), 2009, 9, 5099-5148.
[38]
Albert, K.J.J.; Lewis, N.S.S.; Schauer, C.L.L.; Sotzing, G.A.A.; Stitzel, S.E.E.; Vaid, T.P.P.; Walt, D.R.R. Cross-reactive chemical sensor arrays. Chem. Rev., 2000, 100, 2595-2626.
[39]
Kiesele, H.; Wittich, M.H. Electrochemical gas sensors for use under extreme climatic conditions. Drager Rev., 2000, 85, 10-13.
[40]
Wilson, A.D. Theoretical and practical considerations for teaching diagnostic electronic-nose technologies to clinical laboratory technicians. Procedia Soc. Behav. Sci., 2012, 31, 262-274.
[41]
Aernecke, M.J.; Walt, D.R. Optical-fiber arrays for vapor sensing. Sens. Actuators B Chem., 2009, 142, 464-469.
[42]
Walt, D.R. Bead-based optical fiber arrays for artificial olfaction. Curr. Opin. Chem. Biol., 2010, 14, 767-770.
[43]
Arshak, K.; Moore, E.; Lyons, G.M.; Harris, J.; Clifford, S. A review of gas sensors employed in electronic nose applications. Sens. Rev., 2004, 24, 181-198.
[44]
Groves, W.A.; Zellers, E.T.; Frye, G.C. Analyzing organic vapors in exhaled breath using a surface acoustic wave sensor array with preconcentration: selection and characterization of the preconcentrator adsorbent. Anal. Chim. Acta, 1998, 371, 131-143.
[45]
Speight, R.E.; Cooper, M.A. A survey of the 2010 quartz crystal microbalance literature. J. Mol. Recognit., 2012, 25, 451-473.
[46]
Barsan, N.; Weimar, U. Conduction model of metal oxide gas sensors. J. Electroceram., 2001, 7, 143-167.
[47]
Wang, C.; Yin, L.; Zhang, L.; Xiang, D.; Gao, R. Metal oxide gas sensors: sensitivity and influencing factors. Sensors (Basel), 2010, 10, 2088-2106.
[48]
Wilson, D.M.; Hoyt, S.; Janata, J.; Booksh, K.; Obando, L. Chemical sensors for portable, handheld field instruments. IEEE Sens. J., 2001, 1, 256-274.
[49]
Berna, A. Metal oxide sensors for electronic noses and their application to food analysis. Sensors (Basel), 2010, 10, 3882-3910.
[50]
Barsan, N.; Koziej, D.; Weimar, U. Metal oxide-based gas sensor research: How to? Sens. Actuators B Chem., 2007, 121, 18-35.
[51]
Buso, D.; Post, M.; Cantalini, C.; Mulvaney, P.; Martucci, A. Gold nanoparticle-doped Tio2 semiconductor thin films: gas sensing properties. Adv. Funct. Mater., 2008, 18, 3843-3849.
[52]
Persaud, K.C.; Pelosi, P. Sensor arrays using conducting polymers for an artificial nose. Sensors and Sensory Systems for an Electronic Nose., 1992, 237-256.
[53]
Freund, M.S.; Lewis, N.S. A chemically diverse conducting polymer-based “electronic nose”. Proc. Natl. Acad. Sci. USA, 1995, 92, 2652-2656.
[54]
Oh, E.H.; Song, H.S.; Park, T.H. Recent advances in electronic and bioelectronic noses and their biomedical applications. Enzyme Microb. Technol., 2011, 48, 427-437.
[55]
Bai, H.G.S. Gas sensors based on conducting polymers. Sensors (Basel), 2007, 7, 267.
[56]
Gębicki, J.; Byliński, H.; Namieśnik, J. Measurement techniques for assessing the olfactory impact of municipal sewage treatment plants. Environ. Monit. Assess., 2016, 188, 32.
[57]
Du, L.; Wu, C.; Peng, H.; Zhao, L.; Huang, L.; Wang, P. Bioengineered olfactory sensory neuron-based biosensor for specific odorant detection. Biosens. Bioelectron., 2013, 40, 401-406.
[58]
García-González, D.L.; Aparicio, R. Sensors: From biosensors to the electronic nose. Grasas Aceites, 2002, 53, 96-114.
[59]
Zhuang, L.; Guo, T.; Cao, D.; Ling, L.; Su, K.; Hu, N.; Wang, P. Detection and classification of natural odors with an in vivo bioelectronic nose. Biosens. Bioelectron., 2015, 67, 694-699.
[60]
Scott, S.M.; James, D.; Ali, Z. Data analysis for electronic nose systems. Mikrochim. Acta, 2006, 156, 183-207.
[61]
Law, J.; Jolliffe, I.T. Principal component analysis. Stat, 1987, 36, 432.
[62]
Borjesson, T.; Eklov, T.; Jonsson, A.; Sundgren, H.; Schnurer, J. Electronic nose for odor classification of grains. Cereal Chem., 1996, 73, 457-461.
[63]
Chin, W.W.; Marcoulides, G. The partial least squares approach to structural equation modeling; Modern Methods for Business Research, 1998.
[64]
Dayhoff, J.E.; DeLeo, J.M. Artificial neural networks: opening the black box. Cancer, 2001, 91, 1615-1635.
[65]
Giordani, D.S.; Siqueira, A.F.; Silva, M.L.C.P.; Oliveira, P.C.; De Castro, H.F. Identification of the biodiesel source using an electronic nose. Energy Fuels, 2008, 22, 2743-2747.
[66]
Tominaga, Y. Comparative study of class data analysis with PCA-LDA, SIMCA, PLS, ANNs, and k-NN. Chemom. Intell. Lab. Syst., 1999, 49, 105-115.
[67]
Kuske, M.; Romain, A-C.; Nicolas, J. Microbial volatile organic compounds as indicators of fungi. Can an Electronic Nose Detect Fungi in Indoor Environments? Build. Environ., 2005, 40, 824-831.
[68]
Fine, G.F.; Cavanagh, L.M.; Afonja, A.; Binions, R. Metal oxide semi-conductor gas sensors in environmental monitoring. Sensors (Basel), 2010, 10, 5469-5502.
[69]
Concina, I.; Falasconi, M.; Gobbi, E.; Bianchi, F.; Musci, M.; Mattarozzi, M.; Pardo, M.; Mangia, A.; Careri, M.; Sberveglieri, G. Early detection of microbial contamination in processed tomatoes by electronic nose. Food Control, 2009, 20, 873-880.
[70]
Benedetti, S.; Iametti, S.; Bonomi, F. Head space sensor array for the detection of aflatoxin M1 in raw ewe’s milk. J. Food Prot., 2005, 68, 1089-1092.
[71]
Śliwińska, M.; Wiśniewska, P.; Dymerski, T.; Namieśnik, J.; Wardencki, W. Food analysis using artificial senses. J. Agric. Food Chem., 2014, 62, 1423-1448.
[72]
Gębicki, J.; Dymerski, T.; Rutkowski, S. Identification of odor of volatile organic compounds using classical sensory analysis and electronic nose technique. Environ. Prot. Eng., 2014, 40(1), 103-116.
[73]
Wardencki, W.; Chmiel, T.; Dymerski, T.; Biernacka, P. Instrumental techniques used for assessment of food quality. Procedings of ECOpole, 2009, 3, 273.
[74]
Xu, H.; Wang, C.; Wang, C.; Zoval, J.; Madou, M. Polymer actuator valves toward controlled drug delivery application. Biosens. Bioelectron., 2006, 21, 2094-2099.
[75]
Keller, P.E. Electronic noses and their applications. IEEE Technical Applications Conference and Workshops. Northcon/95; Conference Record, 1995, p. 116.
[76]
Chen, J.Y.; Leng, Y.X.; Tian, X.B.; Wang, L.P.; Huang, N.; Chu, P.K.; Yang, P. Antithrombogenic investigation of surface energy and optical bandgap and hemocompatibility mechanism of Ti(Ta+5)O2 thin films. Biomaterials, 2002, 23, 2545-2552.
[77]
Fend, R.; Bessant, C.; Williams, A.J.; Woodman, A.C. Monitoring haemodialysis using electronic nose and chemometrics. Biosens. Bioelectron., 2004, 19, 1581-1590.
[78]
Hanazawa, T.; Kharitonov, S.A.; Barnes, P.J. Increased nitrotyrosine in exhaled breath condensate of patients with asthma. Am. J. Respir. Crit. Care Med., 2000, 162, 1273-1276.
[79]
Dragonieri, S.; Schot, R.; Mertens, B.J.A.; Le Cessie, S.; Gauw, S.A.; Spanevello, A.; Resta, O.; Willard, N.P.; Vink, T.J.; Rabe, K.F.; Bel, E.H.; Sterk, P.J. An electronic nose in the discrimination of patients with asthma and controls. J. Allergy Clin. Immunol., 2007, 120, 856-862.
[80]
Bruins, M.; Rahim, Z.; Bos, A.; van de Sande, W.W.J.; Endtz, H.P.; van Belkum, A. Diagnosis of active tuberculosis by e-nose analysis of exhaled air. Tuberculosis (Edinb.), 2013, 93, 232-238.
[81]
Lai, S.Y.; Deffenderfer, O.F.; Hanson, W.; Phillips, M.P.; Thaler, E.R. identification of upper respiratory bacterial pathogens with the electronic nose. Laryngoscope, 2002, 112, 975-979.
[82]
Hockstein, N.G.; Thaler, E.R.; Torigian, D.; Miller, W.T.; Deffenderfer, O.; Hanson, C.W. Diagnosis of pneumonia with an electronic nose: correlation of vapor signature with chest computed tomography scan findings. Laryngoscope, 2004, 114, 1701-1705.
[83]
Hanson, W.; Thaler, E.R. Electronic nose prediction of a clinical pneumonia score: biosensors and microbes. Anesthesiology, 2005, 102, 63-68.
[84]
Schnabel, R.M.; Boumans, M.L.L.; Smolinska, A.; Stobberingh, E.E.; Kaufmann, R.; Roekaerts, P.M.H.J.; Bergmans, D.C.J.J. Electronic nose analysis of exhaled breath to diagnose ventilator-associated pneumonia. Respir. Med., 2015, 109, 1454-1459.
[85]
Fens, N.; Zwinderman, A.H.; Van Der Schee, M.P.; de Nijs, S.B.; Dijkers, E.; Roldaan, A.C.; Cheung, D.; Bel, E.H.; Sterk, P.J. Exhaled breath profiling enables discrimination of chronic obstructive pulmonary disease and asthma. Am. J. Respir. Crit. Care Med., 2009, 180, 1076-1082.
[86]
Fens, N.; Roldaan, A.C.; van der Schee, M.P.; Boksem, R.J.; Zwinderman, A.H.; Bel, E.H.; Sterk, P.J. External validation of exhaled breath profiling using an electronic nose in the discrimination of asthma with fixed airways obstruction and chronic obstructive pulmonary disease. Clin. Exp. Allergy, 2011, 41, 1371-1378.
[87]
Hattesohl, A.D.M.; Jörres, R.A.; Dressel, H.; Schmid, S.; Vogelmeier, C.; Greulich, T.; Noeske, S.; Bals, R.; Koczulla, A.R. Discrimination between COPD patients with and without alpha 1-antitrypsin deficiency using an electronic nose. Respirology, 2011, 16, 1258-1264.
[88]
Bofan, M.; Mores, N.; Baron, M.; Dabrowska, M.; Valente, S.; Schmid, M.; Trové, A.; Conforto, S.; Zini, G.; Cattani, P.; Fuso, L.; Mautone, A.; Mondino, C.; Pagliari, G.; D’Alessio, T.; Montuschi, P. Within-day and between-day repeatability of measurements with an electronic nose in patients with COPD. J. Breath Res., 2013, 7, 017103.
[89]
Leunis, N.; Boumans, M-L.; Kremer, B.; Din, S.; Stobberingh, E.; Kessels, A.G.H.; Kross, K.W. Application of an electronic nose in the diagnosis of head and neck cancer. Laryngoscope, 2014, 124, 1377-1381.
[90]
Horvath, G.; Chilo, J.; Lindblad, T. Different volatile signals emitted by human ovarian carcinoma and healthy tissue. Future Oncol., 2010, 6, 1043-1049.
[91]
Gendron, K.B.; Hockstein, N.G.; Thaler, E.R.; Vachani, A.; Hanson, C.W. In Vitro Discrimination of tumor cell lines with an electronic nose. Otolaryngol. Head Neck Surg., 2007, 137, 269-273.
[92]
D’Amico, A.; Bono, R.; Pennazza, G.; Santonico, M.; Mantini, G.; Bernabei, M.; Zarlenga, M.; Roscioni, C.; Martinelli, E.; Paolesse, R.; Di Natale, C. Identification of melanoma with a gas sensor array. Skin Res. Technol., 2008, 14, 226-236.
[93]
O’Neill, H.; Gordon, S.; O’Neill, M.; Gibbons, R.; Szidon, J. A computerized classification technique for screening for the presence of breath biomarkers in lung cancer. Clin. Chem., 1988, 34, 1613-1618.
[94]
Phillips, M.; Gleeson, K.; Hughes, J.M.B.; Greenberg, J.; Cataneo, R.N.; Baker, L.; McVay, W.P. Volatile organic compounds in breath as markers of lung cancer: a cross-sectional study. Lancet, 1999, 353, 1930-1933.
[95]
Di Natale, C.; Macagnano, A.; Martinelli, E.; Paolesse, R.; D’Arcangelo, G.; Roscioni, C.; Finazzi-Agrò, A.; D’Amico, A. Lung cancer identification by the analysis of breath by means of an array of non-selective gas sensors. Biosens. Bioelectron., 2003, 18, 1209-1218.
[96]
Chen, X.; Cao, M.; Li, Y.; Hu, W.; Wang, P.; Ying, K.; Pan, H. A Study of an electronic nose for detection of lung cancer based on a virtual saw gas sensors array and imaging recognition method. Meas. Sci. Technol., 2005, 16, 1535-1546.
[97]
D’Amico, A.; Pennazza, G.; Santonico, M.; Martinelli, E.; Roscioni, C.; Galluccio, G.; Paolesse, R.; Di Natale, C. An investigation on electronic nose diagnosis of lung cancer. Lung Cancer, 2010, 68, 170-176.
[98]
Tran, V.H.; Hiang Ping, C.; Thurston, M.; Jackson, P.; Lewis, C.; Yates, D.; Bell, G.; Thomas, P.S. Breath analysis of lung cancer patients using an electronic nose detection system. Sensors Journal, IEEE, 2010, 10, 1514-1518.
[99]
Dragonieri, S.; van der Schee, M.P.; Massaro, T.; Schiavulli, N.; Brinkman, P.; Pinca, A.; Carratú, P.; Spanevello, A.; Resta, O.; Musti, M.; Sterk, P.J. An electronic nose distinguishes exhaled breath of patients with malignant pleural mesothelioma from controls. Lung Cancer, 2012, 75, 326-331.
[100]
Arasaradnam, R.P.; McFarlane, M.J.; Ryan-Fisher, C.; Westenbrink, E.; Hodges, P.; Hodges, P.; Thomas, M.G.; Chambers, S.; O’Connell, N.; Bailey, C.; Harmston, C.; Nwokolo, C.U.; Bardhan, K.D.; Covington, J.A. Detection of colorectal cancer (CRC) by urinary volatile organic compound analysis. PLoS One, 2014, 9, e108750.
[101]
Westenbrink, E.; Arasaradnam, R.P.; O’Connell, N.; Bailey, C.; Nwokolo, C.; Bardhan, K.D.; Covington, J.A. Development and application of a new electronic nose instrument for the detection of colorectal cancer. Biosens. Bioelectron., 2015, 67, 733-738.
[102]
Bernabei, M.; Pennazza, G.; Santonico, M.; Corsi, C.; Roscioni, C.; Paolesse, R.; Di Natale, C.; D’Amico, A. A preliminary study on the possibility to diagnose urinary tract cancers by an electronic nose. Sens. Actuators B Chem., 2008, 131, 1-4.
[103]
D’Amico, A.; Santonico, M.; Pennazza, G.; Capuano, R.; Vespasiani, G.; Del Fabbro, D.; Paolesse, R.; Di Natale, C.; Martinelli, E.; Agrò, E.F. A Novel approach for prostate cancer diagnosis using a gas sensor array. Procedia Eng., 2012, 47, 1113-1116.
[104]
Roine, A.; Veskimäe, E.; Tuokko, A.; Kumpulainen, P.; Koskimäki, J.; Keinänen, T.A.; Häkkinen, M.R.; Vepsäläinen, J.; Paavonen, T.; Lekkala, J.; Lehtimäki, T.; Tammela, T.L.; Oksala, N.K.J. Detection of prostate cancer by an electronic nose: a proof of principle study. J. Urol., 2014, 192, 230-234.
[105]
Asimakopoulos, A.D.; Del Fabbro, D.; Miano, R.; Santonico, M.; Capuano, R.; Pennazza, G.; D’Amico, A.; Finazzi-Agrò, E. Prostate cancer diagnosis through electronic nose in the urine headspace setting: a pilot study. Prostate Cancer Prostatic Dis., 2014, •••, 1-6.
[106]
Guo, D.; Zhang, D.; Li, N.; Zhang, L.; Yang, J. A novel breath analysis system based on electronic olfaction. IEEE Trans. Biomed. Eng., 2010, 57, 2753-2763.
[107]
Horvath, I.; Lazar, Z.; Gyulai, N.; Kollai, M.; Losonczy, G. Exhaled biomarkers in lung cancer. Eur. Respir. J., 2009, 34, 261-275.
[108]
Chow, S.; Campbell, C.; Sandrini, A.; Thomas, P.S.; Johnson, A.R.; Yates, D.H. Exhaled breath condensate biomarkers in asbestos-related lung disorders. Respir. Med., 2009, 103, 1091-1097.
[109]
Panou, V.; Vyberg, M.; Weinreich, U.M.; Meristoudis, C.; Falkmer, U.G.; Røe, O.D. The established and future biomarkers of malignant pleural mesothelioma. Cancer Treat. Rev., 2015, 41, 486-495.
[110]
Mohamed, E.I.; Linder, R.; Perriello, G.; Di Daniele, N.; Pöppl, S.J.; De Lorenzo, A. Predicting type 2 diabetes using an electronic nose-based artificial neural network analysis. Diabetes Nutr. Metab., 2002, 15, 215-221.
[111]
Yu, J-B.; Byun, H-G.; So, M-S.; Huh, J-S. Analysis of diabetic patient’s breath with conducting polymer sensor array. Sens. Actuators B Chem., 2005, 108, 305-308.
[112]
Dweik, R. Nitric oxide in exhaled breath: a window on lung physiology and pulmonary disease; Breath Analysis for Clinical Diagnosis and Therapeutic, 2005, pp. 121-139.
[113]
Voss, A.; Baier, V.; Reisch, R.; Von Roda, K.; Elsner, P.; Ahlers, H.; Stein, G. Smelling renal dysfunction via electronic nose. Ann. Biomed. Eng., 2005, 33, 656-660.
[114]
Lin, Y-J.; Guo, H-R.; Chang, Y-H.; Kao, M-T.; Wang, H-H.; Hong, R-I. Application of the electronic nose for uremia diagnosis. Sens. Actuators B Chem., 2001, 76, 177-180.
[115]
Khalid, T.; Aggio, R.; White, P.; De Lacy Costello, B.; Persad, R.; Al-Kateb, H.; Jones, P.; Probert, C.S.; Ratcliffe, N. Urinary volatile organic compounds for the detection of prostate cancer. PLoS One, 2015, 10, e0143283.
[116]
Utriainen, M.; Paakkanen, H.; Nyholm, S. In: Detection and identification challenges of VX nerve gas, proceedings of the 16th International Seminar on Ion Mobility Spectrometry ISIMS, Mikkeli, Finland, 2007.
[117]
Silva, C.L.; Passos, M.; Câmara, J.S. Investigation of urinary volatile organic metabolites as potential cancer biomarkers by solid-phase microextraction in combination with gas chromatography-mass spectrometry. Br. J. Cancer, 2011, 105, 1894-1904.
[118]
Chandiok, S. Short reports screening for bacterial vaginosis. J. Clin. Pathol., 1997, 50, 790-792.
[119]
Aathithan, S.; Plant, J.C.; Chaudry, A.N. Diagnosis of bacteriuria by detection of volatile organic compounds in urine using an automated headspace analyzer with multiple conducting polymer sensors. J. Clin. Microbiol., 2001, 39, 2590-2593.
[120]
Kodogiannis, V.; Wadge, E. The use of gas-sensor arrays to diagnose urinary tract infections. Int. J. Neural Syst., 2005, 15, 363-376.
[121]
Roine, A.; Saviauk, T.; Kumpulainen, P.; Karjalainen, M.; Tuokko, A.; Aittoniemi, J.; Vuento, R.; Lekkala, J.; Lehtimäki, T.; Tammela, T.L.; Oksala, N.K.J. Rapid and accurate detection of urinary pathogens by mobile ims-based electronic nose: a proof-of-principle study. PLoS One, 2014, 9, e114279.
[122]
Pennazza, G.; Marchetti, E.; Santonico, M.; Mantini, G.; Mummolo, S.; Marzo, G.; Paolesse, R.; D’Amico, A.; Di Natale, C. Application of a quartz microbalance based gas sensor array for the study of halitosis. J. Breath Res., 2008, 2, 017009.
[123]
Tanaka, M.; Anguri, H.; Nonaka, A.; Kataoka, K.; Nagata, H.; Kita, J.; Shizukuishi, S. Clinical assessment of oral malodor by the electronic nose system. J. Dent. Res., 2004, 83, 317-321.
[124]
Nonaka, A.; Tanaka, M.; Anguri, H.; Nagata, H.; Kita, J.; Shizukuishi, S. Clinical assessment of oral malodor intensity expressed as absolute value using an electronic nose. Oral Dis., 2005, 11, 35-36.
[125]
Yamada, Y.; Takahashi, Y.; Konishi, K.; Katsuumi, I. Association of odor from infected root canal analyzed by an electronic nose with isolated bacteria. J. Endod., 2007, 33, 1106-1109.
[126]
Pennazza, G.; Santonico, M.; Incalzi, R.; Antonelli, R.; D’Amico, A.; Petriaggi, M. Auxiliary device for collection and sampling of exhaled air. EP, 2641537A1, 2013
[127]
Thaler, E.R.; Hanson, C.W. Medical applications of electronic nose technology. Expert Rev. Med. Devices, 2014.
[128]
Riley, A.; Krisher, S.; Mehta, K. Breath and air analysis: applications in resource-poor settings. Procedia Eng., 2015, 107, 215-222.
[129]
Ping, W.; Yi, T.; Haibao, X.; Farong, S. A Novel Method for Diabetes Diagnosis Based on Electronic nose. Biosens. Bioelectron., 1997, 12, 1031-1036.
[130]
Arasaradnam, R.P.; Quraishi, N.; Kyrou, I.; Nwokolo, C.U.; Joseph, M.; Kumar, S.; Bardhan, K.D.; Covington, J.A. Insights into “fermentonomics”: evaluation of volatile organic compounds (vocs) in human disease using an electronic “e-nose.”. J. Med. Eng. Technol., 2011, 35, 87-91.
[131]
Kodogiannis, V.S.; Lygouras, J.N.; Tarczynski, A.; Chowdrey, H.S. Artificial odor discrimination system using electronic nose and neural networks for the identification of urinary tract infection. IEEE Trans. Inf. Technol. Biomed. Trans. Inf. Technol. Biomed., 2008, 12, 707-713.
[132]
Simenhoff, M.L.; Burke, J.F.; Saukkonen, J.J.; Ordinario, A.T.; Doty, R. Biochemical profile or uremic breath. N. Engl. J. Med., 1977, 297, 132-135.
[133]
Fens, N.; de Nijs, S.B.; Peters, S.; Dekker, T.; Knobel, H.H.; Vink, T.J.; Willard, N.P.; Zwinderman, A.H.; Krouwels, F.H.; Janssen, H-G.; Lutter, R.; Sterk, P.J. Exhaled air molecular profiling in relation to inflammatory subtype and activity in COPD. Eur. Respir. J., 2011, 38, 1301-1309.
[134]
Kolk, A.; Hoelscher, M.; Maboko, L.; Jung, J.; Kuijper, S.; Cauchi, M.; Bessant, C.; Van Beers, S.; Dutta, R.; Gibson, T.; Reither, K. Electronic-nose technology using sputum samples in diagnosis of patients with tuberculosis. J. Clin. Microbiol., 2010, 48, 4235-4238.
[135]
Bruno, E.; Alessandrini, M.; Ottaviani, F.; Delfini, A.; Di Pierro, D.; Camillo, A.; De Lorenzo, A. Can the electronic nose diagnose chronic rhinosinusitis? a new experimental study. Eur. Arch. Otorhinolaryngol., 2008, 265, 425-428.
[136]
Feudale, R.N.; Woody, N.A.; Tan, H.; Myles, A.J.; Brown, S.D.; Ferré, J. Transfer of multivariate calibration models: a review. Chemom. Intell. Lab. Syst., 2002, 64, 181-192.
[137]
Yan, K.; Zhang, D. Improving the transfer ability of prediction models for electronic noses. Sens. Actuators B Chem., 2015, 220, 115-124.
[138]
Tomic, O.; Eklöv, T.; Kvaal, K.; Haugen, J-E. Recalibration of a gas-sensor array system related to sensor replacement. Anal. Chim. Acta, 2004, 512, 199-206.
[139]
Leopold, J.H.; Bos, L.D.J.; Sterk, P.J.; Schultz, M.J.; Fens, N.; Horvath, I.; Bikov, A.; Montuschi, P.; Di Natale, C.; Yates, D.H.; Abu-Hanna, A. Comparison of classification methods in breath analysis by electronic nose. J. Breath Res., 2015, 9, 046002.
[140]
Marco, S. The need for external validation in machine olfaction: emphasis on health-related applications chemosensors and chemoreception. Anal. Bioanal. Chem., 2014, 406, 3941-3956.
[141]
Yáñez, D.J.; Toledano, A.; Serrano, E.; Martín de Rosales, A.M.; Rodríguez, F.B.; Varona, P. characterization of a clinical olfactory test with an artificial nose. Front. Neuroeng., 2011, 5, 1.
[142]
Harrison, G.R. Real-time breath monitoring of propofol and its volatile metabolites during surgery using a novel mass spectrometric technique: a feasibility study. Br. J. Anaesth., 2003, 91, 797-799.
[143]
Schwoebel, H.; Schubert, R.; Sklorz, M.; Kischkel, S.; Zimmermann, R.; Schubert, J.K.; Miekisch, W. Phase-resolved real-time breath analysis during exercise by means of smart processing of PTR-MS data. Anal. Bioanal. Chem., 2011, 401, 2079-2091.
[144]
King, J.; Mochalski, P.; Kupferthaler, A.; Unterkofler, K.; Koc, H.; Filipiak, W.; Teschl, S.; Hinterhuber, H.; Amann, A. Dynamic profiles of volatile organic compounds in exhaled breath as determined by a coupled PTR-MS/GC-MS study. Physiol. Meas., 2010, 31, 1169-1184.
[145]
Moser, B.; Bodrogi, F.; Eibl, G.; Lechner, M.; Rieder, J.; Lirk, P. Mass spectrometric profile of exhaled breath--field study by PTR-MS. Respir. Physiol. Neurobiol., 2005, 145, 295-300.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 26
ISSUE: 1
Year: 2019
Page: [197 - 215]
Pages: 19
DOI: 10.2174/0929867324666171004164636

Article Metrics

PDF: 45
HTML: 4