Title:Examining Insulin Adsorption onto Mesoporous Silica Microparticles for Oral Delivery
VOLUME: 15 ISSUE: 4
Author(s):Sarah Y. Eilleia*, Mahmoud E. Soliman, Stefan Niedermayer, Alexandra Schmidt, Samar Mansour and Ahmed S. Geneidi
Affiliation:Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), Butenandtstr. 5-13 (E), 81377 Munich, Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), Butenandtstr. 5-13 (E), 81377 Munich, Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo
Keywords:Chitosan coating, freeze-drying, insulin, mesoporous silica, microparticles, post-synthetic loading.
Abstract:Background: Microencapsulation is one of the most common techniques for the delivery of
macromolecules; however, it can cause various stability problems, such as degradation or loss of bioactivity
of the loaded molecules. For this reason, several techniques were investigated to load insulin
into pre-formed porous microparticles (MPs).
Objective: The high loading of insulin is a prerequisite of its delivery in sufficient concentration; hence
we examined insulin loading in mesoporous silica (SBA15-NH2) as a model for uniformly porous microparticles
using different loading methods and factors.
Method: The MPs were characterized with respect to their morphology, porosity and pore diameter
while insulin adsorption into the porous substrates was investigated using immersion and freeze-drying
at different pH and initial peptide concentrations. MPs were further coated with Chitosan as a technique
for pore blocking.
Results: The results showed that the extent of insulin adsorption by freeze-drying varied depending on
substrate affinity to insulin and pH where it could achieve the highest loading capacity at a pH near its
isoelectric point. A significant increase in drug loading along with slower drug release was observed
with Chitosan coated SBA15-NH2 MPs. In addition, the structural integrity of insulin was maintained
after loading into the MPs, as confirmed by gel electrophoresis and fluorescent spectroscopy together
with the in vivo study which in turn confirmed the preservation of insulin bioactivity in lowering blood
glucose after oral administration.
Conclusion: The present work displays the various factors that can control insulin loading in
mesoporous silica MPs and their effects in enhancing the efficiency of insulin oral delivery using such
substrates.