Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Medicinal Purposes: Bioactive Metabolites from Marine-derived Organisms

Author(s): Tingting Li, Ting Ding and Jianrong Li*

Volume 19, Issue 2, 2019

Page: [138 - 164] Pages: 27

DOI: 10.2174/1389557517666170927113143

Price: $65

Abstract

The environment of marine occupies about 95% biosphere of the world and it can be a critical source of bioactive compounds for humans to be explored. Special environment such as high salt, high pressure, low temperature, low nutrition and no light, etc. has made the production of bioactive substances different from terrestrial organisms. Natural ingredients secreted by marine-derived bacteria, fungi, actinomycetes, Cyanobacteria and other organisms have been separated as active pharmacophore. A number of evidences have demonstrated that bioactive ingredients isolated from marine organisms can be other means to discover novel medicines, since enormous natural compounds from marine environment were specified to be anticancer, antibacterial, antifungal, antitumor, cytotoxic, cytostatic, anti-inflammatory, antiviral agents, etc. Although considerable progress is being made within the field of chemical synthesis and engineering biosynthesis of bioactive compounds, marine environment still remains the richest and the most diverse sources for new drugs. This paper reviewed the natural compounds discovered recently from metabolites of marine organisms, which possess distinct chemical structures that may form the basis for the synthesis of new drugs to combat resistant pathogens of human life. With developing sciences and technologies, marine-derived bioactive compounds are still being found, showing the hope of solving the problems of human survival and sustainable development of resources and environment.

Keywords: Antibacterial, anticancer, bioactive compounds, cytotoxic, medicinal purpose, marine-derived organisms.

Graphical Abstract
[1]
David, J.; Newman, G.M.C. Marin natural products and related compounds in clinical and advanced preclinical trials. J. Nat. Prod., 2004, 67, 1216-1238.
[2]
Kumar, S.V.; Saravanan, D.; Kumar, B.; Jayakumar, A. An update on prodrugs from natural products. Asian Pac. J. Trop. Med., 2014, 7, S54-S9.
[3]
Olano, C.; Mendez, C.; Salas, J.A. Antitumor compounds from marine actinomycetes. Mar. Drugs, 2009, 7, 210-248.
[4]
Satyanarayana Chandralata, T.; Raghukumar, S.S. Extremophilic microbes: diversity and perspectives. Curr. Sci., 2005, 89, 78-109.
[5]
Firáková, S.; Šturdíková, M.; Múčková, M. Bioactive secondary metabolites produced by microorganisms associated with plants. Biologia, 2007, 62(3), 251-257.
[6]
Priyanka Chandra, D.S.A. Antioxidant activity of fungi isolated from soil of different areas of Punjab, India. J. Appl. Nat. Sci., 2009, 1, 123-128.
[7]
Shen, W.; Mao, H.; Huang, Q.; Dong, J. Benzenediol lactones: A class of fungal metabolites with diverse structural features and biological activities. Eur. J. Med. Chem., 2015, 97, 747-777.
[8]
Navarri, M.; Jegou, C.; Bondon, A.; Pottier, S.; Bach, S.; Baratte, B.; Ruchaud, S.; Barbier, G.; Burgaud, G.; Fleury, Y. Bioactive metabolites from the deep subseafloor fungus Oidiodendron griseum UBOCC-A-114129. Mar. Drugs, 2017, 15(4), 111.
[9]
Xu, L.; Meng, W.; Cao, C.; Wang, J.; Shan, W.; Wang, Q. Antibacterial and antifungal compounds from marine fungi. Mar. Drugs, 2015, 13, 3479-3513.
[10]
Joel, E.L.; Valentin Bhimba, B. Evaluation of secondary metabolites from mangrove associated fungi Meyerozyma guilliermondii. Alexandr. J. Med., 2013, 49, 189-194.
[11]
Rajan, A.P. Isolation and characterization of oil degrading bacteria from oil contaminated soils of Vellore district, Tamil Nadu, India. J. Environ. Sci. Eng., 2010, 52, 113-116.
[12]
Bérdy, J. Bioactive microbial metabolites: A personal view. J. Antibiot., 2005, 58, 1-26.
[13]
Williams, P.G. Panning for chemical gold: Marine bacteria as a source of new therapeutics. Trends Biotechnol., 2009, 27, 45-52.
[14]
Gerwick, W.H.; Moore, B.S. Lessons from the past and charting the future of marine natural products drug discovery and chemical biology. Chem. Biol., 2012, 19, 85-98.
[15]
Chai, Q.Y.; Yang, Z.; Lin, H.W.; Han, B.N. Alkynyl-Containing Peptides of Marine Origin: A Review. Mar. Drugs, 2016, 14(11), pii: E216.
[16]
Dussault, D.; Vu, K.D.; Vansach, T.; Horgen, F.D.; Lacroix, M. Antimicrobial effects of marine algal extracts and cyanobacterial pure compounds against five foodborne pathogens. Food Chem., 2016, 199, 114-118.
[17]
Xu, S.; Nijampatnam, B.; Dutta, S.; Velu, S.E. Cyanobacterial metabolite calothrixins: Recent advances in synthesis and biological evaluation. Mar. Drugs, 2016, 14, 17.
[18]
Raja, R.; Hemaiswarya, S.; Ganesan, V.; Carvalho, I.S. Recent developments in therapeutic applications of Cyanobacteria. Crit. Rev. Microbiol., 2016, 42, 394-405.
[19]
Akkouh, O.; Ng, T.B.; Singh, S.S.; Yin, C.; Dan, X.; Chan, Y.S.; Pan, W.; Cheung, R.C. Lectins with anti-HIV activity: A review. Molecules, 2015, 20, 648-668.
[20]
Jaiswal, P.; Singh, P.K.; Prasanna, R. Cyanobacterial bioactive molecules--an overview of their toxic properties. Cancer . J. Microbiol., 2008, 54, 701-717.
[21]
Rahman, M.A.; Halfar, J. First evidence of chitin in calcified coralline algae: New insights into the calcification process of Clathromorphum Compactum. Sci. Rep., 2014, 4, 6162.
[22]
Valentin, B.B.; Vinod, V.; Beulah, M.C. Biopotential of secondary metabolites isolated from marine sponge Dendrilla nigra. Asian Pacific J. Tropic. Disease., 2011, 1, 299-303.
[23]
Michael Assmann, E.L.; Matthias, K. Multiple defensive roles for bromopyrrole alkaloids from Caribbean Agelas sponges. Boll. Mus. Ist. Biol. Univ. Genova, 2004, 68, 187-193.
[24]
Guo, Y.; Ding, Y.; Xu, F.; Liu, B.; Kou, Z.; Xiao, W.; Zhu, J. Systems pharmacology-based drug discovery for marine resources: An example using sea cucumber (Holothurians). J. Ethnopharmacol., 2015, 165, 61-72.
[25]
Elshamy, A.I.; Nassar, M.I.; Mohamed, T.A.; Hegazy, M.E. Chemical and biological profile of Cespitularia species: A mini review. J. Adv. Res., 2016, 7, 209-224.
[26]
Dobretsov, S.; Tamimi, Y.; Al-Kindi, M.A.; Burney, I. Screening for anti-cancer compounds in marine organisms in oman. Sultan Qaboos Univ. Med. J., 2016, 16, e168-e174.
[27]
Wirshing, H.H.; Baker, A.C. Molecular evolution of calcification genes in morphologically similar but phylogenetically unrelated scleractinian corals. Mol. Phylogenet. Evol., 2014, 77, 281-295.
[28]
Rahman, M.A. An overview of the medical applications of marine skeletal matrix proteins. Mar. Drugs, 2016, 14(9), 167.
[29]
Green, D.W.; Padula, M.P.; Santos, J.; Chou, J.; Milthorpe, B. Ben-Nissan, B. A therapeutic potential for marine skeletal proteins in bone regeneration. Mar. Drugs, 2013, 11, 1203-1220.
[30]
Aam, B.B.; Heggset, E.B.; Norberg, A.L.; Sorlie, M.; Varum, K.M.; Eijsink, V.G. Production of chitooligosaccharides and their potential applications in medicine. Mar. Drugs, 2010, 8, 1482-1517.
[31]
Azuma, K.; Osaki, T.; Minami, S.; Okamoto, Y. Anticancer and anti-inflammatory properties of chitin and chitosan oligosaccharides. J. Function. Biomater., 2015, 6, 33-49.
[32]
Qu, Y.; Xu, J.; Zhou, H.; Dong, R.; Kang, M.; Zhao, J. Chitin Oligosaccharide (COS) reduces antibiotics dose and prevents antibiotics-caused side effects in Adolescent Idiopathic Scoliosis (AIS) Patients with spinal fusion surgery. Mar. Drugs, 2017, 15(3), E70.
[http://dx.doi.org/10.3390/md15030070]
[33]
de Jesus Raposo, M.F.; de Morais, A.M.; de Morais, R.M. Marine polysaccharides from algae with potential biomedical applications. Mar. Drugs, 2015, 13, 2967-3028.
[34]
Kumar, V.; Rao, D.; Thomas, T.; Kjelleberg, S.; Egan, S. Antidiatom and antibacterial activity of epiphytic bacteria isolated from Ulva lactuca in tropical waters. World J. Microbiol. Biotechnol., 2010, 27, 1543-1549.
[35]
Vo, T-S.; Ngo, D-H.; Kim, S-K. Marine algae as a potential pharmaceutical source for anti-allergic therapeutics. Process Biochem., 2012, 47, 386-394.
[36]
Lee, S.H.; Jeon, Y.J. Anti-diabetic effects of brown algae derived phlorotannins, marine polyphenols through diverse mechanisms. Fitoterapia, 2013, 86, 129-136.
[37]
Torres, F.A.E.; Passalacqua, T.G.; Velásquez, A.M.A.; de Souza, R.A.; Colepicolo, P.; Graminha, M.A.S. New drugs with antiprotozoal activity from marine algae: A review. Revista Brasileira de Farmacognosia., 2014, 24, 265-276.
[38]
Bérdy, J. Bioactive microbial metabolites: A personal view. J. Antibiot., 2005, 58, 1-26.
[39]
Ravikumar, S.; Gnanadesigan, M.; Saravanan, A.; Monisha, N.; Brindha, V.; Muthumari, S. Antagonistic properties of seagrass associated Streptomyces sp. RAUACT-1: A source for anthraquinone rich compound. Asian Pacific J. Tropic. Med., 2012, 5, 887-890.
[40]
Jinkai , Zheng. H.Z.; Kui, H.; Yi, W.; Peipei, L.; Xin, W.; Xiaoping, P.; Weiming, Z. Novel cyclic hexapeptides from marine-derived fungus, Aspergillus sclerotiorum PT06-1. Org. Lett., 2009, 11, 5262-5265.
[41]
Majik, M.S.; Shirodkar, D.; Rodrigues, C.; D’Souza, L.; Tilvi, S. Evaluation of single and joint effect of metabolites isolated from marine sponges, Fasciospongia cavernosa and Axinella donnani on antimicrobial properties. Bioorg. Med. Chem. Lett., 2014, 24, 2863-2866.
[42]
Mathan, S.; Smith, A.A.; Kumaran, J.; Prakash, S. Anticancer and antimicrobial activity of Aspergillus protuberus SP1 isolated from marine sediments of south indian coast. Chin. J. Nat. Med., 2011, 9, 286-292.
[43]
Ballav, S.; Kerkar, S.; Thomas, S.; Augustine, N. Halophilic and halotolerant actinomycetes from a marine saltern of Goa, India producing anti-bacterial metabolites. J. Biosci. Bioeng., 2015, 119, 323-330.
[44]
Khamthong, N.; Rukachaisirikul, V.; Phongpaichit, S.; Preedanon, S.; Sakayaroj, J. An antibacterial cytochalasin derivative from the marine-derived fungus Diaporthaceae sp. PSU-SP2/4. Phytochem. Lett., 2014, 10, 5-9.
[45]
Ibrahim, D.; Lim, S-H. In vitro antimicrobial activities of methanolic extract from marine alga Enteromorpha intestinalis. Asian Pacific J. Tropic. Biomed., 2015, 5, 785-788.
[46]
Lee, D.S.; Eom, S.H.; Jeong, S.Y.; Shin, H.J.; Je, J.Y.; Lee, E.W.; Chung, Y.H.; Kim, Y.M.; Kang, C.K.; Lee, M.S. A nti-methicillin-resistant Staphylococcus aureus (MRSA) substance from the marine bacterium Pseudomonas sp. UJ-6. Environ. Toxicol. Pharmacol., 2013, 35, 171-177.
[47]
Gao, X.; Lu, Y.; Xing, Y.; Ma, Y.; Lu, J.; Bao, W.; Wang, Y.; Xi, T. A novel anticancer and antifungus phenazine derivative from a marine actinomycete BM-17. Microbiol. Res., 2012, 167, 616-622.
[48]
El-Gendy Bel, D.; Rateb, M.E. Antibacterial activity of diketopiperazines isolated from a marine fungus using t-butoxycarbonyl group as a simple tool for purification. Bioorg. Med. Chem. Lett., 2015, 25, 3125-3128.
[49]
Meng, L-H.; Li, X-M.; Liu, Y.; Wang, B-G. Polyoxygenated dihydropyrano [2,3-c]pyrrole-4,5-dione derivatives from the marine mangrove-derived endophytic fungus Penicillium brocae MA-231 and their antimicrobial activity. Chin. Chem. Lett., 2015, 26, 610-612.
[50]
Kodani, S.; Sato, K.; Higuchi, T.; Casareto, B.E.; Suzuki, Y. Montiporic acid D, a new polyacetylene carboxylic acid from scleractinian coral Montipora digitata. Nat. Prod. Res., 2013, 27, 1859-1862.
[51]
Hak Cheol Kwon, C.A.K.; Paul, R. Jensen; William, F. Marinomycins A-D, antitumor-antibiotics of a new structure class from a marine Actinomycete of the recently discovered genus “Marinispora”. J. Am. Chem. Soc., 2006, 128, 1622-1632.
[52]
Kalinovskaya, N.I.; Romanenko, L.A.; Irisawa, T.; Ermakova, S.P.; Kalinovsky, A.I. Marine isolate Citricoccus sp. KMM 3890 as a source of a cyclic siderophore nocardamine with antitumor activity. Microbiol. Res., 2011, 166, 654-661.
[53]
Shingo Hiroishi, K.S.; Takashi, Y.; Junji, M.; Yuzo, T.; Shunsuke, I.; Junichi, K. Antitumor effects of Marginisporum crassissimum (Rhodophyceae), a marine red alga. Cancer Lett., 2001, 167, 145-150.
[54]
Kinghorn, A.D.; Farnsworth, N.R.; Soejarto, D.D.; Cordell, G.A.; Pezzuto, J.M.; Udeani, G.O.; Wani, M.C.; Wall, M.E.; Navarro, H.A.; Kramer, R.A.; Menendez, A.T.; Fairchild, C.R.; Lane, K.E.; Forenza, S.; Vyas, D.M.; Lam, K.S.; Shu, Y.Z. Novel strategies for the discovery of plant-derived anticancer agents. Pharmaceut. Biol., 2008, 71, 1611-1618.
[55]
Saikia, S.; Kolita, B.; Dutta, P.P.; Dutta, D.J. Neipihoi, Nath, S.; Bordoloi, M.; Quan, P.M.; Thuy, T.T.; Phuong, D.L.; Long, P.Q. Marine steroids as potential anticancer drug candidates: In silico investigation in search of inhibitors of Bcl-2 and CDK-4/Cyclin D1. Steroids, 2015, 102, 7-16.
[56]
EI-Naggar. M.Y. Kosinostatin,a major secondary metabolite isolated from the culture filtrate of Streptomyces violaceusniger strain HAL64. J. Microbiol., 2007, 45, 262-267.
[57]
Rambabu, V.; Suba, S.; Vijayakumar, S. Antimicrobial and antiproliferative prospective of kosinostatin – a secondary metabolite isolated from Streptomyces sp. J. Pharmaceut. Anal., 2015, 5, 378-382.
[58]
Saravanakumar, K.; Vivek, R.; Sithranga Boopathy, N.; Yaqian, L.; Kathiresan, K.; Chen, J. Anticancer potential of bioactive 16-methylheptadecanoic acid methyl ester derived from marine Trichoderma. J. Appl. Biomed., 2015, 13, 199-212.
[59]
Lu, P.H.; Chueh, S.C.; Kung, F.L.; Pan, S.L.; Shen, Y.C.; Guh, J.H. Ilimaquinone, a marine sponge metabolite, displays anticancer activity via GADD153-mediated pathway. Eur. J. Pharmacol., 2007, 556, 45-54.
[60]
Ramos, A.A.; Prata-Sena, M.; Castro-Carvalho, B.; Dethoup, T.; Buttachon, S.; Kijjoa, A.; Rocha, E. Potential of four marine-derived fungi extracts as anti-proliferative and cell death-inducing agents in seven human cancer cell lines. Asian Pac. J. Trop. Med., 2015, 8, 798-806.
[61]
Salvador-Reyes, L.A.; Luesch, H. Biological targets and mechanisms of action of natural products from marine cyanobacteria. Nat. Prod. Rep., 2015, 32, 478-503.
[62]
Felczykowska, A.; Pawlik, A.; Mazur-Marzec, H.; Torunska-Sitarz, A.; Narajczyk, M.; Richert, M.; Węgrzyn, G.; Herman-Antosiewicz, A. Selective inhibition of cancer cells’ proliferation by compounds included in extracts from Baltic Sea cyanobacteria. Toxicon, 2015, 108, 1-10.
[63]
Zhou, Z.; Wang, X.; Zhang, H.; Sun, J.; Zheng, L.; Liu, H.; Wang, J.; Shen, A.; Geng, M.; Guo, Y. Chromopeptide A, a highly cytotoxic depsipeptide from the marine sediment-derived bacterium Chromobacterium sp. HS-13-94. Acta Pharm. Sin. B, 2015, 5, 62-66.
[64]
Hahn, D.; Won, D.H.; Mun, B.; Kim, H.; Han, C.; Wang, W.; Chun, T.; Park, S.; Yoon, D.; Choi, H.; Nam, S.J.; Ekins, M.; Chin, J.; Kang, H. Cytotoxic scalarane sesterterpenes from a Korean marine sponge Psammocinia sp. Bioorg. Med. Chem. Lett., 2013, 23, 2336-2339.
[65]
Boot, C.M.; Amagata, T.; Tenney, K.; Compton, J.E.; Pietraszkiewicz, H.; Valeriote, F.A.; Crews, P. Four classes of structurally unusual peptides from two marine-derived fungi: Structures and bioactivities. Tetrahedron, 2007, 63, 9903-9914.
[66]
Bickmeyer, U.; Assmann, M.; Kock, M.; Schutt, C. A secondary metabolite, 4,5-dibromopyrrole-2-carboxylic acid, from marine sponges of the genus Agelas alters cellular calcium signals. Environ. Toxicol. Pharmacol., 2005, 19, 423-427.
[67]
Morita, M.; Ogawa, H.; Ohno, O.; Yamori, T.; Suenaga, K.; Toyoshima, C. Biselyngbyasides, cytotoxic marine macrolides, are novel and potent inhibitors of the Ca(2+) pumps with a unique mode of binding. FEBS Lett., 2015, 589, 1406-1411.
[68]
Beedessee, G.; Ramanjooloo, A.; Aubert, G.; Eloy, L.; Surnam-Boodhun, R.; Soest, R.W.; Cresteil, T.; Marie, D.E.P. Cytotoxic activities of hexane, ethyl acetate and butanol extracts of marine sponges from Mauritian Waters on human cancer cell lines. Environ. Toxicol. Pharmacol., 2012, 34, 397-408.
[69]
Muroga, Y.; Yamada, T.; Numata, A.; Tanaka, R. Chaetomugilins I–O, new potent cytotoxic metabolites from a marine-fish-derived Chaetomium species. Stereochemistry and biological activities. Tetrahedron, 2009, 65, 7580-7586.
[70]
Huang, H.; Lan, X.; Wang, Y.; Tian, L.; Fang, Y.; Zhang, L. Kun, Zhang.; Xi, Zheng. New bioactive derivatives of nonactic acid from the marine Streptomyces griseus derived from the plant Salicornia sp. Phytochem. Lett., 2015, 12, 190-195.
[71]
Quintana, J.; Bayona, L.M.; Castellanos, L.; Puyana, M.; Camargo, P.; Aristizabal, F.; Edwards, C.; Tabudravu, J.N.; Jaspars, M.; Ramos, F.A. Almiramide D, cytotoxic peptide from the marine cyanobacterium Oscillatoria nigroviridis. Bioorg. Med. Chem., 2014, 22, 6789-6795.
[72]
Kumagai, K.; Minamida, M.; Akakabe, M.; Tsuda, M.; Konishi, Y.; Tominaga, A.; Tsuda, M.; Fukushi, E.; Kawabata, J. Amphirionin-2, a novel linear polyketide with potent cytotoxic activity from a marine dinoflagellate Amphidinium species. Bioorg. Med. Chem. Lett., 2015, 25, 635-638.
[73]
Abdel-Lateff, A.; Alarif, W.M.; Asfour, H.Z.; Ayyad, S.E.; Khedr, A.; Badria, F.A.; Al-Lihaibi, S.S. Cytotoxic effects of three new metabolites from Red Sea marine sponge, Petrosia sp. Environ. Toxicol. Pharmacol., 2014, 37, 928-935.
[74]
Gorajana, A.; Venkatesan, M.; Vinjamuri, S.; Kurada, B.V.; Peela, S.; Jangam, P.; Poluri, E.; Zeeck, A. Resistoflavine, cytotoxic compound from a marine actinomycete, Streptomyces chibaensis AUBN1/7. Microbiol. Res., 2007, 162, 322-327.
[75]
Li, Y.; Tang, H.; Tian, X.; Lin, H.; Wang, M.; Yao, M. Three new cytotoxic isomalabaricane triterpenes from the marine sponge Stelletta tenuis. Fitoterapia, 2015, 106, 226-230.
[76]
Akakabe, M.; Kumagai, K.; Tsuda, M.; Konishi, Y.; Tominaga, A.; Tsuda, M.; Fukushi, E.; Kawabata, J. Iriomoteolide-13a, a cytotoxic 22-membered macrolide from a marine dinoflagellate Amphidinium species. Tetrahedron, 2014, 70, 2962-2965.
[77]
Bertin, M.J.; Demirkiran, O.; Navarro, G.; Moss, N.A.; Lee, J.; Goldgof, G.M.; Vigil, E.; Winzeler, E.A.; Valeriote, F.A.; Gerwick, W.H. Kalkipyrone B, a marine cyanobacterial gamma-pyrone possessing cytotoxic and anti-fungal activities. Phytochemistry, 2016, 122, 113-118.
[78]
Salvador-Reyes, L.A.; Sneed, J.; Paul, V.J.; Luesch, H. Amantelides A and B, Polyhydroxylated macrolides with differential broad-spectrum cytotoxicity from a guamanian marine cyanobacterium. J. Nat. Prod., 2015, 78, 1957-1962.
[79]
Iwasaki, A.; Ohno, O.; Sumimoto, S.; Suda, S.; Suenaga, K. Kurahyne, an acetylene-containing lipopeptide from a marine cyanobacterial assemblage of Lyngbya sp. RSC Adv., 2014, 4, 12840.
[80]
Okamoto, S.; Iwasaki, A.; Ohno, O.; Suenaga, K. Isolation and structure of kurahyne b and total synthesis of the kurahynes. J. Nat. Prod., 2015, 78, 2719-2725.
[81]
Iwasaki, A.; Ohno, O.; Sumimoto, S.; Ogawa, H.; Nguyen, K.A.; Suenaga, K. Jahanyne, an apoptosis-inducing lipopeptide from the marine cyanobacterium Lyngbya sp. Org. Lett., 2015, 17, 652-655.
[82]
Ferreira, M.; Cabado, A.G.; Chapela, M.J.; Fajardo, P.; Atanassova, M.; Garrido, A.; Vieites, J.M.; Lago, J. Cytotoxic activity of extracts of marine sponges from NW Spain on a neuroblastoma cell line. Environ. Toxicol. Pharmacol., 2011, 32, 430-437.
[83]
Guedes, É.A.C.; da Silva, T.G.; Aguiar, J.S.; de Barros, L.D.; Pinotti, L.M.; Sant’Ana, A.E.G. Cytotoxic activity of marine algae against cancerous cells. Revista Brasileira de Farmacognosia., 2013, 23, 668-673.
[84]
Urbina, J.A.; Docampo, R. Specific chemotherapy of Chagas disease: Controversies and advances. Trends Parasitol., 2003, 19, 495-501.
[85]
Shukla, A.K.; Singh, B.K.; Patra, S.; Dubey, V.K. Rational approaches for drug designing against leishmaniasis. Appl. Biochem. Biotechnol., 2010, 160, 2208-2218.
[86]
Scopel, M.; dos Santos, O.; Frasson, A.P.; Abraham, W.R.; Tasca, T.; Henriques, A.T.; Macedo, A.J. Anti-Trichomonas vaginalis activity of marine-associated fungi from the South Brazilian Coast. Exp. Parasitol., 2013, 133, 211-216.
[87]
Orhan, I.; Sener, B.; Atici, T.; Brun, R.; Perozzo, R.; Tasdemir, D. Turkish freshwater and marine macrophyte extracts show in vitro antiprotozoal activity and inhibit FabI, a key enzyme of Plasmodium falciparum fatty acid biosynthesis. Phytomedicine, 2006, 13, 388-393.
[88]
Pimentel-Elardo, S.M.; Kozytska, S.; Bugni, T.S.; Ireland, C.M.; Moll, H.; Hentschel, U. Anti-parasitic compounds from Streptomyces sp. strains isolated from Mediterranean sponges. Mar. Drugs, 2010, 8, 373-380.
[89]
Qin, J.; Su, H.; Zhang, Y.; Gao, J.; Zhu, L.; Wu, X.; Pan, H.; Li, X. Highly brominated metabolites from marine red alga Laurencia similis inhibit protein tyrosine phosphatase 1B. Bioorg. Med. Chem. Lett., 2010, 20, 7152-7154.
[90]
Quang, T.H.; Ngan, N.T.; Ko, W.; Kim, D.C.; Yoon, C.S.; Sohn, J.H.; Yim, J.H.; Kim, Y.C.; Oh, H. Tanzawaic acid derivatives from a marine isolate of Penicillium sp. (SF-6013) with anti-inflammatory and PTP1B inhibitory activities. Bioorg. Med. Chem. Lett., 2014, 24, 5787-5791.
[91]
Li, J.L.; Huang, L.; Liu, J.; Song, Y.; Gao, J.; Jung, J.H. Acetylcholinesterase inhibitory dimeric indole derivatives from the marine actinomycetes Rubrobacter radiotolerans. Fitoterapia, 2015, 102, 203-207.
[92]
Loya, S.; Rudi, A.; Kashman, Y.; Hizi, A. Mode of inhibition of HIV-1 reverse transcriptase by polyacetylenetriol, a novel inhibitor of RNA- and DNA-directed DNA polymerases. Biochem. J., 2002, 362, 685.
[93]
Nukoolkarn, V.S.; Saen-oon, S.; Rungrotmongkol, T.; Hannongbua, S.; Ingkaninan, K.; Suwanborirux, K. Petrosamine, a potent anticholinesterase pyridoacridine alkaloid from a Thai marine sponge Petrosia n. sp. Bioorg. Med. Chem., 2008, 16, 6560-6567.
[94]
Chen, Z.; Zheng, Z.; Huang, H.; Song, Y.; Zhang, X.; Ma, J. Penicacids A-C, three new mycophenolic acid derivatives and immunosuppressive activities from the marine-derived fungus Penicillium sp. SOF07. Bioorg. Med. Chem. Lett., 2012, 22, 3332-3335.
[95]
Ali, A.; Khajuria, A.; Sidiq, T.; Kumar, A.; Thakur, N.L.; Naik, D.; Vishwakarma, R.A. Modulation of LPS induced inflammatory response by Lawsonyl monocyclic terpene from the marine derived Streptomyces sp. Immunol. Lett., 2013, 150, 79-86.
[96]
Masanori Seki, A.K.; Kenji, M. Synthesis of (2S,3R,11S,12R,2”‘R, 11”’S,12”'R)-plakoside A, a prenylated and immunosuppressive marine galactosphingolipid with cyclopropane-containing alkyl chains. Tetrahedron Lett., 2001, 42, 2357-2360.
[97]
Kim, S.K.; Karadeniz, F. Anti-HIV activity of extracts and compounds from marine algae. Adv. Food Nutr. Res., 2011, 64, 255-265.
[98]
Vo, T.S.; Ngo, D.H.; Ta, Q.V.; Kim, S.K. Marine organisms as a therapeutic source against herpes simplex virus infection. Eur. J. Pharm. Sci., 2011, 44, 11-20.
[99]
Chakraborty, S.; Ghosh, U.; Balasubramanian, T.; Das, P. Screening, isolation and optimization of anti-white spot syndrome virus drug derived from marine plants. Asian Pac. J. Trop. Biomed., 2014, 4, S107-S117.
[100]
Hidari, K.I.; Takahashi, N.; Arihara, M.; Nagaoka, M.; Morita, K.; Suzuki, T. Structure and anti-dengue virus activity of sulfated polysaccharide from a marine alga. Biochem. Biophys. Res. Commun., 2008, 376, 91-95.
[101]
Zhao, Y.; Si, L.; Liu, D.; Proksch, P.; Zhou, D.; Lin, W. Truncateols A-N, new isoprenylated cyclohexanols from the sponge-associated fungus Truncatella angustata with anti-H1N1 virus activities. Tetrahedron, 2015, 71, 2708-2718.
[102]
Kim, M.; Yim, J.H.; Kim, S.Y.; Kim, H.S.; Lee, W.G.; Kim, S.J.; Kang, P.S.; Lee, C.K. In vitro inhibition of influenza A virus infection by marine microalga-derived sulfated polysaccharide p-KG03. Antiviral Res., 2012, 93, 253-259.
[103]
Defer, D.; Bourgougnon, N.; Fleury, Y. Screening for antibacterial and antiviral activities in three bivalve and two gastropod marine molluscs. Aquaculture, 2009, 293, 1-7.
[104]
Fan, G.; Li, Z.; Shen, S.; Zeng, Y.; Yang, Y.; Xu, M.; Bruhn, T.; Bruhn, H.; Morschhäuser, J.; Bringmann, G.; Lin, W. Baculiferins A-O, O-sulfated pyrrole alkaloids with anti-HIV-1 activity, from the Chinese marine sponge Iotrochota baculifera. Bioorg. Med. Chem., 2010, 18, 5466-5474.
[105]
Lillsunde, K.E.; Festa, C.; Adel, H.; De Marino, S.; Lombardi, V.; Tilvi, S.; Nawrot, D.A.; Zampella, A.; D’Souza, L.; D’Auria, M.V.; Tammela, P. Bioactive cembrane derivatives from the Indian Ocean soft coral, Sinularia kavarattiensis. Mar. Drugs, 2014, 12, 4045-4068.
[106]
Festa, C.; De Marino, S.; D’Auria, M.V.; Monti, M.C.; Bucci, M.; Vellecco, V. Anti-inflammatory cyclopeptides from the marine sponge Theonella swinhoei. Tetrahedron, 2012, 68, 2851-2857.
[107]
Brito, A.S.; Arimateia, D.S.; Souza, L.R.; Lima, M.A.; Santos, V.O.; Medeiros, V.P. Anti-inflammatory properties of a heparin-like glycosaminoglycan with reduced anti-coagulant activity isolated from a marine shrimp. Bioorg. Med. Chem., 2008, 16, 9588-9595.
[108]
Chen, C.J.; Zhou, Y.Q.; Liu, X.X.; Zhang, W.J.; Hu, S.S.; Lin, L.P. Antimicrobial and anti-inflammatory compounds from a marine fungus Pleosporales sp. Tetrahedron Lett., 2015, 56, 6183-6189.
[109]
Vanderlei, E.S.; Patoilo, K.K.; Lima, N.A.; Lima, A.P.; Rodrigues, J.A.; Silva, L.M.; Lima, M.E.; Lima, V.; Benevides, N.M. Antinociceptive and anti-inflammatory activities of lectin from the marine green alga Caulerpa cupressoides. Int. Immunopharmacol., 2010, 10, 1113-1118.
[110]
Katavic, P.L.; Yong, K.W.L.; Herring, J.N.; Deseo, M.A.; Blanchfield, J.T.; Ferro, V. Structure and stereochemistry of an anti-inflammatory anhydrosugar from the Australian marine sponge Plakinastrella clathrata and the synthesis of two analogues. Tetrahedron, 2013, 69, 8074-8079.
[111]
Montalvao, S.; Demirel, Z.; Devi, P.; Lombardi, V.; Hongisto, V.; Perala, M.; Hattara, J.; Imamoglu, E.; Tilvi, S.S.; Turan, G.; Dalay, M.C.; Tammela, P. Large-scale bioprospecting of cyanobacteria, micro- and macroalgae from the Aegean Sea. N. Biotechnol., 2016, 33, 399-406.
[112]
Phan, C.S.; Ng, S.Y.; Kim, E.A.; Jeon, Y.J.; Palaniveloo, K.; Vairappan, C.S. Capgermacrenes A and B, bioactive secondary metabolites from a bornean soft coral, Capnella sp. Mar. Drugs, 2015, 13, 3103-3115.
[113]
Lin, W.Y.; Chen, B.W.; Huang, C.Y.; Wen, Z.H.; Sung, P.J.; Su, J.H.; Dai, C.F.; Sheu, J.H. Bioactive cembranoids, sarcocrassocolides P-R, from the Dongsha Atoll soft coral Sarcophyton crassocaule. Mar. Drugs, 2014, 12, 840-850.
[114]
Ham, Y.M.; Yoon, W.J.; Lee, W.J.; Kim, S.C.; Baik, J.S.; Kim, J.H.; Lee, S.; Lee, N.H.; Hyun, C.G. Anti-inflammatory effects of isoketocharbroic acid from brown alga, Sargassum micracanthum. EXCLI J., 2015, 14, 1116-1121.
[115]
Li, Y-X.; Himaya, S.W.A.; Dewapriya, P.; Kim, H.J.; Kim, S-K. Anti-proliferative effects of isosclerone isolated from marine fungus Aspergillus fumigatus in MCF-7 human breast cancer cells. Process Biochem., 2014, 49, 2292-2298.
[116]
Huang, J.J.; Xu, W.W.; Lin, S.L.; Cheung, P.C. Phytochemical profiles of marine phytoplanktons: an evaluation of their in vitro antioxidant and anti-proliferative activities. Food Funct., 2016, 7, 5002-5017.
[117]
Cai, W.; Matthews, J.H.; Paul, V.J.; Luesch, H. Pitiamides A and B, Multifunctional Fatty Acid Amides from Marine Cyanobacteria. Planta Med., 2016, 82, 897-902.
[118]
Arai, M.; Kamiya, K.; Pruksakorn, P.; Sumii, Y.; Kotoku, N.; Joubert, J.P.; Moodley, P.; Han, C.; Shin, D.; Kobayashi, M. Anti-dormant mycobacterial activity and target analysis of nybomycin produced by a marine-derived Streptomyces sp. Bioorg. Med. Chem., 2015, 23, 3534-3541.
[119]
Tian, L.W.; Feng, Y.; Shimizu, Y.; Pfeifer, T.A.; Wellington, C.; Hooper, J.N.; Quinn, R.J. ApoE secretion modulating bromotyrosine derivative from the Australian marine sponge Callyspongia sp. Bioorg. Med. Chem. Lett., 2014, 24, 3537-3540.
[120]
Leiros, M.; Alonso, E.; Rateb, M.E.; Ebel, R.; Jaspars, M.; Alfonso, A.; Botana, L.M. The Streptomyces metabolite anhydroexfoliamycin ameliorates hallmarks of Alzheimer’s disease in vitro and in vivo. Neuroscience, 2015, 305, 26-35.
[121]
Jiang, C.S.; Fu, Y.; Zhang, L.; Gong, J.X.; Wang, Z.Z.; Xiao, W.; Zhang, H.Y.; Guo, Y.W. Synthesis and biological evaluation of novel marine-derived indole-based 1,2,4-oxadiazoles derivatives as multifunctional neuroprotective agents. Bioorg. Med. Chem. Lett., 2015, 25, 216-220.
[122]
Tareq, F.S.; Hasan, C.M.; Lee, H.S.; Lee, Y.J.; Lee, J.S.; Surovy, M.Z.; Islam, M.T.; Shin, H.J. Gageopeptins A and B, new inhibitors of zoospore motility of the phytopathogen Phytophthora capsici from a marine-derived bacterium Bacillus sp. 109GGC020. Bioorg. Med. Chem. Lett., 2015, 25, 3325-3329.
[123]
Li, H.; Bowling, J.J.; Su, M.; Hong, J.; Lee, B.J.; Hamann, M.T.; Jung, J.H. Asteropsins B-D, sponge-derived knottins with potential utility as a novel scaffold for oral peptide drugs. Biochim. Biophys. Acta, 2014, 1840, 977-984.
[124]
Azevedo, L.G.; Muccillo-Baisch, A.L.; Filgueira Dde, M.; Boyle, R.T.; Ramos, D.F.; Soares, A.D.; Lerner, C.; Silva, P.A.; Trindade, G.S. Comparative cytotoxic and anti-tuberculosis activity of Aplysina caissara marine sponge crude extracts. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2008, 147, 36-42.
[125]
Rane, R.A.; Karpoormath, R.; Naphade, S.S.; Bangalore, P.; Shaikh, M.; Hampannavar, G. Novel synthetic organic compounds inspired from antifeedant marine alkaloids as potent bacterial biofilm inhibitors. Bioorg. Chem., 2015, 61, 66-73.
[126]
Yoon, C.S.; Kim, D.C.; Lee, D.S.; Kim, K.S.; Ko, W.; Sohn, J.H.; Yim, J.H.; Kim, Y.C.; Oh, H. Anti-neuroinflammatory effect of aurantiamide acetate from the marine fungus Aspergillus sp. SF-5921: inhibition of NF-kappaB and MAPK pathways in lipopolysaccharide-induced mouse BV2 microglial cells. Int. Immunopharmacol., 2014, 23, 568-574.
[127]
Yamano, Y.; Arai, M.; Kobayashi, M. Neamphamide B, new cyclic depsipeptide, as an anti-dormant mycobacterial substance from a Japanese marine sponge of Neamphius sp. Bioorg. Med. Chem. Lett., 2012, 22, 4877-4881.
[128]
Zhang, P.; Li, X-M.; Wang, J-N.; Li, X.; Wang, B-G. New butenolide derivatives from the marine-derived fungus Paecilomyces variotii with DPPH radical scavenging activity. Phytochem. Lett., 2015, 11, 85-88.
[129]
Vining, O.B.; Medina, R.A.; Mitchell, E.A.; Videau, P.; Li, D.; Serrill, J.D.; Kelly, J.X.; Gerwick, W.H.; Proteau, P.J.; Ishmael, J.E.; McPhail, K.L. Depsipeptide companeramides from a Panamanian marine cyanobacterium associated with the coibamide producer. J. Nat. Prod., 2015, 78, 413-420.
[130]
Meyer, M.; Delberghe, F.; Liron, F.; Guillaume, M.; Valentin, A.; Guyot, M. An antiplasmodial new (bis)indole alkaloid from the hard coral Tubastraea sp. Nat. Prod. Res., 2009, 23, 178-182.
[131]
Liu, Z.Z.; Wang, Y.; Tang, Y.F.; Chen, S.Z.; Chen, X.G.; Li, H.Y. Synthesis and antitumor activity of simplified ecteinascidin-saframycin analogs. Bioorg. Med. Chem. Lett., 2006, 16, 1282-1285.
[132]
Basabe, P.; Blanco, A.; Marcos, I.S.; Díez, D.; Bodero, O.; Martín, M. Synthesis of spongidines A and D: marine metabolites phospholipase A2 inhibitors. Tetrahedron, 2011, 67, 3649-3658.
[133]
Diana, P.; Carbone, A.; Barraja, P.; Martorana, A.; Gia, O. DallaVia, L.; Cirrincione, G. 3,5-bis(3′-indolyl)pyrazoles, analogues of marine alkaloid nortopsentin: Synthesis and antitumor properties. Bioorg. Med. Chem. Lett., 2007, 17, 6134-6137.
[134]
He, W.; Qiu, H-B.; Chen, Y-J.; Xi, J.; Yao, Z-J. Total synthesis of proposed structure of coibamide A, a highly N- and O-methylated cytotoxic marine cyclodepsipeptide. Tetrahedron Lett., 2014, 55, 6109-6112.
[135]
Liu, F-P.; Zhong, J-C.; Zheng, B.; Li, S-N.; Gao, G.; Wang, Z-Y.; Li, M-Y.; Hou, S-C.; Wang, M.; Bian, Q-H. Catalytic asymmetric synthesis of (S,4E,15Z)-docosa-4,15-dien-1-yn-3-ol, an antitumor marine natural product. Tetrahedron Asymmetry, 2015, 26, 961-965.
[136]
Lin, M.C.; Hui, C.F.; Chen, J.Y.; Wu, J.L. Truncated antimicrobial peptides from marine organisms retain anticancer activity and antibacterial activity against multidrug-resistant Staphylococcus Aureus. Peptides, 2013, 44, 139-148.
[137]
Kang, L.; Cai, M.; Yu, C.; Zhang, Y.; Zhou, X. Improved production of the anticancer compound 1403C by glucose pulse feeding of marine Halorosellinia sp. (No. 1403) in submerged culture. Bioresour. Technol., 2011, 102, 10750-10753.
[138]
Yu, C.; Cai, M.; Kang, L.; Zhang, Y.; Zhou, X. Significance of seed culture methods on mycelial morphology and production of a novel anti-cancer anthraquinone by marine mangrove endophytic fungus Halorosellinia sp. (No. 1403). Process Biochem., 2012, 47, 422-427.
[139]
Hefnawy, M.A. Influence of certain stress condition on a metabolic disorders in some fungi Egypt; Menufia University, 1993.
[140]
Takao, Okazaki. T.K.; Yoshiro, O. Studies on Marine microorganisms. IV A new antibiotic SS-228 Y produced by Chainia isolated from shallow sea mud. J. Antibiot., 1975, 28, 176-184.
[141]
Cai, M.; Sun, X.; Zhou, X.; Zhang, Y. Roles of cobalt in biosynthesis stimulation of a cytotoxic compound from marine-derived Aspergillus glaucus. Process Biochem., 2012, 47, 2267-2274.
[142]
Zain, M.E.; El-Sheikh, H.H.; Soliman, H.G.; Khalil, A.M. Effect of certain chemical compounds on secondary metabolites of Penicillium janthinellum and P. duclauxii. J. Saudi Chem. Soc., 2011, 15, 239-246.
[143]
Aysegül Peksel, C.P.K. Effects of sucrose concentration during citric acid accumulation by Aspergillus niger. Turk. J. Chem., 2001, 27, 581-590.
[144]
Li, J.L.; Kim, E.L.; Wang, H.; Hong, J.; Shin, S.; Lee, C.K.; Jung, J.H. Epimeric methylsulfinyladenosine derivatives from the marine ascidian Herdmania momus. Bioorg. Med. Chem. Lett., 2013, 23, 4701-4704.
[145]
Kim, J.W.; Ko, S.K.; Son, S.; Shin, K.S.; Ryoo, I.J.; Hong, Y.S.; Oh, H.; Hwang, B.Y.; Hirota, H.; Takahashi, S.; Kim, B.Y.; Osada, H.; Jang, J.H.; Ahn, J.S. Haenamindole, an unusual diketopiperazine derivative from a marine-derived Penicillium sp. KCB12F005. Bioorg. Med. Chem. Lett., 2015, 25, 5398-5401.
[146]
Lelchat, F.; Cerantola, S.; Brandily, C.; Colliec-Jouault, S.; Baudoux, A.C.; Ojima, T.; Boisset, C. The marine bacteria Cobetia marina DSMZ 4741 synthesizes an unexpected K-antigen-like exopolysaccharide. Carbohydr. Polym., 2015, 124, 347-356.
[147]
Kusama, T.; Tanaka, N.; Kashiwada, Y.; Kobayashi, J.i. Agelamadin F and tauroacidin E, bromopyrrole alkaloids from an Okinawan marine sponge Agelas sp. Tetrahedron Lett., 2015, 56, 4502-4504.
[148]
Chen, T.; Lam, C-K.; Chen, W-D.; Chen, X-H.; Feng, G-K.; Zhu, X-F.; Lan, W-J.; Li, H-J. NMR screening approach for discovery of new 6-methylpyridinone derivatives from the marine-derived fungus Leptosphaerulina sp. Arab. J. Chem., 2015.
[http://dx.doi.org/10.1016/j.arabjc.2015.06.015]
[149]
Hegazy, M.E.; Mohamed, T.A.; Elshamy, A.I.; Al-Hammady, M.A.; Ohta, S.; Pare, P.W. Casbane Diterpenes from Red Sea Coral Sinularia polydactyla. Molecules, 2016, 21, 308.
[150]
Samarakoon, K.W.; Ko, J-Y.; Lee, J-H.; Kwon, O.N.; Kim, S-W.; Jeon, Y-J. Apoptotic anticancer activity of a novel fatty alcohol ester isolated from cultured marine diatom, Phaeodactylum tricornutum. J. Funct. Foods, 2014, 6, 231-240.
[151]
Kanchan, T.V.J.P.; Hendrik, L. Structure and activity of largazole, a potent antiproliferative agent from the floridian marine cyanobacterium Symploca sp. J. Am. Chem. Soc., 2008, 130, 1806-1807.
[152]
Bister, B.; Bischoff, D.; Strobele, M.; Riedlinger, J.; Reicke, A.; Wolter, F.; Bull, A.T.; Zähner, H.; Fiedler, H.P.; Süssmuth, R.D. Abyssomicin C-A polycyclic antibiotic from a marine Verrucosispora strain as an inhibitor of the p-aminobenzoic acid/ tetrahydrofolate biosynthesis pathway. Angew. Chem. Int. Ed. Engl., 2004, 43, 2574-2576.
[153]
Jean-Philippe Rath, S.K.; Martin, E. Maier. Synthesis of the Fully Functionalized Core Structure of the Antibiotic Abyssomicin C. Org. Lett., 2005, 7, 3089-3092.
[154]
Rebecca, A.; Medina, D.E.G.; Patrice, H.; Susan, L. Mooberry, Nelson Huang, Luz I. Romero, Eduardo Ortega-Barría, William H. Gerwick, Kerry L. McPhail. Coibamide A, a potent antiproliferative cyclic depsipeptide from the Panamanian marine cyanobacterium Leptolyngbya sp. J. Am. Chem. Soc., 2008, 130, 6324-6325.
[155]
Shoemaker, R.H. The NCI60 human tumour cell line anticancer drug screen. Cancer, 2006, 6, 813-823.
[156]
Paul, R.; Jensen, R.D.; William, F. Distribution of actinomycetes in near-shore tropical marine sediments. Appl. Environ. Microbiol., 1991, 57.
[157]
Schneider, K.; Keller, S.; Wolter, F.E.; Roglin, L.; Beil, W.; Seitz, O.; Nicholson, G.; Bruntner, C.; Riedlinger, J.; Fiedler, H.P.; Süssmuth, R.D.; Proximicins, A. B, and C-antitumor furan analogues of netropsin from the marine actinomycete Verrucosispora induce upregulation of p53 and the cyclin kinase inhibitor p21. Angew. Chem. Int. Ed. Engl., 2008, 47, 3258-3261.
[158]
Ojika, M.; Kigoshi, H.; Yoshida, Y.; Ishigaki, T.; Nisiwaki, M.; Tsukada, I. Aplyronine A, a potent antitumor macrolide of marine origin, and the congeners aplyronines B and C: isolation, structures, and bioactivities. Tetrahedron, 2007, 63, 3138-3167.
[159]
Rives, A.; Le Calve, B.; Delaine, T.; Legentil, L.; Kiss, R.; Delfourne, E. Synthesis and antitumor evaluation of analogues of the marine pyrroloiminoquinone tsitsikammamines. Eur. J. Med. Chem., 2010, 45, 343-351.
[160]
Kerr, R.G.; Brophy, S.; Derksen, D.J. Synthesis and evaluation of anti-inflammatory activity of derivatives of the marine natural products fuscol and eunicol. Bioorg. Med. Chem. Lett., 2014, 24, 4804-4806.
[161]
Yamada, T.; Kikuchi, T.; Tanaka, R.; Numata, A. Halichoblelides B and C, potent cytotoxic macrolides from a Streptomyces species separated from a marine fish. Tetrahedron Lett., 2012, 53, 2842-2846.
[162]
Hendrik Luesch, W.Y.Y.; Richard, E.M.; Valerie, J.P. Structurally diverse new alkaloids from Palauan collections of the apratoxin-producing marine cyanobacterium Lyngbya sp. Tetrahedron, 2002, 58, 7959-7966.
[163]
White, A.W.; Carpenter, N.; Lottin, J.R.; McClelland, R.A.; Nicholson, R.I. Synthesis and evaluation of novel anti-proliferative pyrroloazepinone and indoloazepinone oximes derived from the marine natural product hymenialdisine. Eur. J. Med. Chem., 2012, 56, 246-253.
[164]
Wei, H.; Itoh, T.; Kinoshita, M.; Nakai, Y.; Kurotaki, M.; Kobayashi, M. Cytotoxic sesterterpenes, 6-epi-ophiobolin G and 6-epi-ophiobolin N, from marine derived fungus Emericella variecolor GF10. Tetrahedron, 2004, 60, 6015-6019.
[165]
Kotoku, N.; Tamada, N.; Hayashi, A.; Kobayashi, M. Synthesis of BC-ring model of globostellatic acid X methyl ester, an anti-angiogenic substance from marine sponge. Bioorg. Med. Chem. Lett., 2008, 18, 3532-3535.
[166]
Umehara, M.; Negishi, T.; Tashiro, T.; Nakao, Y.; Kimura, J. Structure-related cytotoxic activity of derivatives from kulokekahilide-2, a cyclodepsipeptide in Hawaiian marine mollusk. Bioorg. Med. Chem. Lett., 2012, 22, 7422-7425.
[167]
Nishimura, S.; Matsunaga, S.; Yoshida, S.; Nakao, Y.; Hirota, H.; Fusetani, N. Structure-activity relationship study on 13-deoxytedanolide, a highly antitumor macrolide from the marine sponge Mycale adhaerens. Bioorg. Med. Chem., 2005, 13, 455-462.
[168]
Lam, C.F.C.; Giddens, A.C.; Chand, N.; Webb, V.L.; Copp, B.R. Semi-synthesis of bioactive fluorescent analogues of the cytotoxic marine alkaloid discorhabdin C. Tetrahedron, 2012, 68, 3187-3194.
[169]
Lee, Y.; Wang, W.; Kim, H.; Giri, A.G.; Won, D.H.; Hahn, D.; Baek, K.R.; Lee, J.; Yang, I.; Choi, H.; Nam, S.J.; Kang, H. Phorbaketals L-N, cytotoxic sesterterpenoids isolated from the marine sponge of the genus Phorbas. Bioorg. Med. Chem. Lett., 2014, 24, 4095-4098.
[170]
Longeon, A.; Copp, B.R.; Roue, M.; Dubois, J.; Valentin, A.; Petek, S.; Debitus, C.; Bourguet-Kondracki, M.L. New bioactive halenaquinone derivatives from South Pacific marine sponges of the genus Xestospongia. Bioorg. Med. Chem., 2010, 18, 6006-6011.
[171]
Wen, Z.H.; Chao, C.H.; Wu, M.H.; Sheu, J.H. A neuroprotective sulfone of marine origin and the in vivo anti-inflammatory activity of an analogue. Eur. J. Med. Chem., 2010, 45, 5998-6004.
[172]
Du, F.Y.; Li, X.M.; Li, C.S.; Shang, Z.; Wang, B.G. Cristatumins A-D, new indole alkaloids from the marine-derived endophytic fungus Eurotium cristatum EN-220. Bioorg. Med. Chem. Lett., 2012, 22, 4650-4653.
[173]
Zollinger, M.; Kelter, G.; Fiebig, H.H.; Lindel, T. Antitumor activity of the marine natural product dibromophakellstatin in vitro. Bioorg. Med. Chem. Lett., 2007, 17, 346-349.
[174]
Gao, S.S.; Li, X.M.; Li, C.S.; Proksch, P.; Wang, B.G. Penicisteroids A and B, antifungal and cytotoxic polyoxygenated steroids from the marine alga-derived endophytic fungus Penicillium chrysogenum QEN-24S. Bioorg. Med. Chem. Lett., 2011, 21, 2894-2897.
[175]
Kasettrathat, C.; Ngamrojanavanich, N.; Wiyakrutta, S.; Mahidol, C.; Ruchirawat, S.; Kittakoop, P. Cytotoxic and antiplasmodial substances from marine-derived fungi, Nodulisporium sp. and CRI247-01. Phytochemistry, 2008, 69, 2621-2626.
[176]
Arasu, M.V.; Duraipandiyan, V.; Ignacimuthu, S. Antibacterial and antifungal activities of polyketide metabolite from marine Streptomyces sp. AP-123 and its cytotoxic effect. Chemosphere, 2013, 90, 479-487.
[177]
Dasari, V.R.; Muthyala, M.K.; Nikku, M.Y.; Donthireddy, S.R. Novel Pyridinium compound from marine actinomycete, Amycolatopsis alba var. nov. DVR D4 showing antimicrobial and cytotoxic activities in vitro. Microbiol. Res., 2012, 167, 346-351.
[178]
de Felício, R.; Pavão, G.B.; de Oliveira, A.L.L.; Erbert, C.; Conti, R.; Pupo, M.T.; Niege, A.J.C.F.; Elthon, G.F.; Letícia, V.C-L.; Maria Cláudia, M.Y.; Nair, S.Y.; Hosana, M.D. Antibacterial, antifungal and cytotoxic activities exhibited by endophytic fungi from the Brazilian marine red alga Bostrychia tenella (Ceramiales). Revista Brasileira de Farmacognosia,., 2015, 25, 641-650.
[179]
Giddens, A.C.; Nielsen, L.; Boshoff, H.I.; Tasdemir, D.; Perozzo, R.; Kaiser, M. Natural product inhibitors of fatty acid biosynthesis: synthesis of the marine microbial metabolites pseudopyronines A and B and evaluation of their anti-infective activities. Tetrahedron, 2008, 64, 1242-1249.
[180]
Li, X.; Li, X-M.; Xu, G-M.; Li, C-S.; Wang, B-G. Antioxidant metabolites from marine alga-derived fungus Aspergillus wentii EN-48. Phytochem. Lett., 2014, 7, 120-123.
[181]
Radwan, M.A.; El-Sherbiny, M. Synthesis and antitumor activity of indolylpyrimidines: marine natural product meridianin D analogues. Bioorg. Med. Chem., 2007, 15, 1206-1211.
[182]
Kubota, T.; Ishiguro, Y.; Takahashi-Nakaguchi, A.; Fromont, J.; Gonoi, T.; Kobayashi, J. Manzamenones L-N, new dimeric fatty-acid derivatives from an Okinawan marine sponge Plakortis sp. Bioorg. Med. Chem. Lett., 2013, 23, 244-247.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy