Enzyme-Instructed Self-assembly in Biological Milieu for Theranostics Purpose

Author(s): Zhentao Huang, Qingxin Yao, Simin Wei, Jiali Chen, Yuan Gao*

Journal Name: Current Medicinal Chemistry

Volume 26 , Issue 8 , 2019

  Journal Home
Translate in Chinese
Become EABM
Become Reviewer

Abstract:

Precision medicine is in an urgent need for public healthcare. Among the past several decades, the flourishing development in nanotechnology significantly advances the realization of precision nanomedicine. Comparing to well-documented nanoparticlebased strategy, in this review, we focus on the strategy using enzyme instructed selfassembly (EISA) in biological milieu for theranostics purpose. In principle, the design of small molecules for EISA requires two aspects: (1) the substrate of enzyme of interest; and (2) self-assembly potency after enzymatic conversion. This strategy has shown its irreplaceable advantages in nanomedicne, specifically for cancer treatments and Vaccine Adjuvants. Interestingly, all the reported examples rely on only one kind of enzymehydrolase. Therefore, we envision that the application of EISA strategy just begins and will lead to a new paradigm in nanomedicine.

Keywords: Precision medicine, Nanotechnology, Enzyme, Self-assembly, Theranostics, Vaccine adjuvants.

[1]
Printz, C. Precision medicine initiative boosts funding for NCI efforts: Proposal would help broaden availability of targeted therapies. Cancer, 2015, 121(19), 3369-3370.
[2]
Erdogan, H.; Yilmaz, M.; Babur, E.; Duman, M.; Aydin, H.M.; Demirel, G. Fabrication of plasmonic nanorod-embedded dipeptide microspheres via the freeze-quenching method for near-infrared laser-triggered drug-delivery applications. Biomacromolecules, 2016, 17(5), 1788-1794.
[3]
Karimi, M.; Ghasemi, A.; Sahandi Zangabad, P.; Rahighi, R.; Moosavi Basri, S.M.; Mirshekari, H.; Amiri, M.; Shafaei Pishabad, Z.; Aslani, A.; Bozorgomid, M.; Ghosh, D.; Beyzavi, A.; Vaseghi, A.; Aref, A.R.; Haghani, L.; Bahrami, S.; Hamblin, M.R. Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem. Soc. Rev., 2016, 45(5), 1457-1501.
[4]
Whitlow, J.; Pacelli, S.; Paul, A. Polymeric nanohybrids as a new class of therapeutic biotransporters. Macromol. Chem. Phys., 2016, 217(11), 1245-1259.
[5]
Alcantara, D.; Lopez, S.; García-Martin, M.L.; Pozo, D. Iron oxide nanoparticles as magnetic relaxation switching (MRSw) sensors: Current applications in nanomedicine. Nanomedicine (Lond.), 2016, 12(5), 1253-1262.
[6]
Ohta, S.; Glancy, D.; Chan, W.C.W. DNA-controlled dynamic colloidal nanoparticle systems for mediating cellular interaction. Science, 2016, 351(6275), 841-845.
[7]
Sindhwani, S.; Syed, A.M.; Wilhelm, S.; Glancy, D.R.; Chen, Y.Y.; Dobosz, M.; Chan, W.C.W. Three-dimensional optical mapping of nanoparticle distribution in intact tissues. ACS Nano, 2016, 10(5), 5468-5478.
[8]
Ferrari, M. Cancer nanotechnology: Opportunities and challenges. Nat. Rev. Cancer, 2005, 5(3), 161-171.
[9]
Peer, D.; Karp, J.M.; Hong, S.; Farokhzad, O.C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol., 2007, 2(12), 751-760.
[10]
Kanapathipillai, M.; Brock, A.; Ingber, D.E. Nanoparticle targeting of anti-cancer drugs that alter intracellular signaling or influence the tumor microenvironment. Adv. Drug Deliv. Rev., 2014, 79-80, 107-118.
[11]
Howes, P.D.; Chandrawati, R.; Stevens, M.M. Bionanotechnology. colloidal nanoparticles as advanced biological sensors. Science, 2014, 346(6205), 1247390.
[12]
Petersen, G.H.; Alzghari, S.K.; Chee, W.; Sankari, S.S.; La-Beck, N.M. Meta-analysis of clinical and preclinical studies comparing the anticancer efficacy of liposomal versus conventional non-liposomal doxorubicin. J. Control. Release, 2016, 232, 255-264.
[13]
Wilhelm, S.; Tavares, A.J.; Dai, Q.; Ohta, S.; Audet, J.; Dvorak, H.F.; Chan, W.C.W. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater., 2016, 1, 16014.
[14]
Versluis, F.; van Esch, J.H.; Eelkema, R. Synthetic self-assembled materials in biological environments. Adv. Mater., 2016, 28(23), 4576-4592.
[15]
Li, Y.; Cui, R.; Zhang, P.; Chen, B.B.; Tian, Z.Q.; Li, L.; Hu, B.; Pang, D.W.; Xie, Z.X. Mechanism-oriented controllability of intracellular quantum dots formation: The role of glutathione metabolic pathway. ACS Nano, 2013, 7(3), 2240-2248.
[16]
Zhou, J.; Xu, B. Enzyme-instructed self-assembly: A multistep process for potential cancer therapy. Bioconjug. Chem., 2015, 26(6), 987-999.
[17]
Du, X.; Zhou, J.; Shi, J.; Xu, B. Supramolecular hydrogelators and hydrogels: From soft matter to molecular biomaterials. Chem. Rev., 2015, 115(24), 13165-13307.
[18]
Zhou, J.; Du, X.; Xu, B. Prion-like nanofibrils of small molecules (PriSM): A new frontier at the intersection of supramolecular chemistry and cell biology. Prion, 2015, 9(2), 110-118.
[19]
Zhou, J.; Li, J.; Du, X.; Xu, B. Supramolecular biofunctional materials. Biomaterials, 2017, 129, 1-27.
[20]
Boekhoven, J.; Poolman, J.M.; Maity, C.; Li, F.; van der Mee, L.; Minkenberg, C.B.; Mendes, E.; van Esch, J.H.; Eelkema, R. Catalytic control over supramolecular gel formation. Nat. Chem., 2013, 5(5), 433-437.
[21]
Boekhoven, J.; Hendriksen, W.E.; Koper, G.J.M.; Eelkema, R.; van Esch, J.H. Transient assembly of active materials fueled by a chemical reaction. Science, 2015, 349(6252), 1075-1079.
[22]
Aida, T.; Meijer, E.W.; Stupp, S.I. Functional supramolecular polymers. Science, 2012, 335(6070), 813-817.
[23]
Cui, H.; Cheetham, A.G.; Pashuck, E.T.; Stupp, S.I. Amino acid sequence in constitutionally isomeric tetrapeptide amphiphiles dictates architecture of one-dimensional nanostructures. J. Am. Chem. Soc., 2014, 136(35), 12461-12468.
[24]
Onogi, S.; Shigemitsu, H.; Yoshii, T.; Tanida, T.; Ikeda, M.; Kubota, R.; Hamachi, I. In situ real-time imaging of self-sorted supramolecular nanofibres. Nat. Chem., 2016, 8(8), 743-752.
[25]
Estroff, L.A.; Hamilton, A.D. Water gelation by small organic molecules. Chem. Rev., 2004, 104(3), 1201-1218.
[26]
Korevaar, P.A.; Grenier, C.; Markvoort, A.J.; Schenning, A.P.H.J.; de Greef, T.F.A.; Meijer, E.W. Model-driven optimization of multicomponent self-assembly processes. Proc. Natl. Acad. Sci. USA, 2013, 110(43), 17205-17210.
[27]
Yang, Z.; Liang, G.; Xu, B. Enzymatic hydrogelation of small molecules. Acc. Chem. Res., 2008, 41(2), 315-326.
[28]
Pollard, T.D.; Cooper, J.A. Actin, a central player in cell shape and movement. Science, 2009, 326(5957), 1208-1212.
[29]
Fletcher, D.A.; Mullins, R.D. Cell mechanics and the cytoskeleton. Nature, 2010, 463(7280), 485-492.
[30]
Yang, Z.M.; Gu, H.W.; Fu, D.G.; Gao, P.; Lam, J.K.; Xu, B. Enzymatic formation of supramolecular hydrogels. Adv. Mater., 2004, 16, 1440.
[31]
Yang, Z.; Liang, G.; Wang, L.; Xu, B. Using a kinase/phosphatase switch to regulate a supramolecular hydrogel and forming the supramolecular hydrogel in vivo. J. Am. Chem. Soc., 2006, 128(9), 3038-3043.
[32]
Wang, H.; Feng, Z.; Wu, D.; Fritzsching, K.J.; Rigney, M.; Zhou, J.; Jiang, Y.; Schmidt-Rohr, K.; Xu, B. Enzyme-regulated supramolecular assemblies of cholesterol conjugates against drug-resistant ovariancancer cells. J. Am. Chem. Soc., 2016, 138(34), 10758-10761.
[33]
Zhou, J.; Du, X.; Yamagata, N.; Xu, B. Enzyme-instructed self-assembly of small D-peptides as a multiple-step process for selectively killing cancer cells. J. Am. Chem. Soc., 2016, 138(11), 3813-3823.
[34]
Gao, Y.; Kuang, Y.; Guo, Z.F.; Guo, Z.; Krauss, I.J.; Xu, B. Enzyme-instructed molecular self-assembly confers nanofibers and a supramolecular hydrogel of taxol derivative. J. Am. Chem. Soc., 2009, 131(38), 13576-13577.
[35]
Gao, Y.; Shi, J.; Yuan, D.; Xu, B. Imaging enzyme-triggered self-assembly of small molecules inside live cells. Nat. Commun., 2012, 3, 1033.
[36]
Gao, Y.; Berciu, C.; Kuang, Y.; Shi, J.; Nicastro, D.; Xu, B. Probing nanoscale self-assembly of nonfluorescent small molecules inside live mammalian cells. ACS Nano, 2013, 7(10), 9055-9063.
[37]
Gao, Y.; Nieuwendaal, R.; Dimitriadis, E.K.; Hammouda, B.; Douglas, J.F.; Xu, B.; Horkay, F. Supramolecular self-assembly of a model hydrogelator: Characterization of fiber formation and morphology. Gels, 2016, 2(4), 27.
[38]
Hule, R.A.; Nagarkar, R.P.; Hammouda, B.; Schneider, J.P.; Pochan, D.J. Dependence of self-assembled peptide hydrogel network structure on local fibril nanostructure. Macromolecules, 2009, 42(18), 7137-7145.
[39]
Gao, Y.; Kuang, Y.; Du, X.; Zhou, J.; Chandran, P.; Horkay, F.; Xu, B. Imaging self-assembly dependent spatial distribution of small molecules in a cellular environment. Langmuir, 2013, 29(49), 15191-15200.
[40]
Wang, H.; Feng, Z.; Wang, Y.; Zhou, R.; Yang, Z.; Xu, B. Integrating enzymatic self-assembly and mitochondria targeting for selectively killing cancer cells without acquired drug resistance. J. Am. Chem. Soc., 2016, 138(49), 16046-16055.
[41]
Zhou, J.; Du, X.; Xu, B. Regulating the rate of molecular self-assembly for targeting cancer cells. Angew. Chem. Int. Ed. Engl., 2016, 55(19), 5770-5775.
[42]
Huang, P.; Gao, Y.; Lin, J.; Hu, H.; Liao, H.S.; Yan, X.; Tang, Y.; Jin, A.; Song, J.; Niu, G.; Zhang, G.; Horkay, F.; Chen, X. Tumor-specific formation of enzyme-instructed supramolecular self-assemblies as cancer theranostics. ACS Nano, 2015, 9(10), 9517-9527.
[43]
Liu, H.; Li, Y.L.; Lyu, Z.L.; Wan, Y.B.; Li, X.H.; Chen, H.B.; Chen, H.; Li, X.M. Enzyme-triggered supramolecular self-assembly of platinum prodrug with enhanced tumor-selective accumulation and reduced systemic toxicity. J. Mater. Chem. B Mater. Biol. Med., 2014, 2, 8303.
[44]
Huang, A.Q.; Ou, C.W.; Cai, Y.B.; Wang, Z.Y.; Li, H.K.; Yang, Z.M.; Chen, M.S. In situ enzymatic formation of supramolecular nanofibers for efficiently killing cancer cells. RSC Advances, 2016, 6, 32519.
[45]
Pires, R.A.; Abul-Haija, Y.M.; Costa, D.S.; Novoa-Carballal, R.; Reis, R.L.; Ulijn, R.V.; Pashkuleva, I. Controlling cancer cell fate using localized biocatalytic self-assembly of an aromatic carbohydrate amphiphile. J. Am. Chem. Soc., 2015, 137(2), 576-579.
[46]
Du, X.; Zhou, J.; Wang, H.; Shi, J.; Kuang, Y.; Zeng, W.; Yang, Z.; Xu, B. In situ generated D-peptidic nanofibrils as multifaceted apoptotic inducers to target cancer cells. Cell Death Dis., 2017, 8(2), e2614.
[47]
Zhou, J.; Du, X.; Berciu, C.; He, H.; Shi, J.; Nicastro, D.; Xu, B. Enzyme-instructed self-assembly for spatiotemporal profiling of the activities of alkaline phosphatases on live cells. Chem, 2016, 1(2), 246-263.
[48]
Li, J.; Kuang, Y.; Shi, J.; Zhou, J.; Medina, J.E.; Zhou, R.; Yuan, D.; Yang, C.; Wang, H.; Yang, Z.; Liu, J.; Dinulescu, D.M.; Xu, B. Enzyme-instructed intracellular molecular self-Assembly to boost activity of cisplatin against drug-resistant ovarian cancer cells. Angew. Chem. Int. Ed. Engl., 2015, 54(45), 13307-13311.
[49]
Feng, Z.; Wang, H.; Zhou, R.; Li, J.; Xu, B. Enzyme-instructed assembly and disassembly processes for targeting downregulation in cancer cells. J. Am. Chem. Soc., 2017, 139(11), 3950-3953.
[50]
Li, J.; Shi, J.; Medina, J.E.; Zhou, J.; Du, X.; Wang, H.; Yang, C.; Liu, J.; Yang, Z.; Dinulescu, D.M.; Xu, B. Selectively inducing cancer cell death by intracellular enzyme-instructed self-assembly (EISA) of dipeptide derivatives. Adv. Healthc. Mater., 2017, 6(15), 1601400.
[51]
Zhou, J.; Du, X.; Li, J.; Yamagata, N.; Xu, B. Taurine boosts cellular uptake of small D-peptides for enzyme-instructed intracellular molecular self-assembly. J. Am. Chem. Soc., 2015, 137(32), 10040-10043.
[52]
Liang, G.; Ren, H.; Rao, J. A biocompatible condensation reaction for controlled assembly of nanostructures in living cells. Nat. Chem., 2010, 2(1), 54-60.
[53]
Miao, Q.; Bai, X.; Shen, Y.; Mei, B.; Gao, J.; Li, L.; Liang, G. Intracellular self-assembly of nanoparticles for enhancing cell uptake. Chem. Commun. (Camb.), 2012, 48(78), 9738-9740.
[54]
Yuan, Y.; Wang, L.; Du, W.; Ding, Z.; Zhang, J.; Han, T.; An, L.; Zhang, H.; Liang, G. Intracellular self-assembly of taxol nanoparticles for overcoming multidrug resistance. Angew. Chem. Int. Ed. Engl., 2015, 54(33), 9700-9704.
[55]
Tanaka, A.; Fukuoka, Y.; Morimoto, Y.; Honjo, T.; Koda, D.; Goto, M.; Maruyama, T. Cancer cell death induced by the intracellular self-assembly of an enzyme-responsive supramolecular gelator. J. Am. Chem. Soc., 2015, 137(2), 770-775.
[56]
Kalafatovic, D.; Nobis, M.; Son, J.; Anderson, K.I.; Ulijn, R.V. MMP-9 triggered self-assembly of doxorubicin nanofiber depots halts tumor growth. Biomaterials, 2016, 98, 192-202.
[57]
Zhang, D.; Qi, G.B.; Zhao, Y.X.; Qiao, S.L.; Yang, C.; Wang, H. In situ formation of nanofibers from purpurin18-peptide conjugates and the assembly induced retention effect in tumor sites. Adv. Mater., 2015, 27(40), 6125-6130.
[58]
Ye, D.; Shuhendler, A.J.; Cui, L.; Tong, L.; Tee, S.S.; Tikhomirov, G.; Felsher, D.W.; Rao, J. Bioorthogonal cyclization-mediated in situ self-assembly of small-molecule probes for imaging caspase activity in vivo. Nat. Chem., 2014, 6(6), 519-526.
[59]
Irvine, D.J.; Swartz, M.A.; Szeto, G.L. Engineering synthetic vaccines using cues from natural immunity. Nat. Mater., 2013, 12(11), 978-990.
[60]
Tian, Y.; Wang, H.; Liu, Y.; Mao, L.; Chen, W.; Zhu, Z.; Liu, W.; Zheng, W.; Zhao, Y.; Kong, D.; Yang, Z.; Zhang, W.; Shao, Y.; Jiang, X. A peptide-based nanofibrous hydrogel as a promising DNA nanovector for optimizing the efficacy of HIV vaccine. Nano Lett., 2014, 14(3), 1439-1445.
[61]
Liu, Y.; Wang, H.; Li, D.; Tian, Y.; Liu, W.; Zhang, L.; Zheng, W.; Hao, Y.; Liu, J.; Yang, Z.; Shao, Y.; Jiang, X. In situ formation of peptidic nanofibers can fundamentally optimize the quality of immune responses against HIV vaccine. Nanoscale Horiz., 2016, 1(2), 135.
[62]
Wang, H.M.; Luo, Z.; Wang, Y.C.Z.; He, T.; Yang, C.B.; Ren, C.H.; Ma, L.S.; Gong, C.Y.; Li, X.Y.; Yang, Z.M. Enzyme-catalyzed formation of supramolecular hydrogels as promising vaccine adjuvants. Adv. Funct. Mater., 2016, 26, 1822.
[63]
Pompano, R.R.; Chen, J.; Verbus, E.A.; Han, H.; Fridman, A.; McNeely, T.; Collier, J.H.; Chong, A.S. Titrating T-cell epitopes within self-assembled vaccines optimizes CD4+ helper T cell and antibody outputs. Adv. Healthc. Mater., 2014, 3(11), 1898-1908.
[64]
Rudra, J.S.; Tian, Y.F.; Jung, J.P.; Collier, J.H. A self-assembling peptide acting as an immune adjuvant. Proc. Natl. Acad. Sci. USA, 2010, 107(2), 622-627.
[65]
Wen, Y.; Waltman, A.; Han, H.; Collier, J.H. Switching the immunogenicity of peptide assemblies using surface properties. ACS Nano, 2016, 10(10), 9274-9286.
[66]
Huang, Z.H.; Shi, L.; Ma, J.W.; Sun, Z.Y.; Cai, H.; Chen, Y.X.; Zhao, Y.F.; Li, Y.M. A totally synthetic, self-assembling, adjuvant-free MUC1 glycopeptide vaccine for cancer therapy. J. Am. Chem. Soc., 2012, 134(21), 8730-8733.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 26
ISSUE: 8
Year: 2019
Page: [1351 - 1365]
Pages: 15
DOI: 10.2174/0929867324666170921104010
Price: $65

Article Metrics

PDF: 40
HTML: 6
EPUB: 1
PRC: 1