Graphene-Based Nanomaterials: Potential Tools for Neurorepair

Author(s): Qing Wang, Yan-Hua Li, Wei-Jia Jiang, Jian-Guo Zhao, Bao-Guo Xiao, Guang-Xian Zhang*, Cun-Gen Ma*

Journal Name: Current Pharmaceutical Design

Volume 24 , Issue 1 , 2018

Become EABM
Become Reviewer


Graphene, with its outstanding electrical properties, large surface area, and excellent mechanical properties, is found in a wide variety of applications in biomimetic substrates and biomedicine, with the result that there is growing interest in the effect of graphene-based nanomaterials on neural cells. This review sums up current research on the effectiveness of graphene and its derivatives on neural cells. We emphasize the biocompatibility of graphene and its derivatives, and how they affect the behavior of neural cells, including adhesion, proliferation, neurite outgrowth and differentiation. In addition, we discuss at great length the literature on graphenebased nanomaterials for drug delivery applications. While their in vivo effects on the nervous system remain to be explored, encouraging findings indicate that graphene-based nanomaterials have significant potential as novel therapies for neurodegenerative disease.

Keywords: Graphene, neural cells, biocompatibility, biological activity, neurodegeneration, drug carrier.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2018
Published on: 22 March, 2018
Page: [56 - 61]
Pages: 6
DOI: 10.2174/1381612823666170828130526
Price: $65

Article Metrics

PDF: 30
HTML: 12
PRC: 1