Exploiting Cancer Metal Metabolism using Anti-Cancer Metal- Binding Agents

Author(s): Angelica M. Merlot*, Danuta S. Kalinowski, Zaklina Kovacevic, Patric J. Jansson, Sumit Sahni, Michael L.-H. Huang, Darius J.R. Lane, Hiu Lok, Des R. Richardson*

Journal Name: Current Medicinal Chemistry

Volume 26 , Issue 2 , 2019

  Journal Home
Translate in Chinese
Become EABM
Become Reviewer

Abstract:

Metals are vital cellular elements necessary for multiple indispensable biological processes of living organisms, including energy transduction and cell proliferation. Interestingly, alterations in metal levels and also changes in the expression of proteins involved in metal metabolism have been demonstrated in a variety of cancers. Considering this and the important role of metals for cell growth, the development of drugs that sequester metals has become an attractive target for the development of novel anti-cancer agents. Interest in this field has surged with the design and development of new generations of chelators of the thiosemicarbazone class. These ligands have shown potent anticancer and anti-metastatic activity in vitro and in vivo. Due to their efficacy and safe toxicological assessment, some of these agents have recently entered multi-center clinical trials as therapeutics for advanced and resistant tumors. This review highlights the role and changes in homeostasis of metals in cancer and emphasizes the pre-clinical development and clinical assessment of metal ion-binding agents, namely, thiosemicarbazones, as antitumor agents.

Keywords: Metals, cancer, anti-cancer drugs, chelators, iron, copper and zinc.

[1]
Aggett, P.J. Physiology and metabolism of essential trace elements: An outline. Clin. Endocrinol. Metab., 1985, 14(3), 513-543.
[2]
Singh, R.; Gautam, N.; Mishra, A.; Gupta, R. Heavy metals and living systems: An overview. Indian J. Pharmacol., 2011, 43(3), 246-253.
[3]
Merlot, A.M.; Kalinowski, D.S.; Richardson, D.R. Novel chelators for cancer treatment: Where are we now? Antioxid. Redox Signal., 2013, 18(8), 973-1006.
[4]
Torti, S.V.; Torti, F.M. Ironing out cancer. Cancer Res., 2011, 71(5), 1511-1514.
[5]
Torti, S.V.; Torti, F.M. Iron and cancer: More ore to be mined. Nat. Rev. Cancer, 2013, 13(5), 342-355.
[6]
Rosenberg, B.; Vancamp, L.; Krigas, T. Inhibition of cell division in Escherichia coli by electrolysis products from a platinum electrode. Nature, 1965, 205, 698-699.
[7]
Hertz, R.; Li, M.C.; Spencer, D.B. Effect of methotrexate therapy upon choriocarcinoma and chorioadenoma. Proc. Soc. Exp. Biol. Med., 1956, 93(2), 361-366.
[8]
Berdanier, C. D.; Berdanier, L. A.; Zempleni, J. Advanced nutrition: Macronutrients, micronutrients, and metabolism. CRC Press: Baco Raton, 2008.
[9]
Frieden, E. The chemical elements of life. Sci. Am., 1972, 227(1), 52-60.
[10]
Andrews, N.C. Iron homeostasis: Insights from genetics and animal models. Nat. Rev. Genet., 2000, 1(3), 208-217.
[11]
Zhang, C. Essential functions of iron-requiring proteins in DNA replication, repair and cell cycle control. Protein Cell, 2014, 5(10), 750-760.
[12]
Mackenzie, B.; Garrick, M.D. Iron Imports. II. Iron uptake at the apical membrane in the intestine. Am. J. Physiol. Gastrointest. Liver Physiol., 2005, 289(6), G981-G986.
[13]
Miret, S.; Simpson, R.J.; McKie, A.T. Physiology and molecular biology of dietary iron absorption. Annu. Rev. Nutr., 2003, 23, 283-301.
[14]
Richardson, D.R.; Ponka, P. The molecular mechanisms of the metabolism and transport of iron in normal and neoplastic cells. Biochim. Biophys. Acta, 1997, 1331(1), 1-40.
[15]
Dunn, L.L.; Suryo Rahmanto, Y.; Richardson, D.R. Iron uptake and metabolism in the new millennium. Trends Cell Biol., 2007, 17(2), 93-100.
[16]
Lansdown, A.B.G. The Carcinogenicity of Metals; RSC Publishing: Cambridge, 2013.
[17]
Harris, E.D. Copper homeostasis: The role of cellular transporters. Nutr. Rev., 2001, 59(9), 281-285.
[18]
Tapiero, H.; Townsend, D.M.; Tew, K.D. Trace elements in human physiology and pathology. Copper. Biomed. Pharmacother., 2003, 57(9), 386-398.
[19]
Finney, L.; Vogt, S.; Fukai, T.; Glesne, D. Copper and angiogenesis: Unravelling a relationship key to cancer progression. Clin. Exp. Pharmacol. Physiol., 2009, 36(1), 88-94.
[20]
Sen, C.K.; Khanna, S.; Venojarvi, M.; Trikha, P.; Ellison, E.C.; Hunt, T.K.; Roy, S. Copper-induced vascular endothelial growth factor expression and wound healing. Am. J. Physiol. Heart Circ. Physiol., 2002, 282(5), H1821-H1827.
[21]
Soncin, F.; Guitton, J.D.; Cartwright, T.; Badet, J. Interaction of human angiogenin with copper modulates angiogenin binding to endothelial cells. Biochem. Biophys. Res. Commun., 1997, 236(3), 604-610.
[22]
Lowndes, S.A.; Harris, A.L. The role of copper in tumour angiogenesis. J. Mammary Gland Biol. Neoplasia, 2005, 10(4), 299-310.
[23]
Malkin, R.; Malmström, B.G. The state and function of copper in biological systems. Adv. Enzymol. Relat. Areas Mol. Biol., 1970, 3, 177-244.
[24]
Coleman, J.E. Zinc proteins: Enzymes, storage proteins, transcription factors, and replication proteins. Annu. Rev. Biochem., 1992, 61, 897-946.
[25]
Gialeli, C.; Theocharis, A.D.; Karamanos, N.K. Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. FEBS J., 2011, 278(1), 16-27.
[26]
Nemoto, K.; Kondo, Y.; Himeno, S.; Suzuki, Y.; Hara, S.; Akimoto, M.; Imura, N. Modulation of telomerase activity by zinc in human prostatic and renal cancer cells. Biochem. Pharmacol., 2000, 59(4), 401-405.
[27]
Bertini, I.; Luchinat, C. 2. The reaction pathways of zinc enzymes and related biological catalysts. Bioinorg. Chem., 1994, 37-106.
[28]
Sears, M.E. Chelation: Harnessing and enhancing heavy metal detoxification--a review. Sci. World J., 2013, 2013, 219840.
[29]
Fowler, B.A. General subcellular effects of lead, mercury, cadmium, and arsenic. Environ. Health Perspect., 1978, 22, 37-41.
[30]
Wu, F.; Wang, J.; Pu, C.; Qiao, L.; Jiang, C. Wilson’s disease: A comprehensive review of the molecular mechanisms. Int. J. Mol. Sci., 2015, 16(3), 6419-6431.
[31]
Toyokuni, S. Iron-induced carcinogenesis: The role of redox regulation. Free Radic. Biol. Med., 1996, 20(4), 553-566.
[32]
Toyokuni, S. Iron as a target of chemoprevention for longevity in humans. Free Radic. Res., 2011, 45(8), 906-917.
[33]
Toyokuni, S. Role of iron in carcinogenesis: Cancer as a ferrotoxic disease. Cancer Sci., 2009, 100(1), 9-16.
[34]
Chua, A.C.; Klopcic, B.; Lawrance, I.C.; Olynyk, J.K.; Trinder, D. Iron: An emerging factor in colorectal carcinogenesis. World J. Gastroenterol., 2010, 16(6), 663-672.
[35]
Toyokuni, S. Oxidative stress as an iceberg in carcinogenesis and cancer biology. Arch. Biochem. Biophys., 2016, 595, 46-49.
[36]
Knekt, P.; Reunanen, A.; Takkunen, H.; Aromaa, A.; Heliovaara, M.; Hakulinen, T. Body iron stores and risk of cancer. Int. J. Cancer, 1994, 56(3), 379-382.
[37]
Norat, T.; Lukanova, A.; Ferrari, P.; Riboli, E. Meat consumption and colorectal cancer risk: Dose-response meta-analysis of epidemiological studies. Int. J. Cancer, 2002, 98(2), 241-256.
[38]
Merk, K.; Mattsson, B.; Mattsson, A.; Holm, G.; Gullbring, B.; Bjorkholm, M. The incidence of cancer among blood donors. Int. J. Epidemiol., 1990, 19(3), 505-509.
[39]
Hsing, A.W.; McLaughlin, J.K.; Olsen, J.H.; Mellemkjar, L.; Wacholder, S.; Fraumeni, J.F., Jr Cancer risk following primary hemochromatosis: A population-based cohort study in Denmark. Int. J. Cancer, 1995, 60(2), 160-162.
[40]
Fracanzani, A.L.; Conte, D.; Fraquelli, M.; Taioli, E.; Mattioli, M.; Losco, A.; Fargion, S. Increased cancer risk in a cohort of 230 patients with hereditary hemochromatosis in comparison to matched control patients with non-iron-related chronic liver disease. Hepatology, 2001, 33(3), 647-651.
[41]
Lagergren, K.; Wahlin, K.; Mattsson, F.; Alderson, D.; Lagergren, J. Haemochromatosis and gastrointestinal cancer. Int. J. Cancer, 2016, 8(139), 1740-1743.
[42]
Kato, J.; Kobune, M.; Nakamura, T.; Kuroiwa, G.; Takada, K.; Takimoto, R.; Sato, Y.; Fujikawa, K.; Takahashi, M.; Takayama, T.; Ikeda, T.; Niitsu, Y. Normalization of elevated hepatic 8-hydroxy-2′-deoxyguanosine levels in chronic hepatitis C patients by phlebotomy and low iron diet. Cancer Res., 2001, 61(24), 8697-8702.
[43]
Kato, J.; Miyanishi, K.; Kobune, M.; Nakamura, T.; Takada, K.; Takimoto, R.; Kawano, Y.; Takahashi, S.; Takahashi, M.; Sato, Y.; Takayama, T.; Niitsu, Y. Long-term phlebotomy with low-iron diet therapy lowers risk of development of hepatocellular carcinoma from chronic hepatitis C. J. Gastroenterol., 2007, 42(10), 830-836.
[44]
Krisai, P.; Leib, S.; Aeschbacher, S.; Kofler, T.; Assadian, M.; Maseli, A.; Todd, J.; Estis, J.; Risch, M.; Risch, L.; Conen, D. Relationships of iron metabolism with insulin resistance and glucose levels in young and healthy adults. Eur. J. Intern. Med., 2016, 32, 31-37.
[45]
Lan, A.P.; Chen, J.; Chai, Z.F.; Hu, Y. The neurotoxicity of iron, copper and cobalt in Parkinson’s disease through ROS-mediated mechanisms. Biometals, 2016, 4(29), 665-678.
[46]
Reuter, S.; Gupta, S.C.; Chaturvedi, M.M.; Aggarwal, B.B. Oxidative stress, inflammation, and cancer: How are they linked? Free Radic. Biol. Med., 2010, 49(11), 1603-1616.
[47]
Gupte, A.; Mumper, R.J. Elevated copper and oxidative stress in cancer cells as a target for cancer treatment. Cancer Treat. Rev., 2009, 35(1), 32-46.
[48]
Kuo, H.W.; Chen, S.F.; Wu, C.C.; Chen, D.R.; Lee, J.H. Serum and tissue trace elements in patients with breast cancer in Taiwan. Biol. Trace Elem. Res., 2002, 89(1), 1-11.
[49]
Denoyer, D.; Masaldan, S.; La Fontaine, S.; Cater, M.A. Targeting copper in cancer therapy: ‘Copper That Cancer’. Metallomics, 2015, 7(11), 1459-1476.
[50]
Skrajnowska, D.; Bobrowska-Korczak, B.; Tokarz, A.; Bialek, S.; Jezierska, E.; Makowska, J. Copper and resveratrol attenuates serum catalase, glutathione peroxidase, and element values in rats with DMBA-induced mammary carcinogenesis. Biol. Trace Elem. Res., 2013, 156(1-3), 271-278.
[51]
Brady, D.C.; Crowe, M.S.; Turski, M.L.; Hobbs, G.A.; Yao, X.; Chaikuad, A.; Knapp, S.; Xiao, K.; Campbell, S.L.; Thiele, D.J.; Counter, C.M. Copper is required for oncogenic BRAF signalling and tumorigenesis. Nature, 2014, 509(7501), 492-496.
[52]
Ishida, S.; Andreux, P.; Poitry-Yamate, C.; Auwerx, J.; Hanahan, D. Bioavailable copper modulates oxidative phosphorylation and growth of tumors. Proc. Natl. Acad. Sci. USA, 2013, 110(48), 19507-19512.
[53]
Yamane, Y.; Sakai, K.; Umeda, T.; Murata, N.; Ishizeki, S.; Ogihara, I.; Takahashi, A.; Iwasaki, I.; Ide, G. Suppressive effect of cupric acetate on DNA alkylation, DNA synthesis and tumorigenesis in the liver of dimethylnitrosamine-treated rats. Gan, 1984, 75(12), 1062-1069.
[54]
Fleisher, M.S.; Loeb, L. The influence of various substances on the growth of mouse carcinoma. J. Exp. Med., 1914, 20(5), 503-521.
[55]
Brewer, G.J.; Dick, R.D.; Grover, D.K.; LeClaire, V.; Tseng, M.; Wicha, M.; Pienta, K.; Redman, B.G.; Jahan, T.; Sondak, V.K.; Strawderman, M.; LeCarpentier, G.; Merajver, S.D. Treatment of metastatic cancer with tetrathiomolybdate, an anticopper, antiangiogenic agent: Phase I study. Clin. Cancer Res., 2000, 6(1), 1-10.
[56]
Goodman, V.L.; Brewer, G.J.; Merajver, S.D. Copper deficiency as an anti-cancer strategy. Endocr. Relat. Cancer, 2004, 11(2), 255-263.
[57]
Scharping, N.; Delgoffe, G. Tumor microenvironment metabolism: A new checkpoint for anti-tumor immunity. Vaccines (Basel), 2016, 4(4), 46.
[58]
Zitvogel, L.; Pitt, J.M.; Daillere, R.; Smyth, M.J.; Kroemer, G. Mouse models in oncoimmunology. Nat. Rev. Cancer, 2016, 16(12), 759-773.
[59]
Jazayeri, S.; Feli, A.; Bitaraf, M.A.; Solaymani Dodaran, M.; Alikhani, M.; Hosseinzadeh-Attar, M.J. Effects of Copper Reduction on Angiogenesis-Related Factors in Recurrent Glioblastoma Cases. Asian Pac. J. Cancer Prev., 2016, 17(10), 4609-4614.
[60]
Bhuvanasundar, R.; John, A.; Sulochana, K.N.; Coral, K.; Deepa, P.R.; Umashankar, V. A molecular model of human Lysyl Oxidase (LOX) with optimal copper orientation in the catalytic cavity for induced fit docking studies with potential modulators. Bioinformation, 2014, 10(7), 406-412.
[61]
Gacheru, S.N.; Trackman, P.C.; Shah, M.A.; O’Gara, C.Y.; Spacciapoli, P.; Greenaway, F.T.; Kagan, H.M. Structural and catalytic properties of copper in lysyl oxidase. J. Biol. Chem., 1990, 265(31), 19022-19027.
[62]
Siglin, J.C.; Khare, L.; Stoner, G.D. Evaluation of dose and treatment duration on the esophageal tumorigenicity of N-nitrosomethylbenzylamine in rats. Carcinogenesis, 1995, 16(2), 259-265.
[63]
Abdulla, M.; Biorklund, A.; Mathur, A.; Wallenius, K. Zinc and copper levels in whole blood and plasma from patients with squamous cell carcinomas of head and neck. J. Surg. Oncol., 1979, 12(2), 107-113.
[64]
Costello, L.C.; Feng, P.; Milon, B.; Tan, M.; Franklin, R.B. Role of zinc in the pathogenesis and treatment of prostate cancer: Critical issues to resolve. Prostate Cancer Prostatic Dis., 2004, 7(2), 111-117.
[65]
Zaichick, V.; Sviridova, T.V.; Zaichick, S.V. Zinc in the human prostate gland: Normal, hyperplastic and cancerous. Int. Urol. Nephrol., 1997, 29(5), 565-574.
[66]
Gyorkey, F.; Min, K.W.; Huff, J.A.; Gyorkey, P. Zinc and magnesium in human prostate gland: Normal, hyperplastic, and neoplastic. Cancer Res., 1967, 27(8), 1348-1353.
[67]
Prasad, A.S.; Beck, F.W.J.; Snell, D.C.; Kucuk, O. Zinc in Cancer Prevention. Nutr. Cancer, 2009, 61(6), 879-887.
[68]
Prasad, A.S.; Kucuk, O. Zinc in cancer prevention. Cancer Metastasis Rev., 2002, 21(3-4), 291-295.
[69]
Beck, F.W.; Prasad, A.S.; Kaplan, J.; Fitzgerald, J.T.; Brewer, G.J. Changes in cytokine production and T cell subpopulations in experimentally induced zinc-deficient humans. Am. J. Physiol., 1997, 272(6 Pt 1), E1002-E1007.
[70]
Dhawan, D.K.; Chadha, V.D. Zinc: A promising agent in dietary chemoprevention of cancer. Indian J. Med. Res., 2010, 132(6), 676-682.
[71]
Gerlinger, M.; Rowan, A.J.; Horswell, S.; Larkin, J.; Endesfelder, D.; Gronroos, E.; Martinez, P.; Matthews, N.; Stewart, A.; Tarpey, P.; Varela, I.; Phillimore, B.; Begum, S.; McDonald, N.Q.; Butler, A.; Jones, D.; Raine, K.; Latimer, C.; Santos, C.R.; Nohadani, M.; Eklund, A.C.; Spencer-Dene, B.; Clark, G.; Pickering, L.; Stamp, G.; Gore, M.; Szallasi, Z.; Downward, J.; Futreal, P.A.; Swanton, C. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med., 2012, 366(10), 883-892.
[72]
Brookes, M.J.; Hughes, S.; Turner, F.E.; Reynolds, G.; Sharma, N.; Ismail, T.; Berx, G.; McKie, A.T.; Hotchin, N.; Anderson, G.J.; Iqbal, T.; Tselepis, C. Modulation of iron transport proteins in human colorectal carcinogenesis. Gut, 2006, 55(10), 1449-1460.
[73]
Lloyd, J.M.; O’Dowd, T.; Driver, M.; Tee, D.E. Demonstration of an epitope of the transferrin receptor in human cervical epithelium--a potentially useful cell marker. J. Clin. Pathol., 1984, 37(2), 131-135.
[74]
Jiang, X.P.; Elliott, R.L.; Head, J.F. Manipulation of iron transporter genes results in the suppression of human and mouse mammary adenocarcinomas. Anticancer Res., 2010, 30(3), 759-765.
[75]
Seymour, G.J.; Walsh, M.D.; Lavin, M.F.; Strutton, G.; Gardiner, R.A. Transferrin receptor expression by human bladder transitional cell carcinomas. Urol. Res., 1987, 15(6), 341-344.
[76]
Soyer, H.P.; Smolle, J.; Torne, R.; Kerl, H. Transferrin receptor expression in normal skin and in various cutaneous tumors. J. Cutan. Pathol., 1987, 14(1), 1-5.
[77]
Walker, R.A.; Day, S.J. Transferrin receptor expression in non-malignant and malignant human breast tissue. J. Pathol., 1986, 148(3), 217-224.
[78]
Yeh, C.J.; Taylor, C.G.; Faulk, W.P. Transferrin binding by peripheral blood mononuclear cells in human lymphomas, myelomas and leukemias. Vox Sang., 1984, 46(4), 217-223.
[79]
Omary, M.B.; Trowbridge, I.S.; Minowada, J. Human cell-surface glycoprotein with unusual properties. Nature, 1980, 286(5776), 888-891.
[80]
Habeshaw, J.A.; Lister, T.A.; Stansfeld, A.G.; Greaves, M.F. Correlation of transferrin receptor expression with histological class and outcome in non-Hodgkin lymphoma. Lancet, 1983, 1(8323), 498-501.
[81]
Boult, J.; Roberts, K.; Brookes, M.J.; Hughes, S.; Bury, J.P.; Cross, S.S.; Anderson, G.J.; Spychal, R.; Iqbal, T.; Tselepis, C. Overexpression of cellular iron import proteins is associated with malignant progression of esophageal adenocarcinoma. Clin. Cancer Res., 2008, 14(2), 379-387.
[82]
Qian, Z.M.; Li, H.; Sun, H.; Ho, K. Targeted drug delivery via the transferrin receptor-mediated endocytosis pathway. Pharmacol. Rev., 2002, 54(4), 561-587.
[83]
Kwok, J.C.; Richardson, D.R. The iron metabolism of neoplastic cells: Alterations that facilitate proliferation? Crit. Rev. Oncol. Hematol., 2002, 42(1), 65-78.
[84]
Prutki, M.; Poljak-Blazi, M.; Jakopovic, M.; Tomas, D.; Stipancic, I.; Zarkovic, N. Altered iron metabolism, transferrin receptor 1 and ferritin in patients with colon cancer. Cancer Lett., 2006, 238(2), 188-196.
[85]
Elford, H.L.; Freese, M.; Passamani, E.; Morris, H.P. Ribonucleotide reductase and cell proliferation. I. Variations of ribonucleotide reductase activity with tumor growth rate in a series of rat hepatomas. J. Biol. Chem., 1970, 245(20), 5228-5233.
[86]
Takeda, E.; Weber, G. Role of ribonucleotide reductase in expression in the neoplastic program. Life Sci., 1981, 28(9), 1007-1014.
[87]
Cairo, G.; Recalcati, S. Iron-regulatory proteins: Molecular biology and pathophysiological implications. Expert Rev. Mol. Med., 2007, 9(33), 1-13.
[88]
Shpyleva, S.I.; Tryndyak, V.P.; Kovalchuk, O.; Starlard-Davenport, A.; Chekhun, V.F.; Beland, F.A.; Pogribny, I.P. Role of ferritin alterations in human breast cancer cells. Breast Cancer Res. Treat., 2011, 126(1), 63-71.
[89]
Tan, M.G.; Kumarasinghe, M.P.; Wang, S.M.; Ooi, L.L.; Aw, S.E.; Hui, K.M. Modulation of iron-regulatory genes in human hepatocellular carcinoma and its physiological consequences. Exp. Biol. Med. (Maywood), 2009, 234(6), 693-702.
[90]
Vaughn, C.B.; Weinstein, R.; Bond, B.; Rice, R.; Vaughn, R.W.; McKendrick, A.; Ayad, G.; Rockwell, M.A.; Rocchio, R. Ferritin content in human cancerous and noncancerous colonic tissue. Cancer Invest., 1987, 5(1), 7-10.
[91]
Pinnix, Z.K.; Miller, L.D.; Wang, W.; D’Agostino, R., Jr; Kute, T.; Willingham, M.C.; Hatcher, H.; Tesfay, L.; Sui, G.; Di, X.; Torti, S.V.; Torti, F.M. Ferroportin and iron regulation in breast cancer progression and prognosis. Sci. Transl. Med., 2010, 2(43), 43ra56.
[92]
Yang, D.C.; Wang, F.; Elliott, R.L.; Head, J.F. Expression of transferrin receptor and ferritin H-chain mRNA are associated with clinical and histopathological prognostic indicators in breast cancer. Anticancer Res., 2001, 21(1B), 541-549.
[93]
Holmstrom, P.; Gafvels, M.; Eriksson, L.C.; Dzikaite, V.; Hultcrantz, R.; Eggertsen, G.; Stal, P. Expression of iron regulatory genes in a rat model of hepatocellular carcinoma. Liver Int., 2006, 26(8), 976-985.
[94]
Kamai, T.; Tomosugi, N.; Abe, H.; Arai, K.; Yoshida, K. Increased serum hepcidin-25 level and increased tumor expression of hepcidin mRNA are associated with metastasis of renal cell carcinoma. BMC Cancer, 2009, 9, 270.
[95]
Furusato, B.; Shaheduzzaman, S.; Petrovics, G.; Dobi, A.; Seifert, M.; Ravindranath, L.; Nau, M.E.; Werner, T.; Vahey, M.; McLeod, D.G.; Srivastava, S.; Sesterhenn, I.A. Transcriptome analyses of benign and malignant prostate epithelial cells in formalin-fixed paraffin-embedded whole-mounted radical prostatectomy specimens. Prostate Cancer Prostatic Dis., 2008, 11(2), 194-197.
[96]
Hubert, N.; Hentze, M.W. Previously uncharacterized isoforms of divalent metal transporter (DMT)-1: Implications for regulation and cellular function. Proc. Natl. Acad. Sci. USA, 2002, 99(19), 12345-12350.
[97]
Kolenko, V.; Teper, E.; Kutikov, A.; Uzzo, R. Zinc and zinc transporters in prostate carcinogenesis. Nat. Rev. Urol., 2013, 10(4), 219-226.
[98]
Li, M.; Zhang, Y.; Liu, Z.; Bharadwaj, U.; Wang, H.; Wang, X.; Zhang, S.; Liuzzi, J.P.; Chang, S.M.; Cousins, R.J.; Fisher, W.E.; Brunicardi, F.C.; Logsdon, C.D.; Chen, C.; Yao, Q. Aberrant expression of zinc transporter ZIP4 (SLC39A4) significantly contributes to human pancreatic cancer pathogenesis and progression. Proc. Natl. Acad. Sci. USA, 2007, 104(47), 18636-18641.
[99]
Chen, Q.; Zhang, Z.; Yang, Q.; Shan, G.; Yu, X.; Kong, C. The role of zinc transporter ZIP4 in prostate carcinoma. Urol. Oncol., 2012, 30(6), 906-911.
[100]
Franklin, R.B.; Feng, P.; Milon, B.; Desouki, M.M.; Singh, K.K.; Kajdacsy-Balla, A.; Bagasra, O.; Costello, L.C. hZIP1 zinc uptake transporter down regulation and zinc depletion in prostate cancer. Mol. Cancer, 2005, 4, 32.
[101]
Desouki, M.M.; Geradts, J.; Milon, B.; Franklin, R.B.; Costello, L.C. hZip2 and hZip3 zinc transporters are down regulated in human prostate adenocarcinomatous glands. Mol. Cancer, 2007, 6, 37-37.
[102]
Fotiou, K.; Vaiopoulos, G.; Lilakos, K.; Giannopoulos, A.; Mandalenaki, K.; Marinos, G.; Koritsiadis, G.; Sourdis, J.; Konstantinidou, E.; Konstantopoulos, K. Serum ceruloplasmin as a marker in prostate cancer. Minerva Urol. Nefrol., 2007, 59(4), 407-411.
[103]
Senra Varela, A.; Lopez Saez, J.J.; Quintela Senra, D. Serum ceruloplasmin as a diagnostic marker of cancer. Cancer Lett., 1997, 121(2), 139-145.
[104]
Denoyer, D.; Pearson, H.B.; Clatworthy, S.A.; Smith, Z.M.; Francis, P.S.; Llanos, R.M.; Volitakis, I.; Phillips, W.A.; Meggyesy, P.M.; Masaldan, S.; Cater, M.A. Copper as a target for prostate cancer therapeutics: Copper-ionophore pharmacology and altering systemic copper distribution. Oncotarget, 2016, 24(7), 37064-37080.
[105]
Ionescu, J.G.; Novotny, J.; Stejskal, V.; Latsch, A.; Blaurock-Busch, E.; Eisenmann-Klein, M. Increased levels of transition metals in breast cancer tissue. Neuroendocrinol. Lett., 2006, 27(Suppl. 1), 36-39.
[106]
Sarita, P.; Naga Raju, G.J.; Pradeep, A.S.; Rautray, T.R.; Seetharami Reddy, B.; Bhuloka Reddy, S.; Vijayan, V. Analysis of trace elements in blood sera of breast cancer patients by particle induced X-ray emission. J. Radioanal. Nucl. Chem., 2012, 294(3), 355-361.
[107]
Martinez-Finley, E.J.; Chakraborty, S.; Fretham, S.J.; Aschner, M. Cellular transport and homeostasis of essential and nonessential metals. Metallomics, 2012, 4(7), 593-605.
[108]
Grattan, B.J.; Freake, H.C. Zinc and cancer: Implications for LIV-1 in breast cancer. Nutrients, 2012, 4(7), 648-675.
[109]
Vyoral, D.; Hradilek, A.; Neuwirt, J. Transferrin and iron distribution in subcellular fractions of K562 cells in the early stages of transferrin endocytosis. Biochim. Biophys. Acta, 1992, 1137(2), 148-154.
[110]
O’Donnell, K.A.; Yu, D.; Zeller, K.I.; Kim, J.W.; Racke, F.; Thomas-Tikhonenko, A.; Dang, C.V. Activation of transferrin receptor 1 by c-Myc enhances cellular proliferation and tumorigenesis. Mol. Cell. Biol., 2006, 26(6), 2373-2386.
[111]
Whitnall, M.; Howard, J.; Ponka, P.; Richardson, D.R. A class of iron chelators with a wide spectrum of potent antitumor activity that overcomes resistance to chemotherapeutics. Proc. Natl. Acad. Sci. USA, 2006, 103(40), 14901-14906.
[112]
Yuan, J.; Lovejoy, D.B.; Richardson, D.R. Novel di-2-pyridyl-derived iron chelators with marked and selective antitumor activity: In vitro and in vivo assessment. Blood, 2004, 104(5), 1450-1458.
[113]
Lovejoy, D.B.; Sharp, D.M.; Seebacher, N.; Obeidy, P.; Prichard, T.; Stefani, C.; Basha, M.T.; Sharpe, P.C.; Jansson, P.J.; Kalinowski, D.S.; Bernhardt, P.V.; Richardson, D.R. Novel second-generation di-2-pyridylketone thiosemicarbazones show synergism with standard chemotherapeutics and demonstrate potent activity against lung cancer xenografts after oral and intravenous administration in vivo. J. Med. Chem., 2012, 55(16), 7230-7244.
[114]
Kalinowski, D.S.; Richardson, D.R. The evolution of iron chelators for the treatment of iron overload disease and cancer. Pharmacol. Rev., 2005, 57(4), 547-583.
[115]
Ceci, A.; Felisi, M.; De Sanctis, V.; De Mattia, D. Pharmacotherapy of iron overload in thalassaemic patients. Expert Opin. Pharmacother., 2003, 4(10), 1763-1774.
[116]
Ding, X.; Xie, H.; Kang, Y.J. The significance of copper chelators in clinical and experimental application. J. Nutr. Biochem., 2011, 22(4), 301-310.
[117]
Wadler, S.; Makower, D.; Clairmont, C.; Lambert, P.; Fehn, K.; Sznol, M. Phase I and pharmacokinetic study of the ribonucleotide reductase inhibitor, 3-aminopyridine-2-carboxaldehyde thiosemicarbazone, administered by 96-hour intravenous continuous infusion. J. Clin. Oncol., 2004, 22(9), 1553-1563.
[118]
Knox, J.J.; Hotte, S.J.; Kollmannsberger, C.; Winquist, E.; Fisher, B.; Eisenhauer, E.A. Phase II study of Triapine in patients with metastatic renal cell carcinoma: A trial of the National Cancer Institute of Canada Clinical Trials Group (NCIC IND.161). Invest. New Drugs, 2007, 25(5), 471-477.
[119]
Redman, B.G.; Esper, P.; Pan, Q.; Dunn, R.L.; Hussain, H.K.; Chenevert, T.; Brewer, G.J.; Merajver, S.D. Phase II trial of tetrathiomolybdate in patients with advanced kidney cancer. Clin. Cancer Res., 2003, 9(5), 1666-1672.
[120]
Kalinowski, D.S.; Stefani, C.; Toyokuni, S.; Ganz, T.; Anderson, G.J.; Subramaniam, N.V.; Trinder, D.; Olynyk, J.K.; Chua, A.; Jansson, P.J.; Sahni, S.; Lane, D.J.; Merlot, A.M.; Kovacevic, Z.; Huang, M.L.; Lee, C.S.; Richardson, D.R. Redox cycling metals: Pedaling their roles in metabolism and their use in the development of novel therapeutics. Biochim. Biophys. Acta, 2016, 1863(4), 727-748.
[121]
Richardson, D.R. Iron chelators as therapeutic agents for the treatment of cancer. Crit. Rev. Oncol. Hematol., 2002, 42(3), 267-281.
[122]
Richardson, D.R. Potential of iron chelators as effective antiproliferative agents. Can. J. Physiol. Pharmacol., 1997, 75(10-11), 1164-1180.
[123]
Yu, Y.; Kalinowski, D.S.; Kovacevic, Z.; Siafakas, A.R.; Jansson, P.J.; Stefani, C.; Lovejoy, D.B.; Sharpe, P.C.; Bernhardt, P.V.; Richardson, D.R. Thiosemicarbazones from the old to new: Iron chelators that are more than just ribonucleotide reductase inhibitors. J. Med. Chem., 2009, 52(17), 5271-5294.
[124]
Lovejoy, D.B.; Jansson, P.J.; Brunk, U.T.; Wong, J.; Ponka, P.; Richardson, D.R. Antitumor activity of metal-chelating compound Dp44mT is mediated by formation of a redox-active copper complex that accumulates in lysosomes. Cancer Res., 2011, 71(17), 5871-5880.
[125]
Kalinowski, D.S.; Stefani, C.; Toyokuni, S.; Ganz, T.; Anderson, G.J.; Subramaniam, N.V.; Trinder, D.; Olynyk, J.K.; Chua, A.; Jansson, P.J.; Sahni, S.; Lane, D.J.; Merlot, A.M.; Kovacevic, Z.; Huang, M.L.; Lee, C.S.; Richardson, D.R. Redox cycling metals: Pedaling their roles in metabolism and their use in the development of novel therapeutics. Biochim. Biophys. Acta, 2016, 1863(4), 727-748.
[126]
Pippard, M.J.; Letsky, E.A.; Callender, S.T.; Weatherall, D.J. Prevention of iron loading in transfusion-dependent thalassemia. Lancet, 1978, 1(8075), 1178-1181.
[127]
Brittenham, G.M.; Griffith, P.M.; Nienhuis, A.W.; McLaren, C.E.; Young, N.S.; Tucker, E.E.; Allen, C.J.; Farrell, D.E.; Harris, J.W. Efficacy of deferoxamine in preventing complications of iron overload in patients with thalassemia major. N. Engl. J. Med., 1994, 331(9), 567-573.
[128]
Dayani, P.N.; Bishop, M.C.; Black, K.; Zeltzer, P.M. Desferoxamine (DFO)--mediated iron chelation: Rationale for a novel approach to therapy for brain cancer. J. Neurooncol., 2004, 67(3), 367-377.
[129]
Donfrancesco, A.; Deb, G.; Dominici, C.; Pileggi, D.; Castello, M.A.; Helson, L. Effects of a single course of deferoxamine in neuroblastoma patients. Cancer Res., 1990, 50(16), 4929-4930.
[130]
Olivieri, N.F.; Brittenham, G.M. Iron-chelating therapy and the treatment of thalassemia. Blood, 1997, 89(3), 739-761.
[131]
Blatt, J.; Stitely, S. Antineuroblastoma activity of desferoxamine in human cell lines. Cancer Res., 1987, 47(7), 1749-1750.
[132]
Simonart, T.; Boelaert, J.R.; Mosselmans, R.; Andrei, G.; Noel, J.C.; De Clercq, E.; Snoeck, R. Antiproliferative and apoptotic effects of iron chelators on human cervical carcinoma cells. Gynecol. Oncol., 2002, 85(1), 95-102.
[133]
Brard, L.; Granai, C.O.; Swamy, N. Iron chelators deferoxamine and diethylenetriamine pentaacetic acid induce apoptosis in ovarian carcinoma. Gynecol. Oncol., 2006, 100(1), 116-127.
[134]
Hoke, E.M.; Maylock, C.A.; Shacter, E. Desferal inhibits breast tumor growth and does not interfere with the tumoricidal activity of doxorubicin. Free Radic. Biol. Med., 2005, 39(3), 403-411.
[135]
Becton, D.L.; Roberts, B. Antileukemic effects of deferoxamine on human myeloid leukemia cell lines. Cancer Res., 1989, 49(17), 4809-4812.
[136]
Gharagozloo, M.; Khoshdel, Z.; Amirghofran, Z. The effect of an iron (III) chelator, silybin, on the proliferation and cell cycle of Jurkat cells: A comparison with desferrioxamine. Eur. J. Pharmacol., 2008, 589(1-3), 1-7.
[137]
Bomford, A.; Isaac, J.; Roberts, S.; Edwards, A.; Young, S.; Williams, R. The effect of desferrioxamine on transferrin receptors, the cell cycle and growth rates of human leukaemic cells. Biochem. J., 1986, 236(1), 243-249.
[138]
Fan, L.; Iyer, J.; Zhu, S.; Frick, K.K.; Wada, R.K.; Eskenazi, A.E.; Berg, P.E.; Ikegaki, N.; Kennett, R.H.; Frantz, C.N. Inhibition of N-myc expression and induction of apoptosis by iron chelation in human neuroblastoma cells. Cancer Res., 2001, 61(3), 1073-1079.
[139]
Simonart, T.; Degraef, C.; Andrei, G.; Mosselmans, R.; Hermans, P.; Van Vooren, J.P.; Noel, J.C.; Boelaert, J.R.; Snoeck, R.; Heenen, M. Iron chelators inhibit the growth and induce the apoptosis of Kaposi’s sarcoma cells and of their putative endothelial precursors. J. Invest. Dermatol., 2000, 115(5), 893-900.
[140]
Shao, J.; Zhou, B.; Di Bilio, A.J.; Zhu, L.; Wang, T.; Qi, C.; Shih, J.; Yen, Y. A ferrous-triapine complex mediates formation of reactive oxygen species that inactivate human ribonucleotide reductase. Mol. Cancer Ther., 2006, 5(3), 586-592.
[141]
Blatt, J.; Taylor, S.R.; Kontoghiorghes, G.J. Comparison of activity of deferoxamine with that of oral iron chelators against human neuroblastoma cell lines. Cancer Res., 1989, 49(11), 2925-2927.
[142]
Brodie, C.; Siriwardana, G.; Lucas, J.; Schleicher, R.; Terada, N.; Szepesi, A.; Gelfand, E.; Seligman, P. Neuroblastoma sensitivity to growth inhibition by deferrioxamine: Evidence for a block in G1 phase of the cell cycle. Cancer Res., 1993, 53(17), 3968-3975.
[143]
Liang, S.X.; Richardson, D.R. The effect of potent iron chelators on the regulation of p53: Examination of the expression, localization and DNA-binding activity of p53 and the transactivation of WAF1. Carcinogenesis, 2003, 24(10), 1601-1614.
[144]
Nurtjahja-Tjendraputra, E.; Fu, D.; Phang, J.M.; Richardson, D.R. Iron chelation regulates cyclin D1 expression via the proteasome: A link to iron deficiency-mediated growth suppression. Blood, 2007, 109(9), 4045-4054.
[145]
Cavanaugh, P.G.; Jia, L.; Zou, Y.; Nicolson, G.L. Transferrin receptor overexpression enhances transferrin responsiveness and the metastatic growth of a rat mammary adenocarcinoma cell line. Breast Cancer Res. Treat., 1999, 56(3), 203-217.
[146]
Becton, D.L.; Bryles, P. Deferoxamine inhibition of human neuroblastoma viability and proliferation. Cancer Res., 1988, 48(24 Pt 1), 7189-7192.
[147]
Lederman, H.M.; Cohen, A.; Lee, J.W.; Freedman, M.H.; Gelfand, E.W. Deferoxamine: A reversible S-phase inhibitor of human lymphocyte proliferation. Blood, 1984, 64(3), 748-753.
[148]
Donfrancesco, A.; De Bernardi, B.; Carli, M.; Mancini, A.; Nigro, M.; De Sio, L.; Casale, F.; Bagnulo, S.; Helson, L.; Deb, G. Deferoxamine followed by cyclophosphamide, etoposide, carboplatin, thiotepa, induction regimen in advanced neuroblastoma: Preliminary results. Italian Neuroblastoma Cooperative Group. Eur. J. Cancer, 1995, 31A(4), 612-615.
[149]
Estrov, Z.; Tawa, A.; Wang, X.H.; Dube, I.D.; Sulh, H.; Cohen, A.; Gelfand, E.W.; Freedman, M.H. In vitro and in vivo effects of deferoxamine in neonatal acute leukemia. Blood, 1987, 69(3), 757-761.
[150]
Hann, H.W.; Stahlhut, M.W.; Rubin, R.; Maddrey, W.C. Antitumor effect of deferoxamine on human hepatocellular carcinoma growing in athymic nude mice. Cancer, 1992, 70(8), 2051-2056.
[151]
Wang, F.; Elliott, R.L.; Head, J.F. Inhibitory effect of deferoxamine mesylate and low iron diet on the 13762NF rat mammary adenocarcinoma. Anticancer Res., 1999, 19(1A), 445-450.
[152]
Dreicer, R.; Kemp, J.D.; Stegink, L.D.; Cardillo, T.; Davis, C.S.; Forest, P.K.; See, W.A. A phase II trial of deferoxamine in patients with hormone-refractory metastatic prostate cancer. Cancer Invest., 1997, 15(4), 311-317.
[153]
Yamasaki, T.; Terai, S.; Sakaida, I. Deferoxamine for advanced hepatocellular carcinoma. N. Engl. J. Med., 2011, 365(6), 576-578.
[154]
Blatt, J. Deferoxamine in children with recurrent neuroblastoma. Anticancer Res., 1994, 14(5B), 2109-2112.
[155]
Kemp, J.D.; Cardillo, T.; Stewart, B.C.; Kehrberg, E.; Weiner, G.; Hedlund, B.; Naumann, P.W. Inhibition of lymphoma growth in vivo by combined treatment with hydroxyethyl starch deferoxamine conjugate and IgG monoclonal antibodies against the transferrin receptor. Cancer Res., 1995, 55(17), 3817-3824.
[156]
Selig, R.A.; White, L.; Gramacho, C.; Sterling-Levis, K.; Fraser, I.W.; Naidoo, D. Failure of iron chelators to reduce tumor growth in human neuroblastoma xenografts. Cancer Res., 1998, 58(3), 473-478.
[157]
Kontoghiorghes, G.J.; Pattichi, K.; Hadjigavriel, M.; Kolnagou, A. Transfusional iron overload and chelation therapy with deferoxamine and deferiprone (L1). Transfus. Sci., 2000, 23(3), 211-223.
[158]
Chaston, T.B.; Lovejoy, D.B.; Watts, R.N.; Richardson, D.R. Examination of the antiproliferative activity of iron chelators: Multiple cellular targets and the different mechanism of action of triapine compared with desferrioxamine and the potent pyridoxal isonicotinoyl hydrazone analogue 311. Clin. Cancer Res., 2003, 9(1), 402-414.
[159]
Finch, R.A.; Liu, M.; Grill, S.P.; Rose, W.C.; Loomis, R.; Vasquez, K.M.; Cheng, Y.; Sartorelli, A.C. Triapine (3-aminopyridine-2-carboxaldehyde- thiosemicarbazone): A potent inhibitor of ribonucleotide reductase activity with broad spectrum antitumor activity. Biochem. Pharmacol., 2000, 59(8), 983-991.
[160]
Shao, J.; Zhou, B.; Zhu, L.; Qiu, W.; Yuan, Y.C.; Xi, B.; Yen, Y. In vitro characterization of enzymatic properties and inhibition of the p53R2 subunit of human ribonucleotide reductase. Cancer Res., 2004, 64(1), 1-6.
[161]
Tanaka, H.; Arakawa, H.; Yamaguchi, T.; Shiraishi, K.; Fukuda, S.; Matsui, K.; Takei, Y.; Nakamura, Y. A ribonucleotide reductase gene involved in a p53-dependent cell-cycle checkpoint for DNA damage. Nature, 2000, 404(6773), 42-49.
[162]
Kalinowski, D.S.; Richardson, D.R. Iron chelators and differing modes of action and toxicity: The changing face of iron chelation therapy. Chem. Res. Toxicol., 2007, 20(5), 715-720.
[163]
Yu, Y.; Suryo Rahmanto, Y.; Hawkins, C.L.; Richardson, D.R. The potent and novel thiosemicarbazone chelators di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone and 2-benzoylpyridine-4,4-dimethyl-3-thiosemicarbazone affect crucial thiol systems required for ribonucleotide reductase activity. Mol. Pharmacol., 2011, 79(6), 921-931.
[164]
Murren, J.; Modiano, M.; Clairmont, C.; Lambert, P.; Savaraj, N.; Doyle, T.; Sznol, M. Phase I and pharmacokinetic study of triapine, a potent ribonucleotide reductase inhibitor, administered daily for five days in patients with advanced solid tumors. Clin. Cancer Res., 2003, 9(11), 4092-4100.
[165]
Feun, L.; Modiano, M.; Lee, K.; Mao, J.; Marini, A.; Savaraj, N.; Plezia, P.; Almassian, B.; Colacino, E.; Fischer, J.; MacDonald, S. Phase I and pharmacokinetic study of 3-aminopyridine-2-carboxaldehyde thiosemicarbazone (3-AP) using a single intravenous dose schedule. Cancer Chemother. Pharmacol., 2002, 50(3), 223-229.
[166]
Nutting, C.M.; van Herpen, C.M.; Miah, A.B.; Bhide, S.A.; Machiels, J.P.; Buter, J.; Kelly, C.; de Raucourt, D.; Harrington, K.J. Phase II study of 3-AP Triapine in patients with recurrent or metastatic head and neck squamous cell carcinoma. Ann. Oncol., 2009, 20(7), 1275-1279.
[167]
Attia, S.; Kolesar, J.; Mahoney, M.R.; Pitot, H.C.; Laheru, D.; Heun, J.; Huang, W.; Eickhoff, J.; Erlichman, C.; Holen, K.D. A phase 2 consortium (P2C) trial of 3-aminopyridine-2-carboxaldehyde thiosemicarbazone (3-AP) for advanced adenocarcinoma of the pancreas. Invest. New Drugs, 2008, 26(4), 369-379.
[168]
Yen, Y.; Margolin, K.; Doroshow, J.; Fishman, M.; Johnson, B.; Clairmont, C.; Sullivan, D.; Sznol, M. A phase I trial of 3-aminopyridine-2-carboxaldehyde thiosemicarbazone in combination with gemcitabine for patients with advanced cancer. Cancer Chemother. Pharmacol., 2004, 54(4), 331-342.
[169]
Schelman, W.R.; Morgan-Meadows, S.; Marnocha, R.; Lee, F.; Eickhoff, J.; Huang, W.; Pomplun, M.; Jiang, Z.; Alberti, D.; Kolesar, J.M.; Ivy, P.; Wilding, G.; Traynor, A.M. A phase I study of Triapine in combination with doxorubicin in patients with advanced solid tumors. Cancer Chemother. Pharmacol., 2009, 63(6), 1147-1156.
[170]
Ma, B.; Goh, B.C.; Tan, E.H.; Lam, K.C.; Soo, R.; Leong, S.S.; Wang, L.Z.; Mo, F.; Chan, A.T.; Zee, B.; Mok, T. A multicenter phase II trial of 3-aminopyridine-2-carboxaldehyde thiosemicarbazone (3-AP, Triapine) and gemcitabine in advanced non-small-cell lung cancer with pharmacokinetic evaluation using peripheral blood mononuclear cells. Invest. New Drugs, 2008, 26(2), 169-173.
[171]
Traynor, A.M.; Lee, J.W.; Bayer, G.K.; Tate, J.M.; Thomas, S.P.; Mazurczak, M.; Graham, D.L.; Kolesar, J.M.; Schiller, J.H. A phase II trial of triapine (NSC# 663249) and gemcitabine as second line treatment of advanced non-small cell lung cancer: Eastern Cooperative Oncology Group Study 1503. Invest. New Drugs, 2010, 28(1), 91-97.
[172]
Mackenzie, M.J.; Saltman, D.; Hirte, H.; Low, J.; Johnson, C.; Pond, G.; Moore, M.J. A Phase II study of 3-aminopyridine-2-carboxaldehyde thiosemicarbazone (3-AP) and gemcitabine in advanced pancreatic carcinoma. A trial of the Princess Margaret hospital Phase II consortium. Invest. New Drugs, 2007, 25(6), 553-558.
[173]
Yee, K.W.L.; Cortes, J.; Ferrajoli, A.; Garcia-Manero, G.; Verstovsek, S.; Wierda, W.; Thomas, D.; Faderl, S.; King, I.; O’Brien, S.M.; Jeha, S.; Andreeff, M.; Cahill, A.; Sznol, M.; Giles, F.J. Triapine and cytarabine is an active combination in patients with acute leukemia or myelodysplastic syndrome. Leuk. Res., 2006, 30(7), 813-822.
[174]
Lovejoy, D.B.; Richardson, D.R. Iron chelators as anti-neoplastic agents: Current developments and promise of the PIH class of chelators. Curr. Med. Chem., 2003, 10(12), 1035-1049.
[175]
Gao, J.; Richardson, D.R. The potential of iron chelators of the pyridoxal isonicotinoyl hydrazone class as effective antiproliferative agents, IV: The mechanisms involved in inhibiting cell-cycle progression. Blood, 2001, 98(3), 842-850.
[176]
Darnell, G.; Richardson, D.R. The potential of iron chelators of the pyridoxal isonicotinoyl hydrazone class as effective antiproliferative agents III: The effect of the ligands on molecular targets involved in proliferation. Blood, 1999, 94(2), 781-792.
[177]
Richardson, D.R.; Milnes, K. The potential of iron chelators of the pyridoxal isonicotinoyl hydrazone class as effective antiproliferative agents II: The mechanism of action of ligands derived from salicylaldehyde benzoyl hydrazone and 2-hydroxy-1-naphthylaldehyde benzoyl hydrazone. Blood, 1997, 89(8), 3025-3038.
[178]
Richardson, D.R.; Tran, E.H.; Ponka, P. The potential of iron chelators of the pyridoxal isonicotinoyl hydrazone class as effective antiproliferative agents. Blood, 1995, 86(11), 4295-4306.
[179]
Becker, E.M.; Lovejoy, D.B.; Greer, J.M.; Watts, R.; Richardson, D.R. Identification of the di-pyridyl ketone isonicotinoyl hydrazone (PKIH) analogues as potent iron chelators and anti-tumour agents. Br. J. Pharmacol., 2003, 138(5), 819-830.
[180]
Kovacevic, Z.; Chikhani, S.; Lovejoy, D.B.; Richardson, D.R. Novel thiosemicarbazone iron chelators induce up-regulation and phosphorylation of the metastasis suppressor N-myc down-stream regulated gene 1: A new strategy for the treatment of pancreatic cancer. Mol. Pharmacol., 2011, 80(4), 598-609.
[181]
Jansson, P.J.; Yamagishi, T.; Arvind, A.; Seebacher, N.; Gutierrez, E.; Stacy, A.; Maleki, S.; Sharp, D.; Sahni, S.; Richardson, D.R. Di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT) overcomes multidrug resistance by a novel mechanism involving the hijacking of lysosomal P-glycoprotein (Pgp). J. Biol. Chem., 2015, 290(15), 9588-9603.
[182]
Jansson, P.J.; Kalinowski, D.S.; Lane, D.J.; Kovacevic, Z.; Seebacher, N.A.; Fouani, L.; Sahni, S.; Merlot, A.M.; Richardson, D.R. The renaissance of polypharmacology in the development of anti-cancer therapeutics: Inhibition of the “Triad of Death” in cancer by Di-2-pyridylketone thiosemicarbazones. Pharmacol. Res., 2015, 100, 255-260.
[183]
Jansson, P.J.; Hawkins, C.L.; Lovejoy, D.B.; Richardson, D.R. The iron complex of Dp44mT is redox-active and induces hydroxyl radical formation: An EPR study. J. Inorg. Biochem., 2010, 104(11), 1224-1228.
[184]
Seebacher, N.A.; Lane, D.J.; Jansson, P.J.; Richardson, D.R. Glucose modulation induces lysosome formation and increases lysosomotropic drug sequestration via the p-glycoprotein drug transporter. J. Biol. Chem., 2016, 291(8), 3796-3820.
[185]
Stacy, A.E.; Palanimuthu, D.; Bernhardt, P.V.; Kalinowski, D.S.; Jansson, P.J.; Richardson, D.R. Structure-activity relationships of di-2-pyridylketone, 2-benzoylpyridine, and 2-acetylpyridine thiosemicarbazones for overcoming pgp-mediated drug resistance. J. Med. Chem., 2016, 59(18), 8601-8620.
[186]
Seebacher, N.A.; Richardson, D.R.; Jansson, P.J. A mechanism for overcoming P-glycoprotein-mediated drug resistance: Novel combination therapy that releases stored doxorubicin from lysosomes via lysosomal permeabilization using Dp44mT or DpC. Cell Death Dis., 2016, 7(12), e2510.
[187]
Seebacher, N.; Lane, D.J.; Richardson, D.R.; Jansson, P.J. Turning the gun on cancer: Utilizing lysosomal P-glycoprotein as a new strategy to overcome multi-drug resistance. Free Radic. Biol. Med., 2016, 96, 432-445.
[188]
Merlot, A.M.; Shafie, N.H.; Yu, Y.; Richardson, V.; Jansson, P.J.; Sahni, S.; Lane, D.J.; Kovacevic, Z.; Kalinowski, D.S.; Richardson, D.R. Mechanism of the induction of endoplasmic reticulum stress by the anti-cancer agent, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44-mT): Activation of PERK/eIF2alpha, IRE1alpha, ATF6 and calmodulin kinase. Biochem. Pharmacol., 2016, 109, 27-47.
[189]
Noulsri, E.; Richardson, D.R.; Lerdwana, S.; Fucharoen, S.; Yamagishi, T.; Kalinowski, D.S.; Pattanapanyasat, K. Antitumor activity and mechanism of action of the iron chelator, Dp44mT, against leukemic cells. Am. J. Hematol., 2009, 84(3), 170-176.
[190]
Le, N.T.; Richardson, D.R. Iron chelators with high antiproliferative activity up-regulate the expression of a growth inhibitory and metastasis suppressor gene: A link between iron metabolism and proliferation. Blood, 2004, 104(9), 2967-2975.
[191]
Liu, W.; Yue, F.; Zheng, M.; Merlot, A.; Bae, D.H.; Huang, M.; Lane, D.; Jansson, P.; Lui, G.Y.; Richardson, V.; Sahni, S.; Kalinowski, D.; Kovacevic, Z.; Richardson, D.R. The proto-oncogene c-Src and its downstream signaling pathways are inhibited by the metastasis suppressor, NDRG1. Oncotarget, 2015, 6(11), 8851-8874.
[192]
Moussa, R.S.; Kovacevic, Z.; Richardson, D.R. Differential targeting of the cyclin-dependent kinase inhibitor, p21CIP1/WAF1, by chelators with anti-proliferative activity in a range of tumor cell-types. Oncotarget, 2015, 6(30), 29694-29711.
[193]
Gutierrez, E.; Richardson, D.R.; Jansson, P.J. The anticancer agent di-2-pyridylketone 4, 4-dimethyl-3-thiosemicarbazone (Dp44mT) overcomes prosurvival autophagy by two mechanisms persistant induction of autophagosome synthesis and impairment of lysosomal integrity. J. Biol. Chem., 2014, 289(48), 33568-33589.
[194]
Sahni, S.; Bae, D-H.; Lane, D.J.; Kovacevic, Z.; Kalinowski, D.S.; Jansson, P.J.; Richardson, D.R. The metastasis suppressor, N-myc downstream-regulated gene 1 (NDRG1), inhibits stress-induced autophagy in cancer cells. J. Biol. Chem., 2014, 289(14), 9692-9709.
[195]
Kenific, C.M.; Thorburn, A.; Debnath, J. Autophagy and metastasis: Another double-edged sword. Curr. Opin. Cell Biol., 2010, 22(2), 241-245.
[196]
Morselli, E.; Galluzzi, L.; Kepp, O.; Marino, G.; Michaud, M.; Vitale, I.; Maiuri, M.C.; Kroemer, G. Oncosuppressive functions of autophagy. Antioxid. Redox Signal., 2011, 14(11), 2251-2269.
[197]
Tsuchihara, K.; Fujii, S.; Esumi, H. Autophagy and cancer: Dynamism of the metabolism of tumor cells and tissues. Cancer Lett., 2009, 278(2), 130-138.
[198]
Yang, X.; Yu, D-D.; Yan, F.; Jing, Y-Y.; Han, Z-P.; Sun, K.; Liang, L.; Hou, J.; Wei, L-X. The role of autophagy induced by tumor microenvironment in different cells and stages of cancer. Cell Biosci., 2015, 5(1), 1.
[199]
Krishan, S.; Richardson, D.R.; Sahni, S. The anticancer agent, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (dp44mt), up-regulates the AMPK-dependent energy homeostasis pathway in cancer cells. Biochem Biophys Acta Mol Cell Res, 1863, 2016(12), 2916-2933.
[200]
Krishan, S.; Richardson, D.R.; Sahni, S. AMP kinase (PRKAA1). J. Clin. Pathol., 2014, 67(9), 758-763.
[201]
Krishan, S.; Richardson, D.R.; Sahni, S. Adenosine monophosphate–activated kinase and its key role in catabolism: Structure, regulation, biological activity, and pharmacological activation. Mol. Pharmacol., 2015, 87(3)
[202]
3G6o3tt-e3s7m7.a n, M.M.; Fojo, T.; Bates, S.E. Multidrug resistance in cancer: Role of ATP-dependent transporters. Nat. Rev. Cancer, 2002, 2(1), 48-58.
[203]
Yamagishi, T.; Sahni, S.; Sharp, D.M.; Arvind, A.; Jansson, P.J.; Richardson, D.R. P-glycoprotein mediates drug resistance via a novel mechanism involving lysosomal sequestration. J. Biol. Chem., 2013, 288(44), 31761-31771.
[204]
Zamora, J.M.; Beck, W.T. Chloroquine enhancement of anticancer drug cytotoxicity in multiple drug resistant human leukemic cells. Biochem. Pharmacol., 1986, 35(23), 4303-4310.
[205]
Gutierrez, E.M.; Seebacher, N.A.; Arzuman, L.; Kovacevic, Z.; Lane, D.J.; Richardson, V.; Merlot, A.M.; Lok, H.; Kalinowski, D.S.; Sahni, S.; Jansson, P.J.; Richardson, D.R. Lysosomal membrane stability plays a major role in the cytotoxic activity of the anti-proliferative agent, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44-mT). Biochim. Biophys. Acta, 2016, 1863(7 Pt A), 1665-1681.
[206]
Appelqvist, H.; Waster, P.; Kagedal, K.; Ollinger, K. The lysosome: From waste bag to potential therapeutic target. J. Mol. Cell Biol., 2013, 5(4), 214-226.
[207]
Merlot, A.M.; Pantarat, N.; Menezes, S.V.; Sahni, S.; Richardson, D.R.; Kalinowski, D.S. Cellular uptake of the antitumor agent Dp44mT occurs via a carrier/receptor-mediated mechanism. Mol. Pharmacol., 2013, 84(6), 911-924.
[208]
Merlot, A.M.; Kalinowski, D.S.; Richardson, D.R. Unraveling the mysteries of serum albumin-more than just a serum protein. Front. Physiol., 2014, 5, 299.
[209]
Kovacevic, Z.; Menezes, S.V.; Sahni, S.; Kalinowski, D.S.; Bae, D.H.; Lane, D.J.; Richardson, D.R. The metastasis suppressor, N-MYC Downstream-regulated Gene-1 (NDRG1), down-regulates the ErbB family of receptors to inhibit downstream oncogenic signaling pathways. J. Biol. Chem., 2016, 291(3), 1029-1052.
[210]
Pugh, C.W.; Ratcliffe, P.J. The von Hippel–Lindau tumor suppressor, hypoxia-inducible factor-1 (HIF-1) degradation, and cancer pathogenesis. Semin. Cancer Biol., 2003, 13(1), 83-89.
[211]
Lane, D.J.; Saletta, F.; Suryo Rahmanto, Y.; Kovacevic, Z.; Richardson, D.R. N-myc downstream regulated 1 (NDRG1) is regulated by eukaryotic initiation factor 3a (eIF3a) during cellular stress caused by iron depletion. PLoS One, 2013, 8(2), e57273.
[212]
Dong, Z.; Arnold, R.J.; Yang, Y.; Park, M.H.; Hrncirova, P.; Mechref, Y.; Novotny, M.V.; Zhang, J.T. Modulation of differentiation-related gene 1 expression by cell cycle blocker mimosine, revealed by proteomic analysis. Mol. Cell. Proteomics, 2005, 4(7), 993-1001.
[213]
Dixon, K.M.; Lui, G.Y.L.; Kovacevic, Z.; Zhang, D.; Yao, M.; Chen, Z.; Dong, Q.; Assinder, S.J.; Richardson, D.R. Dp44mT targets the AKT, TGF-β and ERK pathways via the metastasis suppressor NDRG1 in normal prostate epithelial cells and prostate cancer cells. Br. J. Cancer, 2013, 108(2), 409-419.
[214]
Dixon, K.M.; Lui, G.Y.; Kovacevic, Z.; Zhang, D.; Yao, M.; Chen, Z.; Dong, Q.; Assinder, S.J.; Richardson, D.R. Dp44mT targets the AKT, TGF-beta and ERK pathways via the metastasis suppressor NDRG1 in normal prostate epithelial cells and prostate cancer cells. Br. J. Cancer, 2013, 108(2), 409-419.
[215]
Wangpu, X.; Lu, J.; Xi, R.; Yue, F.; Sahni, S.; Park, K.C.; Menezes, S.; Huang, M.L.; Zheng, M.; Kovacevic, Z.; Richardson, D.R. Targeting the metastasis suppressor, N-Myc downstream regulated gene-1, with novel di-2-pyridylketone thiosemicarbazones: Suppression of tumor cell migration and cell-collagen adhesion by inhibiting focal adhesion kinase/paxillin signaling. Mol. Pharmacol., 2016, 89(5), 521-540.
[216]
Sun, J.; Zhang, D.; Zheng, Y.; Zhao, Q.; Zheng, M.; Kovacevic, Z.; Richardson, D.R. Targeting the metastasis suppressor, NDRG1, using novel iron chelators: Regulation of stress fiber-mediated tumor cell migration via modulation of the ROCK1/pMLC2 signaling pathway. Mol. Pharmacol., 2013, 83(2), 454-469.
[217]
Chen, Z.; Zhang, D.; Yue, F.; Zheng, M.; Kovacevic, Z.; Richardson, D.R. The iron chelators Dp44mT and DFO inhibit TGF-beta-induced epithelial-mesenchymal transition via up-regulation of N-Myc downstream-regulated gene 1 (NDRG1). J. Biol. Chem., 2012, 287(21), 17016-17028.
[218]
Liu, W.; Xing, F.; Iiizumi-Gairani, M.; Okuda, H.; Watabe, M.; Pai, S.K.; Pandey, P.R.; Hirota, S.; Kobayashi, A.; Mo, Y-Y.; Fukuda, K.; Li, Y.; Watabe, K. N-myc downstream regulated gene 1 modulates Wnt-β-catenin signalling and pleiotropically suppresses metastasis. EMBO Mol. Med., 2012, 4(2), 93-108.
[219]
Li, P.; Zheng, X.; Shou, K.; Niu, Y.; Jian, C.; Zhao, Y.; Yi, W.; Hu, X.; Yu, A. The iron chelator Dp44mT suppresses osteosarcoma’s proliferation, invasion and migration: In vitro and in vivo. Am. J. Transl. Res., 2016, 8(12), 5370-5385.
[220]
Guo, Z.L.; Richardson, D.R.; Kalinowski, D.S.; Kovacevic, Z.; Tan-Un, K.C.; Chan, G.C. The novel thiosemicarbazone, di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC), inhibits neuroblastoma growth in vitro and in vivo via multiple mechanisms. J. Hematol. Oncol., 2016, 9(1), 98.
[221]
Kalinowski, D.S.; Yu, Y.; Sharpe, P.C.; Islam, M.; Liao, Y.T.; Lovejoy, D.B.; Kumar, N.; Bernhardt, P.V.; Richardson, D.R. Design, synthesis, and characterization of novel iron chelators: Structure-activity relationships of the 2-benzoylpyridine thiosemicarbazone series and their 3-nitrobenzoyl analogues as potent antitumor agents. J. Med. Chem., 2007, 50(15), 3716-3729.
[222]
Yu, Y.; Suryo Rahmanto, Y.; Richardson, D.R. Bp44mT: An orally active iron chelator of the thiosemicarbazone class with potent anti-tumour efficacy. Br. J. Pharmacol., 2012, 165(1), 148-166.
[223]
Merlot, A.M.; Pantarat, N.; Lovejoy, D.B.; Kalinowski, D.S.; Richardson, D.R. Membrane transport and intracellular sequestration of novel thiosemicarbazone chelators for the treatment of cancer. Mol. Pharmacol., 2010, 78(4), 675-684.
[224]
French, F.A.; Freedlander, B.L. Carcinostatic action of polycarbonyl compounds and their derivatives. IV. Glyoxal bis (thiosemicarbazone) and derivatives. Cancer Res., 1958, 18(11), 1290-1300.
[225]
Stefani, C.; Al-Eisawi, Z.; Jansson, P.J.; Kalinowski, D.S.; Richardson, D.R. Identification of differential anti-neoplastic activity of copper bis(thiosemicarbazones) that is mediated by intracellular reactive oxygen species generation and lysosomal membrane permeabilization. J. Inorg. Biochem., 2015, 152, 20-37.
[226]
Cater, M.A.; Pearson, H.B.; Wolyniec, K.; Klaver, P.; Bilandzic, M.; Paterson, B.M.; Bush, A.I.; Humbert, P.O.; La Fontaine, S.; Donnelly, P.S.; Haupt, Y. Increasing intracellular bioavailable copper selectively targets prostate cancer cells. ACS Chem. Biol., 2013, 8(7), 1621-1631.
[227]
Petering, H.G.; Buskirk, H.H.; Crim, J.A. The effect of dietary mineral supplements of the rat on the antitumor activity of 3-ethoxy-2-oxobutyraldehyde bis(thiosemi-carbazone). Cancer Res., 1967, 27(6), 1115-1121.
[228]
Dehdashti, F.; Grigsby, P.W.; Lewis, J.S.; Laforest, R.; Siegel, B.A.; Welch, M.J. Assessing tumor hypoxia in cervical cancer by PET with 60Cu-labeled diacetyl-bis(N4-methylthiosemicarbazone). J. Nucl. Med., 2008, 49(2), 201-205.
[229]
Dehdashti, F.; Grigsby, P.W.; Mintun, M.A.; Lewis, J.S.; Siegel, B.A.; Welch, M.J. Assessing tumor hypoxia in cervical cancer by positron emission tomography with 60Cu-ATSM: Relationship to therapeutic response-a preliminary report. Int. J. Radiat. Oncol. Biol. Phys., 2003, 55(5), 1233-1238.
[230]
Dearling, J.L.; Lewis, J.S.; Mullen, G.E.; Rae, M.T.; Zweit, J.; Blower, P.J. Design of hypoxia-targeting radiopharmaceuticals: Selective uptake of copper-64 complexes in hypoxic cells in vitro. Eur. J. Nucl. Med., 1998, 25(7), 788-792.
[231]
Paterson, B.M.; Donnelly, P.S. Copper complexes of bis(thiosemicarbazones): From chemotherapeutics to diagnostic and therapeutic radiopharmaceuticals. Chem. Soc. Rev., 2011, 40(5), 3005-3018.
[232]
Lewis, J.; Laforest, R.; Buettner, T.; Song, S.; Fujibayashi, Y.; Connett, J.; Welch, M. Copper-64-diacetyl-bis(N4-methylthiosemicarbazone): An agent for radiotherapy. Proc. Natl. Acad. Sci. USA, 2001, 98(3), 1206-1211.
[233]
Anderson, C.J.; Ferdani, R. Copper-64 radiopharmaceuticals for PET imaging of cancer: Advances in preclinical and clinical research. Cancer Biother. Radiopharm., 2009, 24(4), 379-393.
[234]
John, E.K.; Green, M.A. Structure-activity relationships for metal-labeled blood flow tracers: Comparison of keto aldehyde bis(thiosemicarbazonato)copper(II) derivatives. J. Med. Chem., 1990, 33(6), 1764-1770.
[235]
Dearling, J.L.; Lewis, J.S.; Mullen, G.E.; Welch, M.J.; Blower, P.J. Copper bis(thiosemicarbazone) complexes as hypoxia imaging agents: Structure-activity relationships. J. Biol. Inorg. Chem., 2002, 7(3), 249-259.
[236]
Palanimuthu, D.; Shinde, S.V.; Somasundaram, K.; Samuelson, A.G. In vitro and in vivo anticancer activity of copper bis(thiosemicarbazone) complexes. J. Med. Chem., 2013, 56(3), 722-734.
[237]
Richardson, D.R.; Sharpe, P.C.; Lovejoy, D.B.; Senaratne, D.; Kalinowski, D.S.; Islam, M.; Bernhardt, P.V. Dipyridyl thiosemicarbazone chelators with potent and selective antitumor activity form iron complexes with redox activity. J. Med. Chem., 2006, 49(22), 6510-6521.
[238]
Quach, P.; Gutierrez, E.; Basha, M.T.; Kalinowski, D.S.; Sharpe, P.C.; Lovejoy, D.B.; Bernhardt, P.V.; Jansson, P.J.; Richardson, D.R. Methemoglobin formation by triapine, di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone (Dp44mT), and other anticancer thiosemicarbazones: Identification of novel thiosemicarbazones and therapeutics that prevent this effect. Mol. Pharmacol., 2012, 82(1), 105-114.
[239]
Basha, M.T.; Bordini, J.; Richardson, D.R.; Martinez, M.; Bernhardt, P.V. Kinetico-mechanistic studies on methemoglobin generation by biologically active thiosemicarbazone iron(III) complexes. J. Inorg. Biochem., 2016, 162, 326-333.
[240]
Potuckova, E.; Jansova, H.; Machacek, M.; Vavrova, A.; Haskova, P.; Tichotova, L.; Richardson, V.; Kalinowski, D.S.; Richardson, D.R.; Simunek, T. Quantitative analysis of the anti-proliferative activity of combinations of selected iron-chelating agents and clinically used anti-neoplastic drugs. PLoS One, 2014, 9(2), e88754.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 26
ISSUE: 2
Year: 2019
Page: [302 - 322]
Pages: 21
DOI: 10.2174/0929867324666170705120809
Price: $65

Article Metrics

PDF: 43
HTML: 5
EPUB: 1
PRC: 1