Synthesis of Natural and/or Biologically Relevant Three-membered Heterocycles and Derivatives through Asymmetric Epoxidation, Aziridination, Azirination and Thiirination

Author(s): Pellissier Helene*

Journal Name: Letters in Organic Chemistry

Volume 15 , Issue 3 , 2018

Become EABM
Become Reviewer

Graphical Abstract:


Background: Chiral three-membered heterocycles occupy a special place in medicinal and pharmaceutical chemistry related to their diversity of biological activities due to the strain incorporated in their skeletons. This review covers developments reported in the last thirteen years in asymmetric epoxidation, aziridination, azirination and thiirination applied to the synthesis of biologically relevant or natural three-membered heterocycles.

Results: This short review includes 63 references dedicated to the synthesis of natural and/or biologically relevant three-membered heterocycles based on asymmetric epoxidation in a first section, aziridination in a second section, azirination in a third section and thiirination in a fourth section.

Conclusion: This review demonstrates that in the past thirteen years, a number of biologically relevant three-membered heterocycles, including chiral epoxides, aziridines, azirines, and even thiiranes, have been synthesized on the basis of asymmetric epoxidation, aziridination, azirination, and thiirination methodologies. The multipurpose synthetic applicability and biologically activity of three-membered heterocycles will facilitate the medicinal chemists to plan, design and implement new approaches towards the discovery of novel drugs.

Keywords: Chiral three-membered heterocycles, biological activity, epoxides, aziridines, azirines, thiiranes, asymmetric synthesis.

promotion: free to download

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2018
Page: [171 - 182]
Pages: 12
DOI: 10.2174/1570178614666170524143331

Article Metrics

PDF: 30