Boehmite Silylpropyl Amine Sulfamic Acid as an Efficient and Recyclable Catalyst for the Synthesis of some Pyrazole Derivatives

Author(s): Rahele Doosti, Mohammad Bakherad*, Mahdi Mirzaee*, Khosrow Jadidi

Journal Name: Letters in Organic Chemistry

Volume 14 , Issue 6 , 2017


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: The design of biologically-active compounds is a challenging viewpoint in medicinal chemistry, and pyrazoles play a crucial role as biologically-active molecules.

Methods: Up to now, a few examples have been reported for the synthesis of pyrazoles catalyzed by heterogeneous catalysts. In this work, a new boehmite silylpropyl amine sulfamic (m-SABNPs) was applied as a catalyst for one-pot synthesis of pyrazole derivatives.

Results: It was found that this heterogeneous sulfamic acid is a highly efficient catalyst for the syntheses of 5-amino-1,3-aryl-1H-pyrazole-4-carbonitriles and pyrazolopyranopyrimidines in good to excellent yields and can be recovered by a simple filtration of the reaction solution and reused for five consecutive runs without significant loss of catalytic activity. Moreover, its structure was characterized by FT-IR spectroscopy, TGA, XRD, TEM and SEM techniques.

Conclusion: An efficient, and convenient method was proposed for the synthesis of pyrazole derivatives catalyzed by heterogeneous sulfamic acid in high-to-excellent yields. This method offers several advantages like milder reaction condition, shorter reaction time, cleaner reaction, and reusability of the catalyst.

Keywords: Boehmite nanoparticle, reusable catalyst, sulfamic acid, pyrazoles.

Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 14
ISSUE: 6
Year: 2017
Published on: 13 June, 2017
Page: [450 - 460]
Pages: 11
DOI: 10.2174/1570178614666170505113009
Price: $65

Article Metrics

PDF: 30
HTML: 1