Directed Differentiation and Paracrine Mechanisms of Mesenchymal Stem Cells: Potential Implications for Tendon Repair and Regeneration

Author(s): Bingyu Zhang, Qing Luo, Alexander Halim, Yang Ju, Yasuyuki Morita, Guanbin Song*

Journal Name: Current Stem Cell Research & Therapy

Volume 12 , Issue 6 , 2017

Become EABM
Become Reviewer
Call for Editor


Background: Tendon is composed of connective tissue, is able to retract with high tensile force, and plays a significant role in musculoskeletal motion. However, inappropriate physical training or accidents often result in tendon injuries. So far, the functional healing of injured tendon is still a great challenge in orthopedics. Mesenchymal stem cells (MSCs) are multilineage cells with the ability to self-renew and differentiate into a variety of cell types, including tenocytes. The plasticity of MSCs gives rise to the chance of improved healing of injured tendons and even tissue-engineered tendons. Recently, more and more works have shown that the paracrine mechanisms of MSCs also play a critical role in driving the tendon repair process.

Objective: The purpose of this review is to summarize the current knowledge of the induction of tenogenic differentiation of MSCs by mechanical, chemical and mechanochemical stimulations. The role of paracrine mechanisms of MSCs during the repair of injured tendons is also discussed.

Conclusion: The multilineage potential and the paracrine effects of MSCs create the chance for improved healing of injured tendons and even tissue-engineered tendons. The understanding of the regulation of the two different repair mechanisms (directed differentiation and paracrine) of MSCs has important implications for tendon repair and regeneration.

Keywords: Mesenchymal stem cells, directed differentiation, paracrine, tendon, injury, repair.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2017
Published on: 30 July, 2017
Page: [447 - 454]
Pages: 8
DOI: 10.2174/1574888X12666170502102423
Price: $65

Article Metrics

PDF: 55
HTML: 13
PRC: 1