The Food-gut Human Axis: The Effects of Diet on Gut Microbiota and Metabolome

Author(s): Maria De Angelis*, Gabriella Garruti, Fabio Minervini, Leonilde Bonfrate, Piero Portincasa, Marco Gobbetti

Journal Name: Current Medicinal Chemistry

Volume 26 , Issue 19 , 2019

  Journal Home
Translate in Chinese
Become EABM
Become Reviewer

Abstract:

Gut microbiota, the largest symbiont community hosted in human organism, is emerging as a pivotal player in the relationship between dietary habits and health. Oral and, especially, intestinal microbes metabolize dietary components, affecting human health by producing harmful or beneficial metabolites, which are involved in the incidence and progression of several intestinal related and non-related diseases. Habitual diet (Western, Agrarian and Mediterranean omnivore diets, vegetarian, vegan and gluten-free diets) drives the composition of the gut microbiota and metabolome. Within the dietary components, polymers (mainly fibers, proteins, fat and polyphenols) that are not hydrolyzed by human enzymes seem to be the main leads of the metabolic pathways of gut microbiota, which in turn directly influence the human metabolome. Specific relationships between diet and microbes, microbes and metabolites, microbes and immune functions and microbes and/or their metabolites and some human diseases are being established. Dietary treatments with fibers are the most effective to benefit the metabolome profile, by improving the synthesis of short chain fatty acids and decreasing the level of molecules, such as p-cresyl sulfate, indoxyl sulfate and trimethylamine N-oxide, involved in disease state. Based on the axis diet-microbiota-health, this review aims at describing the most recent knowledge oriented towards a profitable use of diet to provide benefits to human health, both directly and indirectly, through the activity of gut microbiota.

Keywords: Gut microbiota, diet, dietary fibers, protein, fat, polyphenols, probiotics, metabolome.

[1]
Kuczynski, J.; Lauber, C.L.; Walters, W.A.; Parfrey, L.W.; Clemente, J.C.; Gevers, D.; Knight, R. Experimental and analytical tools for studying the human microbiome. Nat. Rev. Genet., 2011, 13(1), 47-58.
[http://dx.doi.org/10.1038/nrg3129] [PMID: 22179717]
[2]
Zhernakova, A.; Kurilshikov, A.; Bonder, M.J.; Tigchelaar, E.F.; Schirmer, M.; Vatanen, T.; Mujagic, Z.; Vila, A.V.; Falony, G.; Vieira-Silva, S.; Wang, J.; Imhann, F.; Brandsma, E.; Jankipersadsing, S.A.; Joossens, M.; Cenit, M.C.; Deelen, P.; Swertz, M.A.; Weersma, R.K.; Feskens, E.J.; Netea, M.G.; Gevers, D.; Jonkers, D.; Franke, L.; Aulchenko, Y.S.; Huttenhower, C.; Raes, J.; Hofker, M.H.; Xavier, R.J.; Wijmenga, C.; Fu, J. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science, 2016, 352(6285), 565-569.
[http://dx.doi.org/10.1126/science.aad3369] [PMID: 27126040]
[3]
Clemente, J.C.; Ursell, L.K.; Parfrey, L.W.; Knight, R. The impact of the gut microbiota on human health: an integrative view. Cell, 2012, 148(6), 1258-1270.
[http://dx.doi.org/10.1016/j.cell.2012.01.035] [PMID: 22424233]
[4]
Lozupone, C.; Faust, K.; Raes, J.; Faith, J.J.; Frank, D.N.; Zaneveld, J.; Gordon, J.I.; Knight, R. Identifying genomic and metabolic features that can underlie early successional and opportunistic lifestyles of human gut symbionts. Genome Res., 2012, 22(10), 1974-1984.
[http://dx.doi.org/10.1101/gr.138198.112] [PMID: 22665442]
[5]
Marchesi, J.R.; Adams, D.H.; Fava, F.; Hermes, G.D.; Hirschfield, G.M.; Hold, G.; Quraishi, M.N.; Kinross, J.; Smidt, H.; Tuohy, K.M.; Thomas, L.V.; Zoetendal, E.G.; Hart, A. The gut microbiota and host health: a new clinical frontier. Gut, 2016, 65(2), 330-339.
[http://dx.doi.org/10.1136/gutjnl-2015-309990] [PMID: 26338727]
[6]
Muszer, M.; Noszczyńska, M.; Kasperkiewicz, K.; Skurnik, M. Human microbiome: when a friend becomes an enemy. Arch. Immunol. Ther. Exp. (Warsz.), 2015, 63(4), 287-298.
[http://dx.doi.org/10.1007/s00005-015-0332-3] [PMID: 25682593]
[7]
Guinane, C.M.; Cotter, P.D. Role of the gut microbiota in health and chronic gastrointestinal disease: understanding a hidden metabolic organ. Therap. Adv. Gastroenterol., 2013, 6(4), 295-308.
[http://dx.doi.org/10.1177/1756283X13482996] [PMID: 23814609]
[8]
De Angelis, M.; Vannini, L.; Di Cagno, R.; Cavallo, N.; Minervini, F.; Francavilla, R.; Ercolini, D.; Gobbetti, M. Salivary and fecal microbiota and metabolome of celiac children under gluten-free diet. Int. J. Food Microbiol., 2016, 239, 125-132.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2016.07.025] [PMID: 27452636]
[9]
Sekirov, I.; Russell, S.L.; Antunes, L.C.; Finlay, B.B. Gut microbiota in health and disease. Physiol. Rev., 2010, 90(3), 859-904.
[http://dx.doi.org/10.1152/physrev.00045.2009] [PMID: 20664075]
[10]
Prakash, S.; Rodes, L.; Coussa-Charley, M.; Tomaro-Duchesneau, C. Gut microbiota: next frontier in understanding human health and development of biotherapeutics. Biologics, 2011, 5, 71-86.
[http://dx.doi.org/10.2147/BTT.S19099] [PMID: 21847343]
[11]
Ley, R.E.; Turnbaugh, P.J.; Klein, S.; Gordon, J.I. Microbial ecology: human gut microbes associated with obesity. Nature, 2006, 444(7122), 1022-1023.
[http://dx.doi.org/10.1038/4441022a] [PMID: 17183309]
[12]
Duncan, S.H.; Lobley, G.E.; Holtrop, G.; Ince, J.; Johnstone, A.M.; Louis, P.; Flint, H.J. Human colonic microbiota associated with diet, obesity and weight loss. Int. J. Obes., 2008, 32(11), 1720-1724.
[http://dx.doi.org/10.1038/ijo.2008.155] [PMID: 18779823]
[13]
Claesson, M.J.; Jeffery, I.B.; Conde, S.; Power, S.E.; O’Connor, E.M.; Cusack, S.; Harris, H.M.; Coakley, M.; Lakshminarayanan, B.; O’Sullivan, O.; Fitzgerald, G.F.; Deane, J.; O’Connor, M.; Harnedy, N.; O’Connor, K.; O’Mahony, D.; van Sinderen, D.; Wallace, M.; Brennan, L.; Stanton, C.; Marchesi, J.R.; Fitzgerald, A.P.; Shanahan, F.; Hill, C.; Ross, R.P.; O’Toole, P.W. Gut microbiota composition correlates with diet and health in the elderly. Nature, 2012, 488(7410), 178-184.
[http://dx.doi.org/10.1038/nature11319] [PMID: 22797518]
[14]
Qin, J.; Li, Y.; Cai, Z.; Li, S.; Zhu, J.; Zhang, F.; Liang, S.; Zhang, W.; Guan, Y.; Shen, D.; Peng, Y.; Zhang, D.; Jie, Z.; Wu, W.; Qin, Y.; Xue, W.; Li, J.; Han, L.; Lu, D.; Wu, P.; Dai, Y.; Sun, X.; Li, Z.; Tang, A.; Zhong, S.; Li, X.; Chen, W.; Xu, R.; Wang, M.; Feng, Q.; Gong, M.; Yu, J.; Zhang, Y.; Zhang, M.; Hansen, T.; Sanchez, G.; Raes, J.; Falony, G.; Okuda, S.; Almeida, M.; LeChatelier, E.; Renault, P.; Pons, N.; Batto, J.M.; Zhang, Z.; Chen, H.; Yang, R.; Zheng, W.; Li, S.; Yang, H.; Wang, J.; Ehrlich, S.D.; Nielsen, R.; Pedersen, O.; Kristiansen, K.; Wang, J. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature, 2012, 490(7418), 55-60.
[http://dx.doi.org/10.1038/nature11450] [PMID: 23023125]
[15]
Zeevi, D.; Korem, T.; Zmora, N.; Israeli, D.; Rothschild, D.; Weinberger, A.; Ben-Yacov, O.; Lador, D.; Avnit-Sagi, T.; Lotan-Pompan, M.; Suez, J.; Mahdi, J.A.; Matot, E.; Malka, G.; Kosower, N.; Rein, M.; Zilberman-Schapira, G.; Dohnalová, L.; Pevsner-Fischer, M.; Bikovsky, R.; Halpern, Z.; Elinav, E.; Segal, E. Personalized nutrition by prediction of glycemic responses. Cell, 2015, 163(5), 1079-1094.
[http://dx.doi.org/10.1016/j.cell.2015.11.001] [PMID: 26590418]
[16]
Karlsson, F.H.; Tremaroli, V.; Nookaew, I.; Bergström, G.; Behre, C.J.; Fagerberg, B.; Nielsen, J.; Bäckhed, F. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature, 2013, 498(7452), 99-103.
[http://dx.doi.org/10.1038/nature12198] [PMID: 23719380]
[17]
De Angelis, M.; Piccolo, M.; Vannini, L.; Siragusa, S.; De Giacomo, A.; Serrazzanetti, D.I.; Cristofori, F.; Guerzoni, M.E.; Gobbetti, M.; Francavilla, R. Fecal microbiota and metabolome of children with autism and pervasive developmental disorder not otherwise specified. PLoS One, 2013, 8(10)e76993
[http://dx.doi.org/10.1371/journal.pone.0076993] [PMID: 24130822]
[18]
Oriach, C.S.; Robertson, R.C.; Stanton, C.; Cryan, J.F.; Dinan, T.G. Food for thought: the role of nutrition in the microbiota-gut-brain axis. Clin. Nutr. Exp., 2016, 6, 25-38.
[http://dx.doi.org/10.1016/j.yclnex.2016.01.003]
[19]
Flemer, B.; Lynch, D.B.; Brown, J.M.; Jeffery, I.B.; Ryan, F.J.; Claesson, M.J. ORiordain, M.; Shanahan, F.; OToole, P.W. Tumour-associated and non-tumour-associated microbiota in colorectal cancer. Gut, 2017, 66(4), 633-643.
[http://dx.doi.org/dx. doi: 10.1136/gutjnl-2015-309595] [PMID: 26992426]
[20]
Scher, J.U.; Joshua, V.; Artacho, A.; Abdollahi-Roodsaz, S.; Öckinger, J.; Kullberg, S.; Sköld, M.; Eklund, A.; Grunewald, J.; Clemente, J.C.; Ubeda, C.; Segal, L.N.; Catrina, A.I. The lung microbiota in early rheumatoid arthritis and autoimmunity. Microbiome, 2016, 4(1), 60.
[http://dx.doi.org/10.1186/s40168-016-0206-x] [PMID: 27855721]
[21]
Maeda, Y.; Kurakawa, T.; Umemoto, E.; Motooka, D.; Ito, Y.; Gotoh, K.; Hirota, K.; Matsushita, M.; Furuta, Y.; Narazaki, M.; Sakaguchi, N.; Kayama, H.; Nakamura, S.; Iida, T.; Saeki, Y.; Kumanogoh, A.; Sakaguchi, S.; Takeda, K. Dysbiosis contributes to arthritis development via activation of autoreactive T cells in the intestine. Arthritis Rheumatol., 2016, 68(11), 2646-2661.
[http://dx.doi.org/10.1002/art.39783] [PMID: 27333153]
[22]
Rosenbaum, J.T.; Asquith, M.J. The microbiome: a revolution in treatment for rheumatic diseases? Curr. Rheumatol. Rep., 2016, 18(10), 62.
[http://dx.doi.org/10.1007/s11926-016-0614-8] [PMID: 27641915]
[23]
Thushara, R.M.; Gangadaran, S.; Solati, Z.; Moghadasian, M.H. Cardiovascular benefits of probiotics: a review of experimental and clinical studies. Food Funct., 2016, 7(2), 632-642.
[http://dx.doi.org/10.1039/C5FO01190F] [PMID: 26786971]
[24]
Raman, M.; Ahmed, I.; Gillevet, P.M.; Probert, C.S.; Ratcliffe, N.M.; Smith, S.; Greenwood, R.; Sikaroodi, M.; Lam, V.; Crotty, P.; Bailey, J.; Myers, R.P.; Rioux, K.P. Fecal microbiome and volatile organic compound metabolome in obese humans with nonalcoholic fatty liver disease. Clin. Gastroenterol. Hepatol., 2013, 11, 868-875.e1-e3..
[http://dx.doi.org/10.1016/j.cgh.2013.02.015] [PMID: 23454028]
[25]
Zhu, L.; Baker, S.S.; Gill, C.; Liu, W.; Alkhouri, R.; Baker, R.D.; Gill, S.R. Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH. Hepatology, 2013, 57(2), 601-609.
[http://dx.doi.org/10.1002/hep.26093] [PMID: 23055155]
[26]
Yan, A.W.; Fouts, D.E.; Brandl, J.; Stärkel, P.; Torralba, M.; Schott, E.; Tsukamoto, H.; Nelson, K.E.; Brenner, D.A.; Schnabl, B. Enteric dysbiosis associated with a mouse model of alcoholic liver disease. Hepatology, 2011, 53(1), 96-105.
[http://dx.doi.org/10.1002/hep.24018] [PMID: 21254165]
[27]
Yan, A.W.; Schnabl, B. Bacterial translocation and changes in the intestinal microbiome associated with alcoholic liver disease. World J. Hepatol., 2012, 4(4), 110-118.
[http://dx.doi.org/10.4254/wjh.v4.i4.110] [PMID: 22567183]
[28]
De Angelis, M.; Montemurno, E.; Piccolo, M.; Vannini, L.; Lauriero, G.; Maranzano, V.; Gozzi, G.; Serrazanetti, D.; Dalfino, G.; Gobbetti, M.; Gesualdo, L. Microbiota and metabolome associated with immunoglobulin A nephropathy (IgAN). PLoS One, 2014, 9(6)e99006
[http://dx.doi.org/10.1371/journal.pone.0099006] [PMID: 24922509]
[29]
Fábián, T.K.; Fejérdy, P.; Csermely, P. Salivary genomics, transcriptomics and proteomics: the emerging concept of the oral ecosystem and their use in the early diagnosis of cancer and other diseases. Curr. Genomics, 2008, 9(1), 11-21.
[http://dx.doi.org/10.2174/138920208783884900] [PMID: 19424479]
[30]
Zeigler, C.C.; Persson, G.R.; Wondimu, B.; Marcus, C.; Sobko, T.; Modéer, T. Microbiota in the oral subgingival biofilm is associated with obesity in adolescence. Obesity (Silver Spring), 2012, 20(1), 157-164.
[http://dx.doi.org/10.1038/oby.2011.305] [PMID: 21996660]
[31]
Meurman, J.H.; Bascones-Martinez, A. Are oral and dental diseases linked to cancer? Oral Dis., 2011, 17(8), 779-784.
[http://dx.doi.org/10.1111/j.1601-0825.2011.01837.x] [PMID: 21819493]
[32]
Piccolo, M.; De Angelis, M.; Lauriero, G.; Montemurno, E.; Di Cagno, R.; Gesualdo, L.; Gobbetti, M. Salivary Microbiota Associated with Immunoglobulin A Nephropathy. Microb. Ecol., 2015, 70(2), 557-565.
[http://dx.doi.org/10.1007/s00248-015-0592-9] [PMID: 25763757]
[33]
Ercolini, D.; Francavilla, R.; Vannini, L.; De Filippis, F.; Capriati, T.; Di Cagno, R.; Iacono, G.; De Angelis, M.; Gobbetti, M. From an imbalance to a new imbalance: Italian-style gluten-free diet alters the salivary microbiota and metabolome of African celiac children. Sci. Rep., 2015, 5, 18571.
[http://dx.doi.org/10.1038/srep18571] [PMID: 26681599]
[34]
Francavilla, R.; Ercolini, D.; Piccolo, M.; Vannini, L.; Siragusa, S.; De Filippis, F.; De Pasquale, I.; Di Cagno, R.; Di Toma, M.; Gozzi, G.; Serrazanetti, D.I.; De Angelis, M.; Gobbetti, M. Salivary microbiota and metabolome associated with celiac disease. Appl. Environ. Microbiol., 2014, 80(11), 3416-3425.
[http://dx.doi.org/10.1128/AEM.00362-14] [PMID: 24657864]
[35]
Nunn, J.; Foster, M.; Master, S.; Greening, S. British Society of Paediatric Dentistry: a policy document on consent and the use of physical intervention in the dental care of children. Int. J. Paediatr. Dent., 2008, 18(Suppl. 1), 39-46.
[http://dx.doi.org/10.1111/j.1365-263X.2008.00937.x] [PMID: 18808546]
[36]
Lazarevic, V.; Whiteson, K.; Hernandez, D.; François, P.; Schrenzel, J. Study of inter- and intra-individual variations in the salivary microbiota. BMC Genomics, 2010, 11, 523.
[http://dx.doi.org/10.1186/1471-2164-11-523] [PMID: 20920195]
[37]
Maukonen, J.; Mättö, J.; Suihko, M.L.; Saarela, M. Intra-individual diversity and similarity of salivary and faecal microbiota. J. Med. Microbiol., 2008, 57(Pt 12), 1560-1568.
[http://dx.doi.org/10.1099/jmm.0.47352-0] [PMID: 19018030]
[38]
Peterson, J.; Garges, S.; Giovanni, M.; McInnes, P.; Wang, L.; Schloss, J.A.; Bonazzi, V.; McEwen, J.E.; Wetterstrand, K.A.; Deal, C.; Baker, C.C.; Di Francesco, V.; Howcroft, T.K.; Karp, R.W.; Lunsford, R.D.; Wellington, C.R.; Belachew, T.; Wright, M.; Giblin, C.; David, H.; Mills, M.; Salomon, R.; Mullins, C.; Akolkar, B.; Begg, L.; Davis, C.; Grandison, L.; Humble, M.; Khalsa, J.; Little, A.R.; Peavy, H.; Pontzer, C.; Portnoy, M.; Sayre, M.H.; Starke-Reed, P.; Zakhari, S.; Read, J.; Watson, B.; Guyer, M. The NIH Human Microbiome Project. Genome Res., 2009, 19(12), 2317-2323.
[http://dx.doi.org/10.1101/gr.096651.109] [PMID: 19819907]
[39]
Scott, K.P.; Gratz, S.W.; Sheridan, P.O.; Flint, H.J.; Duncan, S.H. The influence of diet on the gut microbiota. Pharmacol. Res., 2013, 69(1), 52-60.
[http://dx.doi.org/10.1016/j.phrs.2012.10.020] [PMID: 23147033]
[40]
Conlon, M.A.; Bird, A.R. The impact of diet and lifestyle on gut microbiota and human health. Nutrients, 2014, 7(1), 17-44.
[http://dx.doi.org/10.3390/nu7010017] [PMID: 25545101]
[41]
Eckburg, P.B.; Bik, E.M.; Bernstein, C.N.; Purdom, E.; Dethlefsen, L.; Sargent, M.; Gill, S.R.; Nelson, K.E.; Relman, D.A. Diversity of the human intestinal microbial flora. Science, 2005, 308(5728), 1635-1638.
[http://dx.doi.org/10.1126/science.1110591] [PMID: 15831718]
[42]
Arumugam, M.; Raes, J.; Pelletier, E.; Le Paslier, D.; Yamada, T.; Mende, D.R.; Fernandes, G.R.; Tap, J.; Bruls, T.; Batto, J.M.; Bertalan, M.; Borruel, N.; Casellas, F.; Fernandez, L.; Gautier, L.; Hansen, T.; Hattori, M.; Hayashi, T.; Kleerebezem, M.; Kurokawa, K.; Leclerc, M.; Levenez, F.; Manichanh, C.; Nielsen, H.B.; Nielsen, T.; Pons, N.; Poulain, J.; Qin, J.; Sicheritz-Ponten, T.; Tims, S.; Torrents, D.; Ugarte, E.; Zoetendal, E.G.; Wang, J.; Guarner, F.; Pedersen, O.; de Vos, W.M.; Brunak, S.; Doré, J.; Antolín, M.; Artiguenave, F.; Blottiere, H.M.; Almeida, M.; Brechot, C.; Cara, C.; Chervaux, C.; Cultrone, A.; Delorme, C.; Denariaz, G.; Dervyn, R.; Foerstner, K.U.; Friss, C.; van de Guchte, M.; Guedon, E.; Haimet, F.; Huber, W.; van Hylckama-Vlieg, J.; Jamet, A.; Juste, C.; Kaci, G.; Knol, J.; Lakhdari, O.; Layec, S.; Le Roux, K.; Maguin, E.; Mérieux, A.; Melo Minardi, R.; M’rini, C.; Muller, J.; Oozeer, R.; Parkhill, J.; Renault, P.; Rescigno, M.; Sanchez, N.; Sunagawa, S.; Torrejon, A.; Turner, K.; Vandemeulebrouck, G.; Varela, E.; Winogradsky, Y.; Zeller, G.; Weissenbach, J.; Ehrlich, S.D.; Bork, P. Enterotypes of the human gut microbiome. Nature, 2011, 473(7346), 174-180.
[http://dx.doi.org/10.1038/nature09944] [PMID: 21508958]
[43]
Costello, E.K.; Lauber, C.L.; Hamady, M.; Fierer, N.; Gordon, J.I.; Knight, R. Bacterial community variation in human body habitats across space and time. Science, 2009, 326(5960), 1694-1697.
[http://dx.doi.org/10.1126/science.1177486] [PMID: 19892944]
[44]
Schnorr, S.L.; Candela, M.; Rampelli, S.; Centanni, M.; Consolandi, C.; Basaglia, G.; Turroni, S.; Biagi, E.; Peano, C.; Severgnini, M.; Fiori, J.; Gotti, R.; De Bellis, G.; Luiselli, D.; Brigidi, P.; Mabulla, A.; Marlowe, F.; Henry, A.G.; Crittenden, A.N. Gut microbiome of the Hadza hunter-gatherers. Nat. Commun., 2014, 5, 3654.
[http://dx.doi.org/10.1038/ncomms4654] [PMID: 24736369]
[45]
De Filippo, C.; Cavalieri, D.; Di Paola, M.; Ramazzotti, M.; Poullet, J.B.; Massart, S.; Collini, S.; Pieraccini, G.; Lionetti, P. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl. Acad. Sci. USA, 2010, 107(33), 14691-14696.
[http://dx.doi.org/10.1073/pnas.1005963107] [PMID: 20679230]
[46]
Wu, G.D.; Chen, J.; Hoffmann, C.; Bittinger, K.; Chen, Y.Y.; Keilbaugh, S.A.; Bewtra, M.; Knights, D.; Walters, W.A.; Knight, R.; Sinha, R.; Gilroy, E.; Gupta, K.; Baldassano, R.; Nessel, L.; Li, H.; Bushman, F.D.; Lewis, J.D. Linking long-term dietary patterns with gut microbial enterotypes. Science, 2011, 334(6052), 105-108.
[http://dx.doi.org/10.1126/science.1208344] [PMID: 21885731]
[47]
Cotillard, A.; Kennedy, S.P.; Kong, L.C.; Prifti, E.; Pons, N.; Le Chatelier, E.; Almeida, M.; Quinquis, B.; Levenez, F.; Galleron, N.; Gougis, S.; Rizkalla, S.; Batto, J-M.; Renault, P.; Doré, J.; Zucker, J.D.; Clément, K.; Ehrlich, S.D. Dietary intervention impact on gut microbial gene richness. Nature, 2013, 500(7464), 585-588.
[http://dx.doi.org/10.1038/nature12480] [PMID: 23985875]
[48]
Le Chatelier, E.; Nielsen, T.; Qin, J.; Prifti, E.; Hildebrand, F.; Falony, G.; Almeida, M.; Arumugam, M.; Batto, J-M.; Kennedy, S.; Leonard, P.; Li, J.; Burgdorf, K.; Grarup, N.; Jørgensen, T.; Brandslund, I.; Nielsen, H.B.; Juncker, A.S.; Bertalan, M.; Levenez, F.; Pons, N.; Rasmussen, S.; Sunagawa, S.; Tap, J.; Tims, S.; Zoetendal, E.G.; Brunak, S.; Clément, K.; Doré, J.; Kleerebezem, M.; Kristiansen, K.; Renault, P.; Sicheritz-Ponten, T.; de Vos, W.M.; Zucker, J-D.; Raes, J.; Hansen, T.; Bork, P.; Wang, J.; Ehrlich, S.D.; Pedersen, O.; Pedersen, O. Richness of human gut microbiome correlates with metabolic markers. Nature, 2013, 500(7464), 541-546.
[http://dx.doi.org/10.1038/nature12506] [PMID: 23985870]
[49]
Vitaglione, P.; Mennella, I.; Ferracane, R.; Rivellese, A.A.; Giacco, R.; Ercolini, D.; Gibbons, S.M.; La Storia, A.; Gilbert, J.A.; Jonnalagadda, S.; Thielecke, F.; Gallo, M.A.; Scalfi, L.; Fogliano, V. Whole-grain wheat consumption reduces inflammation in a randomized controlled trial on overweight and obese subjects with unhealthy dietary and lifestyle behaviors: role of polyphenols bound to cereal dietary fiber. Am. J. Clin. Nutr., 2015, 101(2), 251-261.
[http://dx.doi.org/10.3945/ajcn.114.088120] [PMID: 25646321]
[50]
De Angelis, M.; Montemurno, E.; Vannini, L.; Cosola, C.; Cavallo, N.; Gozzi, G.; Maranzano, V.; Di Cagno, R.; Gobetti, M.; Gesualdo, L. The role of whole-grain barley on human fecal microbiota and metabolome. Appl. Environ. Microbiol., 2015, 81, 7495-7956.
[http://dx.doi.org/10.1128/AEM.02507-15] [PMID: 26386056]
[51]
Defilippi, C.; Solomon, T.E.; Valenzuela, J.E. Pancreatic secretory response to sham feeding in humans. Digestion, 1982, 23(4), 217-223.
[http://dx.doi.org/10.1159/000198753] [PMID: 6183160]
[52]
Yatsunenko, T.; Rey, F.E.; Manary, M.J.; Trehan, I.; Dominguez-Bello, M.G.; Contreras, M.; Magris, M.; Hidalgo, G.; Baldassano, R.N.; Anokhin, A.P.; Heath, A.C.; Warner, B.; Reeder, J.; Kuczynski, J.; Caporaso, J.G.; Lozupone, C.A.; Lauber, C.; Clemente, J.C.; Knights, D.; Knight, R.; Gordon, J.I. Human gut microbiome viewed across age and geography. Nature, 2012, 486(7402), 222-227.
[http://dx.doi.org/10.1038/nature11053] [PMID: 22699611]
[53]
Lin, A.; Bik, E.M.; Costello, E.K.; Dethlefsen, L.; Haque, R.; Relman, D.A.; Singh, U. Distinct distal gut microbiome diversity and composition in healthy children from Bangladesh and the United States. PLoS One, 2013, 8(1)e53838
[http://dx.doi.org/10.1371/journal.pone.0053838] [PMID: 23349750]
[54]
Sonnenburg, J.L.; Bäckhed, F. Diet-microbiota interactions as moderators of human metabolism. Nature, 2016, 535(7610), 56-64.
[http://dx.doi.org/10.1038/nature18846] [PMID: 27383980]
[55]
Ou, J.; Carbonero, F.; Zoetendal, E.G.; DeLany, J.P.; Wang, M.; Newton, K.; Gaskins, H.R.; O’Keefe, S.J. Diet, microbiota, and microbial metabolites in colon cancer risk in rural Africans and African Americans. Am. J. Clin. Nutr., 2013, 98(1), 111-120.
[http://dx.doi.org/10.3945/ajcn.112.056689] [PMID: 23719549]
[56]
David, L.A.; Maurice, C.F.; Carmody, R.N.; Gootenberg, D.B.; Button, J.E.; Wolfe, B.E.; Ling, A.V.; Devlin, A.S.; Varma, Y.; Fischbach, M.A.; Biddinger, S.B.; Dutton, R.J.; Turnbaugh, P.J. Diet rapidly and reproducibly alters the human gut microbiome. Nature, 2014, 505(7484), 559-563.
[http://dx.doi.org/10.1038/nature12820] [PMID: 24336217]
[57]
Cordain, L.; Eaton, S.B.; Sebastian, A.; Mann, N.; Lindeberg, S.; Watkins, B.A.; O’Keefe, J.H.; Brand-Miller, J. Origins and evolution of the Western diet: health implications for the 21st century. Am. J. Clin. Nutr., 2005, 81(2), 341-354.
[http://dx.doi.org/10.1093/ajcn.81.2.341] [PMID: 15699220]
[58]
Trichopoulou, A.; Kouris-Blazos, A.; Wahlqvist, M.L.; Gnardellis, C.; Lagiou, P.; Polychronopoulos, E.; Vassilakou, T.; Lipworth, L.; Trichopoulos, D. Diet and overall survival in elderly people. BMJ, 1995, 311(7018), 1457-1460.
[http://dx.doi.org/10.1136/bmj.311.7018.1457] [PMID: 8520331]
[59]
Rosato, V.; Guercio, V.; Bosetti, C.; Negri, E.; Serraino, D.; Giacosa, A.; Montella, M.; La Vecchia, C.; Tavani, A. Mediterranean diet and colorectal cancer risk: a pooled analysis of three Italian case-control studies. Br. J. Cancer, 2016, 115(7), 862-865.
[http://dx.doi.org/10.1038/bjc.2016.245] [PMID: 27537381]
[60]
Bamia, C.; Lagiou, P.; Buckland, G.; Grioni, S.; Agnoli, C.; Taylor, A.J.; Dahm, C.C.; Overvad, K.; Olsen, A.; Tjønneland, A.; Cottet, V.; Boutron-Ruault, M.C.; Morois, S.; Grote, V.; Teucher, B.; Boeing, H.; Buijsse, B.; Trichopoulos, D.; Adarakis, G.; Tumino, R.; Naccarati, A.; Panico, S.; Palli, D.; Bueno-de-Mesquita, H.B.; van Duijnhoven, F.J.; Peeters, P.H.; Engeset, D.; Skeie, G.; Lund, E.; Sánchez, M.J.; Barricarte, A.; Huerta, J.M.; Quirós, J.R.; Dorronsoro, M.; Ljuslinder, I.; Palmqvist, R.; Drake, I.; Key, T.J.; Khaw, K.T.; Wareham, N.; Romieu, I.; Fedirko, V.; Jenab, M.; Romaguera, D.; Norat, T.; Trichopoulou, A. Mediterranean diet and colorectal cancer risk: results from a European cohort. Eur. J. Epidemiol., 2013, 28(4), 317-328.
[http://dx.doi.org/10.1007/s10654-013-9795-x] [PMID: 23579425]
[61]
Estruch, R.; Martínez-González, M.A.; Corella, D.; Salas-Salvadó, J.; Ruiz-Gutiérrez, V.; Covas, M.I.; Fiol, M.; Gómez-Gracia, E.; López-Sabater, M.C.; Vinyoles, E.; Arós, F.; Conde, M.; Lahoz, C.; Lapetra, J.; Sáez, G.; Ros, E. Effects of a Mediterranean-style diet on cardiovascular risk factors: a randomized trial. Ann. Intern. Med., 2006, 145(1), 1-11.
[http://dx.doi.org/10.7326/0003-4819-145-1-200607040-00004] [PMID: 16818923]
[62]
Salas-Salvadó, J.; Bulló, M.; Babio, N.; Martínez-González, M.A.; Ibarrola-Jurado, N.; Basora, J.; Estruch, R.; Covas, M.I.; Corella, D.; Arós, F.; Ruiz-Gutiérrez, V.; Ros, E. Reduction in the incidence of type 2 diabetes with the Mediterranean diet: results of the PREDIMED-Reus nutrition intervention randomized trial. Diabetes Care, 2011, 34(1), 14-19.
[http://dx.doi.org/10.2337/dc10-1288] [PMID: 20929998]
[63]
Agnoli, C.; Krogh, V.; Grioni, S.; Sieri, S.; Palli, D.; Masala, G.; Sacerdote, C.; Vineis, P.; Tumino, R.; Frasca, G.; Pala, V.; Berrino, F.; Chiodini, P.; Mattiello, A.; Panico, S. A priori-defined dietary patterns are associated with reduced risk of stroke in a large Italian cohort. J. Nutr., 2011, 141(8), 1552-1558.
[http://dx.doi.org/10.3945/jn.111.140061] [PMID: 21628636]
[64]
Sofi, F.; Abbate, R.; Gensini, G.F.; Casini, A. Accruing evidence on benefits of adherence to the Mediterranean diet on health: an updated systematic review and meta-analysis. Am. J. Clin. Nutr., 2010, 92(5), 1189-1196.
[http://dx.doi.org/10.3945/ajcn.2010.29673] [PMID: 20810976]
[65]
Marlow, G.; Ellett, S.; Ferguson, I.R.; Zhu, S.; Karunasinghe, N.; Jesuthasan, A.C.; Han, D.Y.; Fraser, A.G.; Ferguson, L.R. Transcriptomics to study the effect of a Mediterranean-inspired diet on inflammation in Crohn’s disease patients. Hum. Genomics, 2013, 7, 24.
[http://dx.doi.org/10.1186/1479-7364-7-24] [PMID: 24283712]
[66]
De Filippis, F.; Pellegrini, N.; Vannini, L.; Jeffery, I.B.; La Storia, A.; Laghi, L.; Serrazanetti, D.I.; Di Cagno, R.; Ferrocino, I.; Lazzi, C.; Turroni, S.; Cocolin, L.; Brigidi, P.; Neviani, E.; Gobbetti, M. OToole, P.W.; Ercolini, D. High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut, 2016, 65(11), 1812-1821.
[http://dx.doi.org/dx. doi: 10.1136/gutjnl-2015-309957] [PMID: 26416813]
[67]
Glick-Bauer, M.; Yeh, M.C. The health advantage of a vegan diet: exploring the gut microbiota connection. Nutrients, 2014, 6(11), 4822-4838.
[http://dx.doi.org/10.3390/nu6114822] [PMID: 25365383]
[68]
Matijašić, B.B.; Obermajer, T.; Lipoglavšek, L.; Grabnar, I.; Avguštin, G.; Rogelj, I. Association of dietary type with fecal microbiota in vegetarians and omnivores in Slovenia. Eur. J. Nutr., 2014, 53(4), 1051-1064.
[http://dx.doi.org/10.1007/s00394-013-0607-6] [PMID: 24173964]
[69]
Ferrocino, I.; Di Cagno, R.; De Angelis, M.; Turroni, S.; Vannini, L.; Bancalari, E.; Rantsiou, K.; Cardinali, G.; Neviani, E.; Cocolin, L. Fecal microbiota in healthy subjects following omnivore, vegetarian and vegan diets: culturable populations and rRNA DGGE profiling. PLoS One, 2015, 10(6)e0128669
[http://dx.doi.org/10.1371/journal.pone.0128669] [PMID: 26035837]
[70]
Baranska, A.; Tigchelaar, E.; Smolinska, A.; Dallinga, J.W.; Moonen, E.J.; Dekens, J.A.; Wijmenga, C.; Zhernakova, A.; van Schooten, F.J. Profile of volatile organic compounds in exhaled breath changes as a result of gluten-free diet. J. Breath Res., 2013, 7(3)037104
[http://dx.doi.org/10.1088/1752-7155/7/3/037104] [PMID: 23774130]
[71]
Sanz, Y. Effects of a gluten-free diet on gut microbiota and immune function in healthy adult humans. Gut Microbes, 2010, 1(3), 135-137.
[http://dx.doi.org/10.4161/gmic.1.3.11868] [PMID: 21327021]
[72]
De Palma, G.; Nadal, I.; Collado, M.C.; Sanz, Y. Effects of a gluten-free diet on gut microbiota and immune function in healthy adult human subjects. Br. J. Nutr., 2009, 102(8), 1154-1160.
[http://dx.doi.org/10.1017/S0007114509371767] [PMID: 19445821]
[73]
Kinsey, L.; Burden, S.T.; Bannerman, E. A dietary survey to determine if patients with coeliac disease are meeting current healthy eating guidelines and how their diet compares to that of the British general population. Eur. J. Clin. Nutr., 2008, 62(11), 1333-1342.
[http://dx.doi.org/10.1038/sj.ejcn.1602856] [PMID: 17700651]
[74]
Miranda, C.O.; Teixeira, C.A.; Sousa, V.F.; Santos, T.E.; Liz, M.A.; Marques, A.M.; Pinto-do-Ó, P.; Sousa, M.M. Primary bone marrow mesenchymal stromal cells rescue the axonal phenotype of Twitcher mice. Cell Transplant., 2014, 23(2), 239-252.
[http://dx.doi.org/10.3727/096368913X669752] [PMID: 23809254]
[75]
Golfetto, L.; de Senna, F.D.; Hermes, J.; Beserra, B.T. França, Fda.S.; Martinello, F. Lower bifidobacteria counts in adult patients with celiac disease on a gluten-free diet. Arq. Gastroenterol., 2014, 51(2), 139-143.
[http://dx.doi.org/10.1590/S0004-28032014000200013] [PMID: 25003267]
[76]
Uy, N.; Graf, L.; Lemley, K.V.; Kaskel, F. Effects of gluten-free, dairy-free diet on childhood nephrotic syndrome and gut microbiota. Pediatr. Res., 2015, 77(1-2), 252-255.
[http://dx.doi.org/10.1038/pr.2014.159] [PMID: 25310757]
[77]
Kearney, J. Food consumption trends and drivers. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2010, 365(1554), 2793-2807.
[http://dx.doi.org/10.1098/rstb.2010.0149] [PMID: 20713385]
[78]
Biesiekierski, J.R.; Rosella, O.; Rose, R.; Liels, K.; Barrett, J.S.; Shepherd, S.J.; Gibson, P.R.; Muir, J.G. Quantification of fructans, galacto-oligosacharides and other short-chain carbohydrates in processed grains and cereals. J. Hum. Nutr. Diet., 2011, 24(2), 154-176.
[http://dx.doi.org/10.1111/j.1365-277X.2010.01139.x] [PMID: 21332832]
[79]
Gibson, P.R.; Shepherd, S.J. Evidence-based dietary management of functional gastrointestinal symptoms: The FODMAP approach. J. Gastroenterol. Hepatol., 2010, 25(2), 252-258.
[http://dx.doi.org/10.1111/j.1440-1746.2009.06149.x] [PMID: 20136989]
[80]
Verdu, E.F.; Galipeau, H.J.; Jabri, B. Novel players in coeliac disease pathogenesis: role of the gut microbiota. Nat. Rev. Gastroenterol. Hepatol., 2015, 12(9), 497-506.
[http://dx.doi.org/10.1038/nrgastro.2015.90] [PMID: 26055247]
[81]
Ley, R.E.; Hamady, M.; Lozupone, C.; Turnbaugh, P.J.; Ramey, R.R.; Bircher, J.S.; Schlegel, M.L.; Tucker, T.A.; Schrenzel, M.D.; Knight, R.; Gordon, J.I. Evolution of mammals and their gut microbes. Science, 2008, 320(5883), 1647-1651.
[http://dx.doi.org/10.1126/science.1155725] [PMID: 18497261]
[82]
Kau, A.L.; Ahern, P.P.; Griffin, N.W.; Goodman, A.L.; Gordon, J.I. Human nutrition, the gut microbiome and the immune system. Nature, 2011, 474(7351), 327-336.
[http://dx.doi.org/10.1038/nature10213] [PMID: 21677749]
[83]
Leonel, A.J.; Alvarez-Leite, J.I. Butyrate: implications for intestinal function. Curr. Opin. Clin. Nutr. Metab. Care, 2012, 15(5), 474-479.
[http://dx.doi.org/10.1097/MCO.0b013e32835665fa] [PMID: 22797568]
[84]
Puertollano, E.; Kolida, S.; Yaqoob, P. Biological significance of short-chain fatty acid metabolism by the intestinal microbiome. Curr. Opin. Clin. Nutr. Metab. Care, 2014, 17(2), 139-144.
[http://dx.doi.org/10.1097/MCO.0000000000000025] [PMID: 24389673]
[85]
Tan, J.; McKenzie, C.; Potamitis, M.; Thorburn, A.N.; Mackay, C.R.; Macia, L. The role of short-chain fatty acids in health and disease. Adv. Immunol., 2014, 121, 91-119.
[http://dx.doi.org/10.1016/B978-0-12-800100-4.00003-9] [PMID: 24388214]
[86]
Yao, C.K.; Muir, J.G.; Gibson, P.R. Review article: insights into colonic protein fermentation, its modulation and potential health implications. Aliment. Pharmacol. Ther., 2016, 43(2), 181-196.
[http://dx.doi.org/10.1111/apt.13456] [PMID: 26527169]
[87]
Flint, H.J.; Scott, K.P.; Duncan, S.H.; Louis, P.; Forano, E. Microbial degradation of complex carbohydrates in the gut. Gut Microbes, 2012, 3(4), 289-306.
[http://dx.doi.org/10.4161/gmic.19897] [PMID: 22572875]
[88]
Vipperla, K.; O’Keefe, S.J. The microbiota and its metabolites in colonic mucosal health and cancer risk. Nutr. Clin. Pract., 2012, 27(5), 624-635.
[http://dx.doi.org/10.1177/0884533612452012] [PMID: 22868282]
[89]
Candela, M.; Biagi, E.; Maccaferri, S.; Turroni, S.; Brigidi, P. Intestinal microbiota is a plastic factor responding to environmental changes. Trends Microbiol., 2012, 20(8), 385-391.
[http://dx.doi.org/10.1016/j.tim.2012.05.003] [PMID: 22672911]
[90]
Gerritsen, J.; Smidt, H.; Rijkers, G.T.; de Vos, W.M. Intestinal microbiota in human health and disease: the impact of probiotics. Genes Nutr., 2011, 6(3), 209-240.
[http://dx.doi.org/10.1007/s12263-011-0229-7] [PMID: 21617937]
[91]
Sun, J.; Chang, E.B. Exploring gut microbes in human health and disease: pushing the envelope. Genes Dis., 2014, 1(2), 132-139.
[http://dx.doi.org/10.1016/j.gendis.2014.08.001] [PMID: 25642449]
[92]
Jones, J.M. CODEX-aligned dietary fiber definitions help to bridge the ‘fiber gap’. Nutr. J., 2014, 13, 34.
[http://dx.doi.org/10.1186/1475-2891-13-34] [PMID: 24725724]
[93]
Cockburn, D.W.; Koropatkin, N.M. Polysaccharide degradation by the intestinal microbiota and its influence on human health and disease. J. Mol. Biol., 2016, 428(16), 3230-3252.
[http://dx.doi.org/10.1016/j.jmb.2016.06.021] [PMID: 27393306]
[94]
Lombard, V.; Golaconda Ramulu, H.; Drula, E.; Coutinho, P.M.; Henrissat, B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res., 2014, 42(Database issue), D490-D495.
[http://dx.doi.org/10.1093/nar/gkt1178] [PMID: 24270786]
[95]
El Kaoutari, A.; Armougom, F.; Gordon, J.I.; Raoult, D.; Henrissat, B. The abundance and variety of carbohydrate-active enzymes in the human gut microbiota. Nat. Rev. Microbiol., 2013, 11(7), 497-504.
[http://dx.doi.org/10.1038/nrmicro3050] [PMID: 23748339]
[96]
Roberfroid, M.; Gibson, G.R.; Hoyles, L.; McCartney, A.L.; Rastall, R.; Rowland, I.; Wolvers, D.; Watzl, B.; Szajewska, H.; Stahl, B.; Guarner, F.; Respondek, F.; Whelan, K.; Coxam, V.; Davicco, M.J.; Léotoing, L.; Wittrant, Y.; Delzenne, N.M.; Cani, P.D.; Neyrinck, A.M.; Meheust, A. Prebiotic effects: metabolic and health benefits. Br. J. Nutr., 2010, 104(Suppl. 2), S1-S63.
[http://dx.doi.org/10.1017/S0007114510003363] [PMID: 20920376]
[97]
Macfarlane, G.T.; Steed, H.; Macfarlane, S. Bacterial metabolism and health-related effects of galacto-oligosaccharides and other prebiotics. J. Appl. Microbiol., 2008, 104(2), 305-344.
[PMID: 18215222]
[98]
Klaassens, E.S.; Boesten, R.J.; Haarman, M.; Knol, J.; Schuren, F.H.; Vaughan, E.E.; de Vos, W.M. Mixed-species genomic microarray analysis of fecal samples reveals differential transcriptional responses of bifidobacteria in breast- and formula-fed infants. Appl. Environ. Microbiol., 2009, 75(9), 2668-2676.
[http://dx.doi.org/10.1128/AEM.02492-08] [PMID: 19286790]
[99]
De Angelis, M.; Bottacini, F.; Fosso, B.; Kelleher, P.; Calasso, M.; Di Cagno, R.; Ventura, M.; Picardi, E.; van Sinderen, D.; Gobbetti, M. Lactobacillus rossiae, a vitamin B12 producer, represents a metabolically versatile species within the Genus Lactobacillus. PLoS One, 2014, 9(9)e107232
[http://dx.doi.org/10.1371/journal.pone.0107232] [PMID: 25264826]
[100]
Pontonio, E.; Mahony, J.; Di Cagno, R.; O’Connell Motherway, M.; Lugli, G.A.; O’Callaghan, A.; De Angelis, M.; Ventura, M.; Gobbetti, M.; van Sinderen, D. Cloning, expression and characterization of a β-D-xylosidase from Lactobacillus rossiae DSM 15814(T). Microb. Cell Fact., 2016, 15, 72.
[http://dx.doi.org/10.1186/s12934-016-0473-z] [PMID: 27142164]
[101]
Gobinath, D.; Madhu, A.N.; Prashant, G.; Srinivasan, K.; Prapulla, S.G. Beneficial effect of xylo-oligosaccharides and fructo-oligosaccharides in streptozotocin-induced diabetic rats. Br. J. Nutr., 2010, 104(1), 40-47.
[http://dx.doi.org/10.1017/S0007114510000243] [PMID: 20187988]
[102]
Neyrinck, A.M.; Van Hée, V.F.; Piront, N.; De Backer, F.; Toussaint, O.; Cani, P.D.; Delzenne, N.M. Wheat-derived arabinoxylan oligosaccharides with prebiotic effect increase satietogenic gut peptides and reduce metabolic endotoxemia in diet-induced obese mice. Nutr. Diabetes,, 2012, 2e28.
[http://dx.doi.org/10.1038/nutd.2011.24] [PMID: 23154683]
[103]
McLaughlin, H.P.; Motherway, M.O.; Lakshminarayanan, B.; Stanton, C.; Paul Ross, R.; Brulc, J.; Menon, R.; O’Toole, P.W.; van Sinderen, D. Carbohydrate catabolic diversity of bifidobacteria and lactobacilli of human origin. Int. J. Food Microbiol., 2015, 203, 109-121.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2015.03.008] [PMID: 25817019]
[104]
Walker, A.W.; Ince, J.; Duncan, S.H.; Webster, L.M.; Holtrop, G.; Ze, X.; Brown, D.; Stares, M.D.; Scott, P.; Bergerat, A.; Louis, P.; McIntosh, F.; Johnstone, A.M.; Lobley, G.E.; Parkhill, J.; Flint, H.J. Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J., 2011, 5(2), 220-230.
[http://dx.doi.org/10.1038/ismej.2010.118] [PMID: 20686513]
[105]
Martínez, I.; Kim, J.; Duffy, P.R.; Schlegel, V.L.; Walter, J. Resistant starches types 2 and 4 have differential effects on the composition of the fecal microbiota in human subjects. PLoS One, 2010, 5(11)e15046
[http://dx.doi.org/10.1371/journal.pone.0015046] [PMID: 21151493]
[106]
Viaene, L.; Annaert, P.; de Loor, H.; Poesen, R.; Evenepoel, P.; Meijers, B. Albumin is the main plasma binding protein for indoxyl sulfate and p-cresyl sulfate. Biopharm. Drug Dispos., 2013, 34(3), 165-175.
[http://dx.doi.org/10.1002/bdd.1834] [PMID: 23300093]
[107]
Ito, S.; Yoshida, M. Protein-bound uremic toxins: new culprits of cardiovascular events in chronic kidney disease patients. Toxins (Basel), 2014, 6(2), 665-678.
[http://dx.doi.org/10.3390/toxins6020665] [PMID: 24561478]
[108]
Moreira, A.P.; Texeira, T.F.; Ferreira, A.B. Peluzio, Mdo.C.; Alfenas, Rde.C. Influence of a high-fat diet on gut microbiota, intestinal permeability and metabolic endotoxaemia. Br. J. Nutr., 2012, 108(5), 801-809.
[http://dx.doi.org/10.1017/S0007114512001213] [PMID: 22717075]
[109]
Ridlon, J.M.; Kang, D.J.; Hylemon, P.B. Bile salt biotransformations by human intestinal bacteria. J. Lipid Res., 2006, 47(2), 241-259.
[http://dx.doi.org/10.1194/jlr.R500013-JLR200] [PMID: 16299351]
[110]
Islam, K.B.; Fukiya, S.; Hagio, M.; Fujii, N.; Ishizuka, S.; Ooka, T.; Ogura, Y.; Hayashi, T.; Yokota, A. Bile acid is a host factor that regulates the composition of the cecal microbiota in rats. Gastroenterology, 2011, 141(5), 1773-1781.
[http://dx.doi.org/10.1053/j.gastro.2011.07.046] [PMID: 21839040]
[111]
Cani, P.D.; Amar, J.; Iglesias, M.A.; Poggi, M.; Knauf, C.; Bastelica, D.; Neyrinck, A.M.; Fava, F.; Tuohy, K.M.; Chabo, C.; Waget, A.; Delmée, E.; Cousin, B.; Sulpice, T.; Chamontin, B.; Ferrières, J.; Tanti, J.F.; Gibson, G.R.; Casteilla, L.; Delzenne, N.M.; Alessi, M.C.; Burcelin, R. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes, 2007, 56(7), 1761-1772.
[http://dx.doi.org/10.2337/db06-1491] [PMID: 17456850]
[112]
Cani, P.D.; Neyrinck, A.M.; Fava, F.; Knauf, C.; Burcelin, R.G.; Tuohy, K.M.; Gibson, G.R.; Delzenne, N.M. Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia, 2007, 50(11), 2374-2383.
[http://dx.doi.org/10.1007/s00125-007-0791-0] [PMID: 17823788]
[113]
Neyrinck, A.M.; Possemiers, S.; Verstraete, W.; De Backer, F.; Cani, P.D.; Delzenne, N.M. Dietary modulation of clostridial cluster XIVa gut bacteria (Roseburia spp.) by chitin-glucan fiber improves host metabolic alterations induced by high-fat diet in mice. J. Nutr. Biochem., 2012, 23(1), 51-59.
[http://dx.doi.org/10.1016/j.jnutbio.2010.10.008] [PMID: 21411304]
[114]
Nava, G.M.; Carbonero, F.; Ou, J.; Benefiel, A.C.; O’Keefe, S.J.; Gaskins, H.R. Hydrogenotrophic microbiota distinguish native Africans from African and European Americans. Environ. Microbiol. Rep., 2012, 4(3), 307-315.
[http://dx.doi.org/10.1111/j.1758-2229.2012.00334.x] [PMID: 23760794]
[115]
Murphy, E.A.; Velazquez, K.T.; Herbert, K.M. Influence of high-fat diet on gut microbiota: a driving force for chronic disease risk. Curr. Opin. Clin. Nutr. Metab. Care, 2015, 18(5), 515-520.
[http://dx.doi.org/10.1097/MCO.0000000000000209] [PMID: 26154278]
[116]
Martin, C.; Zhang, Y.; Tonelli, C.; Petroni, K. Plants, diet, and health. Annu. Rev. Plant Biol., 2013, 64, 19-46.
[http://dx.doi.org/10.1146/annurev-arplant-050312-120142] [PMID: 23451785]
[117]
Vinson, J.A.; Su, X.; Zubik, L.; Bose, P. Phenol antioxidant quantity and quality in foods: fruits. J. Agric. Food Chem., 2001, 49(11), 5315-5321.
[http://dx.doi.org/10.1021/jf0009293] [PMID: 11714322]
[118]
Ozdal, T.; Sela, D.A.; Xiao, J.; Boyacioglu, D.; Chen, F.; Capanoglu, E. The reciprocal interactions between polyphenols and gut microbiota and effects on bioaccessibility. Nutrients, 2016, 8(2), 78.
[http://dx.doi.org/10.3390/nu8020078] [PMID: 26861391]
[119]
Bjorklund, G.; Chirumbolo, S. Role of oxidative stress and antioxidants in daily nutrition and human health. Nutrition, 2017, 33, 311-321.
[http://dx.doi.org/dx. doi: 10.1016/j.nut.2016.07.018] [PMID: 27746034]
[120]
Scalbert, A.; Manach, C.; Morand, C.; Rémésy, C.; Jiménez, L. Dietary polyphenols and the prevention of diseases. Crit. Rev. Food Sci. Nutr., 2005, 45(4), 287-306.
[http://dx.doi.org/10.1080/1040869059096] [PMID: 16047496]
[121]
Manach, C.; Williamson, G.; Morand, C.; Scalbert, A.; Rémésy, C. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am. J. Clin. Nutr., 2005, 81(1)(Suppl.), 230S-242S.
[http://dx.doi.org/10.1093/ajcn/81.1.230S] [PMID: 15640486]
[122]
Vacca, R.A.; Valenti, D.; Caccamese, S.; Daglia, M.; Braidy, N.; Nabavi, S.M. Plant polyphenols as natural drugs for the management of Down syndrome and related disorders. Neurosci. Biobehav. Rev., 2016, 71, 865-877.
[http://dx.doi.org/10.1016/j.neubiorev.2016.10.023] [PMID: 27826066]
[123]
Chen, D.; Wan, S.B.; Yang, H.; Yuan, J.; Chan, T.H.; Dou, Q.P. EGCG, green tea polyphenols and their synthetic analogs and prodrugs for human cancer prevention and treatment. Adv. Clin. Chem., 2011, 53, 155-177.
[http://dx.doi.org/10.1016/B978-0-12-385855-9.00007-2] [PMID: 21404918]
[124]
Weng, C.J.; Yen, G.C. Chemopreventive effects of dietary phytochemicals against cancer invasion and metastasis: phenolic acids, monophenol, polyphenol, and their derivatives. Cancer Treat. Rev., 2012, 38(1), 76-87.
[http://dx.doi.org/10.1016/j.ctrv.2011.03.001] [PMID: 21481535]
[125]
Selma, M.V.; Espín, J.C.; Tomás-Barberán, F.A. Interaction between phenolics and gut microbiota: role in human health. J. Agric. Food Chem., 2009, 57(15), 6485-6501.
[http://dx.doi.org/10.1021/jf902107d] [PMID: 19580283]
[126]
Stevens, J.F.; Maier, C.S. The chemistry of gut microbial metabolism of polyphenols. Phytochem. Rev., 2016, 15(3), 425-444.
[http://dx.doi.org/10.1007/s11101-016-9459-z] [PMID: 27274718]
[127]
Duda-Chodak, A.; Tarko, T.; Satora, P.; Sroka, P. Interaction of dietary compounds, especially polyphenols, with the intestinal microbiota: a review. Eur. J. Nutr., 2015, 54(3), 325-341.
[http://dx.doi.org/10.1007/s00394-015-0852-y] [PMID: 25672526]
[128]
Setchell, K.D.; Brown, N.M.; Lydeking-Olsen, E. The clinical importance of the metabolite equol-a clue to the effectiveness of soy and its isoflavones. J. Nutr., 2002, 132(12), 3577-3584.
[http://dx.doi.org/10.1093/jn/132.12.3577] [PMID: 12468591]
[129]
Zubik, L.; Meydani, M. Bioavailability of soybean isoflavones from aglycone and glucoside forms in American women. Am. J. Clin. Nutr., 2003, 77(6), 1459-1465.
[http://dx.doi.org/10.1093/ajcn/77.6.1459] [PMID: 12791624]
[130]
Lephart, E.D. Skin aging and oxidative stress: Equol’s anti-aging effects via biochemical and molecular mechanisms. Ageing Res. Rev., 2016, 31, 36-54.
[http://dx.doi.org/10.1016/j.arr.2016.08.001] [PMID: 27521253]
[131]
Lund, T.D.; Munson, D.J.; Haldy, M.E.; Setchell, K.D.; Lephart, E.D.; Handa, R.J. Equol is a novel anti-androgen that inhibits prostate growth and hormone feedback. Biol. Reprod., 2004, 70(4), 1188-1195.
[http://dx.doi.org/10.1095/biolreprod.103.023713] [PMID: 14681200]
[132]
Muthyala, R.S.; Ju, Y.H.; Sheng, S.; Williams, L.D.; Doerge, D.R.; Katzenellenbogen, B.S.; Helferich, W.G.; Katzenellenbogen, J.A. Equol, a natural estrogenic metabolite from soy isoflavones: convenient preparation and resolution of R- and S-equols and their differing binding and biological activity through estrogen receptors alpha and beta. Bioorg. Med. Chem., 2004, 12(6), 1559-1567.
[http://dx.doi.org/10.1016/j.bmc.2003.11.035] [PMID: 15018930]
[133]
Mitchell, J.H.; Gardner, P.T.; McPhail, D.B.; Morrice, P.C.; Collins, A.R.; Duthie, G.G. Antioxidant efficacy of phytoestrogens in chemical and biological model systems. Arch. Biochem. Biophys., 1998, 360(1), 142-148.
[http://dx.doi.org/10.1006/abbi.1998.0951] [PMID: 9826439]
[134]
Ankolekar, C.; Johnson, D. Pinto, Mda.S.; Johnson, K.; Labbe, R.; Shetty, K. Inhibitory potential of tea polyphenolics and influence of extraction time against Helicobacter pylori and lack of inhibition of beneficial lactic acid bacteria. J. Med. Food, 2011, 14(11), 1321-1329.
[http://dx.doi.org/10.1089/jmf.2010.0237] [PMID: 21663484]
[135]
Kohda, C.; Yanagawa, Y.; Shimamura, T. Epigallocatechin gallate inhibits intracellular survival of Listeria monocytogenes in macrophages. Biochem. Biophys. Res. Commun., 2008, 365(2), 310-315.
[http://dx.doi.org/10.1016/j.bbrc.2007.10.190] [PMID: 17996193]
[136]
Si, W.; Gong, J.; Tsao, R.; Kalab, M.; Yang, R.; Yin, Y. Bioassay-guided purification and identification of antimicrobial components in Chinese green tea extract. J. Chromatogr. A, 2006, 1125(2), 204-210.
[http://dx.doi.org/10.1016/j.chroma.2006.05.061] [PMID: 16797571]
[137]
Chen, Y.L.; Tsai, H.L.; Peng, C.W. EGCG debilitates the persistence of EBV latency by reducing the DNA binding potency of nuclear antigen 1. Biochem. Biophys. Res. Commun., 2012, 417(3), 1093-1099.
[http://dx.doi.org/10.1016/j.bbrc.2011.12.104] [PMID: 22226960]
[138]
Park, B.J.; Park, J.C.; Taguchi, H.; Fukushima, K.; Hyon, S.H.; Takatori, K. Antifungal susceptibility of epigallocatechin 3-O-gallate (EGCg) on clinical isolates of pathogenic yeasts. Biochem. Biophys. Res. Commun., 2006, 347(2), 401-405.
[http://dx.doi.org/10.1016/j.bbrc.2006.06.037] [PMID: 16831406]
[139]
Lee, H.C.; Jenner, A.M.; Low, C.S.; Lee, Y.K. Effect of tea phenolics and their aromatic fecal bacterial metabolites on intestinal microbiota. Res. Microbiol., 2006, 157(9), 876-884.
[http://dx.doi.org/10.1016/j.resmic.2006.07.004] [PMID: 16962743]
[140]
Smith, A.H.; Zoetendal, E.; Mackie, R.I. Bacterial mechanisms to overcome inhibitory effects of dietary tannins. Microb. Ecol., 2005, 50(2), 197-205.
[http://dx.doi.org/10.1007/s00248-004-0180-x] [PMID: 16222487]
[141]
Dolara, P.; Luceri, C.; De Filippo, C.; Femia, A.P.; Giovannelli, L.; Caderni, G.; Cecchini, C.; Silvi, S.; Orpianesi, C.; Cresci, A. Red wine polyphenols influence carcinogenesis, intestinal microflora, oxidative damage and gene expression profiles of colonic mucosa in F344 rats. Mutat. Res., 2005, 591(1-2), 237-246.
[http://dx.doi.org/10.1016/j.mrfmmm.2005.04.022] [PMID: 16293270]
[142]
Kim, S.H.; Park, M.; Woo, H.; Tharmalingam, N.; Lee, G.; Rhee, K.J.; Eom, Y.B.; Han, S.I.; Seo, W.D.; Kim, J.B. Inhibitory effects of anthocyanins on secretion of Helicobacter pylori CagA and VacA toxins. Int. J. Med. Sci., 2012, 9(10), 838-842.
[http://dx.doi.org/10.7150/ijms.5094] [PMID: 23155357]
[143]
Hidalgo, M.; Oruna-Concha, M.J.; Kolida, S.; Walton, G.E.; Kallithraka, S.; Spencer, J.P.; de Pascual-Teresa, S. Metabolism of anthocyanins by human gut microflora and their influence on gut bacterial growth. J. Agric. Food Chem., 2012, 60(15), 3882-3890.
[http://dx.doi.org/10.1021/jf3002153] [PMID: 22439618]
[144]
Chaplin, A.; Parra, P.; Serra, F.; Palou, A. Conjugated linoleic acid supplementation under a high-fat diet modulates stomach protein expression and intestinal microbiota in adult mice. PLoS One, 2015, 10(4)e0125091
[http://dx.doi.org/10.1371/journal.pone.0125091] [PMID: 25915857]
[145]
den Besten, G.; Bleeker, A.; Gerding, A.; van Eunen, K.; Havinga, R.; van Dijk, T.H.; Oosterveer, M.H.; Jonker, J.W.; Groen, A.K.; Reijngoud, D.J.; Bakker, B.M. Short-chain fatty acids protect against high-fat diet-induced obesity via a PPARγ-dependent switch from lipogenesis to fat oxidation. Diabetes, 2015, 64(7), 2398-2408.
[http://dx.doi.org/10.2337/db14-1213] [PMID: 25695945]
[146]
Roopchand, D.E.; Carmody, R.N.; Kuhn, P.; Moskal, K.; Rojas-Silva, P.; Turnbaugh, P.J.; Raskin, I. Dietary polyphenols promote growth of the gut bacterium Akkermansia muciniphila and attenuate high-fat diet-induced metabolic syndrome. Diabetes, 2015, 64(8), 2847-2858.
[http://dx.doi.org/10.2337/db14-1916] [PMID: 25845659]
[147]
Gibson, G.R.; Probert, H.M.; Loo, J.V.; Rastall, R.A.; Roberfroid, M.B. Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutr. Res. Rev., 2004, 17(2), 259-275.
[http://dx.doi.org/10.1079/NRR200479] [PMID: 19079930]
[148]
Roberfroid, M.B. Introducing inulin-type fructans. Br. J. Nutr., 2005, 93(Suppl. 1), S13-S25.
[http://dx.doi.org/10.1079/BJN20041350] [PMID: 15877886]
[149]
De Preter, V.; Vanhoutte, T.; Huys, G.; Swings, J.; De Vuyst, L.; Rutgeerts, P.; Verbeke, K. Effects of Lactobacillus casei Shirota, Bifidobacterium breve, and oligofructose-enriched inulin on colonic nitrogen-protein metabolism in healthy humans. Am. J. Physiol. Gastrointest. Liver Physiol., 2007, 292(1), G358-G368.
[http://dx.doi.org/10.1152/ajpgi.00052.2006] [PMID: 16990449]
[150]
Sanchez, J.I.; Marzorati, M.; Grootaert, C.; Baran, M.; Van Craeyveld, V.; Courtin, C.M.; Broekaert, W.F.; Delcour, J.A.; Verstraete, W.; Van de Wiele, T. Arabinoxylan-oligosaccharides (AXOS) affect the protein/carbohydrate fermentation balance and microbial population dynamics of the simulator of human intestinal microbial ecosystem. Microb. Biotechnol., 2009, 2(1), 101-113.
[http://dx.doi.org/10.1111/j.1751-7915.2008.00064.x] [PMID: 21261885]
[151]
Ríos-Covián, D.; Ruas-Madiedo, P.; Margolles, A.; Gueimonde, M.; de Los Reyes-Gavilán, C.G.; Salazar, N. Intestinal short chain fatty acids and their link with diet and human health. Front. Microbiol., 2016, 7, 185.
[http://dx.doi.org/10.3389/fmicb.2016.00185] [PMID: 26925050]
[152]
Roediger, W.E. Role of anaerobic bacteria in the metabolic welfare of the colonic mucosa in man. Gut, 1980, 21(9), 793-798.
[http://dx.doi.org/10.1136/gut.21.9.793] [PMID: 7429343]
[153]
Fung, K.Y.; Cosgrove, L.; Lockett, T.; Head, R.; Topping, D.L. A review of the potential mechanisms for the lowering of colorectal oncogenesis by butyrate. Br. J. Nutr., 2012, 108(5), 820-831.
[http://dx.doi.org/10.1017/S0007114512001948] [PMID: 22676885]
[154]
Nastasi, C.; Candela, M.; Bonefeld, C.M.; Geisler, C.; Hansen, M.; Krejsgaard, T.; Biagi, E.; Andersen, M.H.; Brigidi, P.; Ødum, N.; Litman, T.; Woetmann, A. The effect of short-chain fatty acids on human monocyte-derived dendritic cells. Sci. Rep., 2015, 5, 16148.
[http://dx.doi.org/10.1038/srep16148] [PMID: 26541096]
[155]
Wang, H.B.; Wang, P.Y.; Wang, X.; Wan, Y.L.; Liu, Y.C. Butyrate enhances intestinal epithelial barrier function via up-regulation of tight junction protein Claudin-1 transcription. Dig. Dis. Sci., 2012, 57(12), 3126-3135.
[http://dx.doi.org/10.1007/s10620-012-2259-4] [PMID: 22684624]
[156]
Willemsen, L.E.; Koetsier, M.A.; van Deventer, S.J.; van Tol, E.A. Short chain fatty acids stimulate epithelial mucin 2 expression through differential effects on prostaglandin E(1) and E(2) production by intestinal myofibroblasts. Gut, 2003, 52(10), 1442-1447.
[http://dx.doi.org/10.1136/gut.52.10.1442] [PMID: 12970137]
[157]
Canfora, E.E.; Jocken, J.W.; Blaak, E.E. Short-chain fatty acids in control of body weight and insulin sensitivity. Nat. Rev. Endocrinol., 2015, 11(10), 577-591.
[http://dx.doi.org/10.1038/nrendo.2015.128] [PMID: 26260141]
[158]
Guilloteau, P.; Martin, L.; Eeckhaut, V.; Ducatelle, R.; Zabielski, R.; Van Immerseel, F. From the gut to the peripheral tissues: the multiple effects of butyrate. Nutr. Res. Rev., 2010, 23(2), 366-384.
[http://dx.doi.org/10.1017/S0954422410000247] [PMID: 20937167]
[159]
Cheng, H.H.; Lai, M.H. Fermentation of resistant rice starch produces propionate reducing serum and hepatic cholesterol in rats. J. Nutr., 2000, 130(8), 1991-1995.
[http://dx.doi.org/10.1093/jn/130.8.1991] [PMID: 10917913]
[160]
Ximenes, H.M.; Hirata, A.E.; Rocha, M.S.; Curi, R.; Carpinelli, A.R. Propionate inhibits glucose-induced insulin secretion in isolated rat pancreatic islets. Cell Biochem. Funct., 2007, 25(2), 173-178.
[http://dx.doi.org/10.1002/cbf.1297] [PMID: 16444779]
[161]
Zambell, K.L.; Fitch, M.D.; Fleming, S.E. Acetate and butyrate are the major substrates for de novo lipogenesis in rat colonic epithelial cells. J. Nutr., 2003, 133(11), 3509-3515.
[http://dx.doi.org/10.1093/jn/133.11.3509] [PMID: 14608066]
[162]
Cani, P.D.; Lecourt, E.; Dewulf, E.M.; Sohet, F.M.; Pachikian, B.D.; Naslain, D.; De Backer, F.; Neyrinck, A.M.; Delzenne, N.M. Gut microbiota fermentation of prebiotics increases satietogenic and incretin gut peptide production with consequences for appetite sensation and glucose response after a meal. Am. J. Clin. Nutr., 2009, 90(5), 1236-1243.
[http://dx.doi.org/10.3945/ajcn.2009.28095] [PMID: 19776140]
[163]
Hoffmann, D.E.; Fraser, C.M.; Palumbo, F.B.; Ravel, J.; Rothenberg, K.; Rowthorn, V.; Schwartz, J. Science and regulation. Probiotics: finding the right regulatory balance. Science, 2013, 342(6156), 314-315.
[http://dx.doi.org/10.1126/science.1244656] [PMID: 24136953]
[164]
Sanchez, B.; Delgado, S.; Blanco-Miguez, A.; Lourenco, A.; Gueimonde, M.; Margolles, A. Probiotics, gut microbiota, and their influence on host health and disease. Mol. Nutr. Food Res., 2017, 61(1)
[http://dx.doi.org/10.1002/mnfr.201600240] [PMID: 27500859]
[165]
Amar, J.; Chabo, C.; Waget, A.; Klopp, P.; Vachoux, C.; Bermúdez-Humarán, L.G.; Smirnova, N.; Bergé, M.; Sulpice, T.; Lahtinen, S.; Ouwehand, A.; Langella, P.; Rautonen, N.; Sansonetti, P.J.; Burcelin, R. Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes: molecular mechanisms and probiotic treatment. EMBO Mol. Med., 2011, 3(9), 559-572.
[http://dx.doi.org/10.1002/emmm.201100159] [PMID: 21735552]
[166]
Ewaschuk, J.; Endersby, R.; Thiel, D.; Diaz, H.; Backer, J.; Ma, M.; Churchill, T.; Madsen, K. Probiotic bacteria prevent hepatic damage and maintain colonic barrier function in a mouse model of sepsis. Hepatology, 2007, 46(3), 841-850.
[http://dx.doi.org/10.1002/hep.21750] [PMID: 17659579]
[167]
Guarner, F. Studies with inulin-type fructans on intestinal infections, permeability, and inflammation. J. Nutr., 2007, 137(11)(Suppl.), 2568S-2571S.
[http://dx.doi.org/10.1093/jn/137.11.2568S] [PMID: 17951504]
[168]
de Sousa Moraes, L.F.; Grzeskowiak, L.M.; de Sales Teixeira, T.F.; Gouveia Peluzio, M.C. Intestinal microbiota and probiotics in celiac disease. Clin. Microbiol. Rev., 2014, 27(3), 482-489.
[http://dx.doi.org/10.1128/CMR.00106-13] [PMID: 24982318]
[169]
Miranda Alatriste, P.V.; Urbina Arronte, R.; Gómez Espinosa, C.O. Espinosa Cuevas, Mde.L. Effect of probiotics on human blood urea levels in patients with chronic renal failure. Nutr. Hosp., 2014, 29(3), 582-590.
[http://dx.doi.org/dx. doi: 10.3305/nh.2014.29.3.7179] [PMID: 24559003]
[170]
Vitetta, L.; Linnane, A.W.; Gobe, G.C. From the gastrointestinal tract (GIT) to the kidneys: live bacterial cultures (probiotics) mediating reductions of uremic toxin levels via free radical signaling. Toxins (Basel), 2013, 5(11), 2042-2057.
[http://dx.doi.org/10.3390/toxins5112042] [PMID: 24212182]
[171]
Hevia, A.; Delgado, S.; Margolles, A.; Sánchez, B. Application of density gradient for the isolation of the fecal microbial stool component and the potential use thereof. Sci. Rep., 2015, 5, 16807.
[http://dx.doi.org/10.1038/srep16807] [PMID: 26581409]
[172]
Elahi, B.; Nikfar, S.; Derakhshani, S.; Vafaie, M.; Abdollahi, M. On the benefit of probiotics in the management of pouchitis in patients underwent ileal pouch anal anastomosis: a meta-analysis of controlled clinical trials. Dig. Dis. Sci., 2008, 53(5), 1278-1284.
[http://dx.doi.org/10.1007/s10620-007-0006-z] [PMID: 17940902]
[173]
Marteau, P.; Sokol, H.; Dray, X.; Seksik, P. Bacteriotherapy for inflammatory bowel disease: therapeutic tool and/or pharmacological vectors? Gastroenterol. Clin. Biol., 2009, 33(Suppl. 3), S228-S234.
[http://dx.doi.org/10.1016/S0399-8320(09)73158-6] [PMID: 20117346]
[174]
Moayyedi, P.; Ford, A.C.; Talley, N.J.; Cremonini, F.; Foxx-Orenstein, A.E.; Brandt, L.J.; Quigley, E.M. The efficacy of probiotics in the treatment of irritable bowel syndrome: a systematic review. Gut, 2010, 59(3), 325-332.
[http://dx.doi.org/10.1136/gut.2008.167270] [PMID: 19091823]
[175]
Spiller, R. Review article: probiotics and prebiotics in irritable bowel syndrome. Aliment. Pharmacol. Ther., 2008, 28(4), 385-396.
[http://dx.doi.org/10.1111/j.1365-2036.2008.03750.x] [PMID: 18532993]
[176]
Ritchie, M.L.; Romanuk, T.N. A meta-analysis of probiotic efficacy for gastrointestinal diseases. PLoS One, 2012, 7(4)e34938
[http://dx.doi.org/10.1371/journal.pone.0034938] [PMID: 22529959]
[177]
Li, D.; Wang, P.; Wang, P.; Hu, X.; Chen, F. The gut microbiota: A treasure for human health. Biotechnol. Adv., 2016, 34(7), 1210-1224.
[http://dx.doi.org/10.1016/j.biotechadv.2016.08.003] [PMID: 27592384]
[178]
Hemarajata, P.; Versalovic, J. Effects of probiotics on gut microbiota: mechanisms of intestinal immunomodulation and neuromodulation. Therap. Adv. Gastroenterol., 2013, 6(1), 39-51.
[http://dx.doi.org/10.1177/1756283X12459294] [PMID: 23320049]
[179]
Holmes, E.; Kinross, J.; Gibson, G.R.; Burcelin, R.; Jia, W.; Pettersson, S.; Nicholson, J.K. Therapeutic modulation of microbiota-host metabolic interactions. Sci. Transl. Med., 2012, 4(137)137rv6
[http://dx.doi.org/10.1126/scitranslmed.3004244] [PMID: 22674556]
[180]
Sharpton, T.J.; Gaulke, C.A. Modeling the context-dependent associations between the gut microbiome, its environment, and host health. MBio, 2015, 6(5), e01367-e15.
[http://dx.doi.org/10.1128/mBio.01367-15] [PMID: 26350971]
[181]
Dorrestein, P.C.; Mazmanian, S.K.; Knight, R. Finding the missing links among metabolites, microbes, and the host. Immunity, 2014, 40(6), 824-832.
[http://dx.doi.org/10.1016/j.immuni.2014.05.015] [PMID: 24950202]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 26
ISSUE: 19
Year: 2019
Page: [3567 - 3583]
Pages: 17
DOI: 10.2174/0929867324666170428103848
Price: $65

Article Metrics

PDF: 150
HTML: 16
EPUB: 1
PRC: 1