Nanotechnology for Alzheimer Disease

Author(s): Jerzy Leszek, Ghulam Md Ashraf, Wai Hei Tse, Jin Zhang, Kazimierz Gasiorowski, Marco Fidel Avila-Rodriguez, Vadim V. Tarasov, George E. Barreto, Sergey G. Klochkov, Sergey O. Bachurin, Gjumrakch Aliev*

Journal Name: Current Alzheimer Research

Volume 14 , Issue 11 , 2017

  Journal Home
Translate in Chinese
Become EABM
Become Reviewer

Abstract:

Background: Alzheimer disease (AD) typically affects behavior, memory and thinking. The change in brain have been reported to begin approx. 10-20 years before the appearance of actual symptoms and diagnosis of AD. An early stage diagnosis and treatment of this lethal disease is the prime challenge, which is mainly halted by the lack of validated biomarkers.

Method: Recent nanotechnological advancements have the potential to offer large scale effective diagnostic and therapeutic options. Targeted drug (e.g. Rivastigmine) delivery with the help of nanoparticles (NPs) in the range of 1-100 nm diameters can effectively cross the blood brain barrier with minimized side effects. Moreover, biocompatible nanomaterials with increased magnetic and optical properties can act as excellent alternative agents for an early diagnosis. With the high volume of research coming in support of the effective usage of NP based drug delivery in critical environment of CNS, it is quite likely that this approach can end up providing remarkable breakthroughs in early stage diagnosis and therapy of AD.

Conclusion: In the current review, we have presented a comprehensive outlook on the current challenges in diagnosis and therapy of AD, with an emphasis on the effective options provided by biocompatible NPs as imaging contrast agents and drug carriers.

Keywords: Alzheimer's disease, dementia, drug delivery, nanoparticles, neuroprotection, neurofibrillary tangles.

[1]
Mirza Z, Ali A, Ashraf GM, Kamal MA, Abuzenadah AM, Choudhary AG, et al. Proteomics approaches to understand linkage between Alzheimer’s disease and type 2 diabetes mellitus. CNS Neurol Disord Drug Targets 13(2): 213-25. (2014).
[2]
Ashraf GM, Greig NH, Khan TA, Hassan I, Tabrez S, Shakil S, et al. Protein misfolding and aggregation in Alzheimer’s disease and type 2 diabetes mellitus. CNS Neurol Disord Drug Targets 13(7): 1280-93. (2014).
[3]
Fazili NA, Naeem A, Md Ashraf G, Gan SH, Kamal MA. Therapeutic Interventions for the Suppression of Alzheimer’s disease: Quest for a Remedy. Curr Drug Metab 16(5): 346-53. (2015).
[4]
Georganopoulou DG, Chang L, Nam JM, Thaxton CS, Mufson EJ, Klein WL, et al. Nanoparticle-based detection in cerebral spinal fluid of a soluble pathogenic biomarker for Alzheimer’s disease. Proc Natl Acad Sci USA 102(7): 2273-6. (2005).
[5]
Ansari SA, Satar R, Perveen A, Ashraf GM. Current opinion in Alzheimer’s disease therapy by nanotechnology-based approaches. Curr Opin Psychiatry 30(2): 128-35. (2017).
[6]
Aliev G, Daza J, Herrera AS, Carmen Arias Esparza MD, Morales L, Echeverria V, et al. Nanoparticles as alternative strategies for drug delivery to the Alzheimer brain: electron microscopy ultrastructural analysis. CNS Neurol Disord Drug Targets 14(9): 1235-42. (2015).
[7]
Ali A, Ahmed SI, Mirza Z, Hua GS, Amjad KM, Abuzenadah A, et al. Application of proteomic tools in modern nanotechnological approaches towards effective management of neurodegenerative disorders. Curr Drug Metab 16(5): 376-88. (2015).
[8]
Brambilla D, Le Droumaguet B, Nicolas J, Hashemi SH, Wu LP, Moghimi SM, et al. Nanotechnologies for Alzheimer’s disease: diagnosis, therapy, and safety issues. Nanomedicine 7(5): 521-40. (2011).
[9]
Nikalje AP. Nanotechnology and its Applications in Medicine. Med Chem 5: 2. (2015).
[10]
Parveen S, Misra R, Sahoo SK. Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine: Nanotechnol Biol Med 8(2): 147-66. (2012).
[11]
Leong KW, Mao HQ, Truong-Le VL, Roy K, Walsh SM, August JT. DNA-polycation nanospheres as non-viral gene delivery vehicles. J Control Release 53(1-3): 183-93. (1998).
[12]
Azarmi S, Huang Y, Chen H, McQuarrie S, Abrams D, Roa W, et al. Optimization of a two-step desolvation method for preparing gelatin nanoparticles and cell uptake studies in 143B osteosarcoma cancer cells. J Pharm Pharm Sci 9(1): 124-32. (2006).
[13]
Owens DE 3rd, Peppas NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm 307(1): 93-102. (2006).
[14]
Hsieh S, Chang CW, Chou HH. Gold nanoparticles as amyloid-like fibrillogenesis inhibitors. Colloids Surf B Biointerfaces 112: 525-9. (2013).
[15]
Chan WC, Maxwell DJ, Gao X, Bailey RE, Han M, Nie S. Luminescent quantum dots for multiplexed biological detection and imaging. Curr Opin Biotechnol 13(1): 40-6. (2002).
[16]
Derfus AM, Chan WC, Bhatia SN. Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 4(1): 11-8. (2004).
[17]
Jabir NR, Tabrez S, Ashraf GM, Shakil S, Damanhouri GA, Kamal MA. Nanotechnology-based approaches in anticancer research. Int J Nanomedicine 7: 4391-408. (2012).
[18]
Gupta AK, Gupta M, Yarwood SJ, Curtis AS. Effect of cellular uptake of gelatin nanoparticles on adhesion, morphology and cytoskeleton organisation of human fibroblasts. J Control Release 95(2): 197-207. (2004).
[19]
Hodes G. When small is different: some recent advances in concepts and applications of nanoscale phenomena. Adv Mater 19(5): 639-55. (2007).
[20]
Kirchner C, Liedl T, Kudera S, Pellegrino T, Munoz Javier A, Gaub HE, et al. Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett 5(2): 331-8. (2005).
[21]
Lee CM, Jang D, Cheong SJ, Kim EM, Jeong MH, Kim SH, et al. Surface engineering of quantum dots for in vivo imaging. Nanotechnology 21(28): 285102 (2010).
[22]
Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J Mol Graph 14(1): 27-8. (1996).
[23]
Park JW, Vahidi B, Taylor AM, Rhee SW, Jeon NL. Microfluidic culture platform for neuroscience research. Nat Protoc 1(4): 2128-36. (2006).
[24]
Suh AR, Jang AR, Lee CS, Suh Y-H, Suslick KS. Endocytosis of magnetic microspheres into cells. Microsc Microanal 12(S02): 620-1. (2006).
[25]
Suh WH, Jang AR, Suh Y-H, Suslick KS. Porous, hollow, and ball-in-ball metal oxide microspheres: preparation, endocytosis, and cytotoxicity. Adv Mater 18(14): 1832-7. (2006).
[26]
Suh WH, Suslick KS, Stucky GD, Suh YH. Nanotechnology, nanotoxicology, and neuroscience. Prog Neurobiol 87(3): 133-70. (2009).
[27]
Blach-Olszewska Z, Zaczynska E, Gustaw-Rothenberg K, Avila-Rodrigues M, Barreto GE, Leszek J, et al. The innate immunity in alzheimer disease- relevance to pathogenesis and therapy. Curr Pharm Des 21(25): 3582-8. (2015).
[28]
Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM. Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement 3(3): 186-91. (2007).
[29]
Keating CD. Nanoscience enables ultrasensitive detection of Alzheimer’s biomarker. Proc Natl Acad Sci USA 102(7): 2263-4. (2005).
[30]
Knopman DS, DeKosky ST, Cummings JL, Chui H, Corey-Bloom J, Relkin N, et al. Practice parameter: diagnosis of dementia (an evidence-based review). Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 56(9): 1143-53. (2001).
[31]
Nam JM, Thaxton CS, Mirkin CA. Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science 301(5641): 1884-6. (2003).
[32]
Aliev G, Daza J, Herrera AS, Del Carmen Arias Esparza M, Morales L, Echeverria V, et al. Nanoparticles as alternative strategies for drug delivery to the alzheimer brain: electron microscopy ultrastructural analysis. CNS Neurol Disord Drug Targets 14(9): 1235-42. (2015).
[33]
Davis DA, Klein WL, Chang L. nanotechnology-based approaches to Alzheimer’s clinical diagnostics. Nanoscape 3: 13-7. (2006).
[34]
Haes AJ, Hall WP, Chang L, Klein WL, Van Duyne RP. A Localized surface plasmon resonance biosensor: first steps toward an assay for Alzheimer’s disease. Nano Lett 4(6): 1029-34. (2004).
[35]
Haes AJ, Chang L, Klein WL, Van Duyne RP. Detection of a biomarker for Alzheimer’s disease from synthetic and clinical samples using a nanoscale optical biosensor. J Am Chem Soc 127(7): 2264-71. (2005).
[36]
Galimberti D, Scarpini E. Disease-modifying treatments for Alzheimer’s disease. Ther Adv Neurol Disorder 4(4): 203-16. (2011).
[37]
Posada-Duque RA, Barreto GE, Cardona-Gomez GP. Protection after stroke: cellular effectors of neurovascular unit integrity. Front Cell Neurosci 8: 231. (2014).
[38]
Cabezas R, Avila M, Gonzalez J, El-Bacha RS, Baez E, Garcia-Segura LM, et al. Astrocytic modulation of blood brain barrier: perspectives on Parkinson’s disease. Front Cell Neurosci 8: 211. (2014).
[39]
Simkó M, Fiedeler U, Gazsó A, Nentwich M. Can nanoparticles end up in the brain? NanoTrust-Dossier 014en: 1-4 (2010).
[40]
Cedervall T, Lynch I, Lindman S, Berggard T, Thulin E, Nilsson H, et al. Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci USA 104(7): 2050-5. (2007).
[41]
Shemetov AA, Nabiev I, Sukhanova A. Molecular interaction of proteins and peptides with nanoparticles. ACS Nano 6(6): 4585-602. (2012).
[42]
Kaul G, Amiji M. Long-circulating poly(ethylene glycol)-modified gelatin nanoparticles for intracellular delivery. Pharm Res 19(7): 1061-7. (2002).
[43]
Kaul G, Amiji M. Biodistribution and targeting potential of poly(ethylene glycol)-modified gelatin nanoparticles in subcutaneous murine tumor model. J Drug Target 12(9-10): 585-91. (2004).
[44]
Madan J, Dhiman N, Sardana S, Aneja R, Chandra R, Katyal A. Long-circulating poly(ethylene glycol)-grafted gelatin nanoparticles customized for intracellular delivery of noscapine: preparation, in-vitro characterization, structure elucidation, pharmacokinetics, and cytotoxicity analyses. Anticancer Drugs 22(6): 543-55. (2011).
[45]
Ye Y, Sun Y, Zhao H, Lan M, Gao F, Song C, et al. A novel lactoferrin-modified beta-cyclodextrin nanocarrier for brain-targeting drug delivery. Int J Pharm 458(1): 110-7. (2013).
[46]
Etame AB, Diaz RJ, O’Reilly MA, Smith CA, Mainprize TG, Hynynen K, et al. Enhanced delivery of gold nanoparticles with therapeutic potential into the brain using MRI-guided focused ultrasound. Nanomedicine 8(7): 1133-42. (2012).
[47]
Marty B, Larrat B, Van Landeghem M, Robic C, Robert P, Port M, et al. Dynamic study of blood-brain barrier closure after its disruption using ultrasound: a quantitative analysis. J Cereb Blood Flow Metab 32(10): 1948-58. (2012).
[48]
Wilson B, Samanta MK, Santhi K, Kumar KP, Paramakrishnan N, Suresh B. Poly(n-butylcyanoacrylate) nanoparticles coated with polysorbate 80 for the targeted delivery of rivastigmine into the brain to treat Alzheimer’s disease. Brain Res 1200: 159-68. (2008).
[49]
Kreuter J, Shamenkov D, Petrov V, Ramge P, Cychutek K, Koch-Brandt C, et al. Apolipoprotein-mediated transport of nanoparticle-bound drugs across the blood-brain barrier. J Drug Target 10(4): 317-25. (2002).
[50]
Joshi SA, Chavhan SS, Sawant KK. Rivastigmine-loaded PLGA and PBCA nanoparticles: preparation, optimization, characterization, in vitro and pharmacodynamic studies. Eur J Pharm Biopharm 76(2): 189-99. (2010).
[51]
Yang Z, Zhang Y, Yang Y, Sun L, Han D, Li H, et al. Pharmacological and toxicological target organelles and safe use of single-walled carbon nanotubes as drug carriers in treating Alzheimer disease. Nanomedicine 6(3): 427-41. (2010).
[52]
Ahmad MZ, Ahmad J, Amin S, Rahman M, Anwar M, Mallick N, et al. Role of nanomedicines in delivery of anti-acetylcholinesterase compounds to the brain in Alzheimer’s disease. CNS Neurol Disord Drug Targets 13(8): 1315-24. (2014).
[53]
Liu Z, Davis C, Cai W, He L, Chen X, Dai H. Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy. Proc Natl Acad Sci USA 105(5): 1410-5. (2008).
[54]
Albarracin SL, Stab B, Casas Z, Sutachan JJ, Samudio I, Gonzalez J, et al. Effects of natural antioxidants in neurodegenerative disease. Nutr Neurosci 15(1): 1-9. (2012).
[55]
Sutachan JJ, Casas Z, Albarracin SL, Stab BR 2nd, Samudio I, Gonzalez J, et al. Cellular and molecular mechanisms of antioxidants in Parkinson’s disease. Nutr Neurosci 15(3): 120-6. (2012).
[56]
Cabezas R, El-Bacha RS, Gonzalez J, Barreto GE. Mitochondrial functions in astrocytes: neuroprotective implications from oxidative damage by rotenone. Neurosci Res 74(2): 80-90. (2012).
[57]
Barreto GE, Gonzalez J, Torres Y, Morales L. Astrocytic-neuronal crosstalk: implications for neuroprotection from brain injury. Neurosci Res 71(2): 107-13. (2011).
[58]
Khan TA, Hassan I, Ahmad A, Perveen A, Aman S, Quddusi S, et al. Recent updates on the dynamic association between oxidative stress and neurodegenerative disorders. CNS Neurol Disord Drug Targets 15(3): 310-20. (2016).
[59]
Ashraf GM, Ali A, Tabrez S, Zaidi SK, Shakil S, Alam MZ, et al. Linkage of stress with neuromuscular disorders. CNS Neurol Disord Drug Targets 15(3): 321-8. (2016).
[60]
Aliev G, Burzynski G, Ashraf GM, Jabir NR, Cacabelos R, Benberin VV, et al. Implication of oxidative stress-induced oncogenic signaling pathways as a treatment strategy for neurodegeneration and cancer. In: Systems Biology of Free Radicals and Antioxidants. (Ed: Laher I). Springer Berlin Heidelberg; pp. 2325-47 (2011).
[61]
Ahmad A, Rasheed N, Ashraf GM, Kumar R, Banu N, Khan F, et al. Brain region specific monoamine and oxidative changes during restraint stress. Can J Neurol Sci 39(3): 311-8. (2012).
[62]
Butterfield DA. Amyloid beta-peptide (1-42)-induced oxidative stress and neurotoxicity: implications for neurodegeneration in Alzheimer’s disease brain. A review. Free Radic Res 36(12): 1307-13. (2002).
[63]
Aliev G, Priyadarshini M, Reddy VP, Grieg NH, Kaminsky Y, Cacabelos R, et al. Oxidative stress mediated mitochondrial and vascular lesions as markers in the pathogenesis of Alzheimer disease. Curr Med Chem 21(19): 2208-17. (2014).
[64]
Ahmad A, Rasheed N, Gupta P, Singh S, Siripurapu KB, Ashraf GM, et al. Novel Ocimumoside A and B as anti-stress agents: modulation of brain monoamines and antioxidant systems in chronic unpredictable stress model in rats. Phytomedicine 19(7): 639-47. (2012).
[65]
Ahmad A, Rasheed N, Gupta P, Ashraf GM, Singh S, Chand K, et al. Novel Ocimum sanctum compounds modulate stress response: Role of CRF, POMC, GR and HSP-70 in the hypothalamus and pituitary of rats. Medicinal Plants - Int J Phytomed Rel Indust 5(4): 194 (2013)
[66]
Kadowaki H, Nishitoh H, Urano F, Sadamitsu C, Matsuzawa A, Takeda K, et al. Amyloid beta induces neuronal cell death through ROS-mediated ASK1 activation. Cell Death Differ 12(1): 19-24. (2005).
[67]
Mahajan YR. Nanotechnology - enhanced curcumin: symbiosis of ancient wisdom of east with modern medical science. Nanotech Insights 2: 17-27. (2011).
[68]
Baum L, Ng A. Curcumin interaction with copper and iron suggests one possible mechanism of action in Alzheimer’s disease animal models. J Alzheimers Dis 6(4): 367-377 discussion 443-9. (2004).
[69]
Daniel S, Limson JL, Dairam A, Watkins GM, Daya S. Through metal binding, curcumin protects against lead- and cadmium-induced lipid peroxidation in rat brain homogenates and against lead-induced tissue damage in rat brain. J Inorg Biochem 98(2): 266-75. (2004).
[70]
Ringman JM, Frautschy SA, Cole GM, Masterman DL, Cummings JL. A potential role of the curry spice curcumin in Alzheimer’s disease. Curr Alzheimer Res 2(2): 131-6. (2005).
[71]
Mishra S, Palanivelu K. The effect of curcumin (turmeric) on Alzheimer’s disease: an overview. Ann Indian Acad Neurol 11(1): 13-9. (2008).
[72]
Krusic PJ, Wasserman E, Keizer PN, Morton JR, Preston KF. Radical reactions of c60. Science 254(5035): 1183-5. (1991).
[73]
Bakry R, Vallant RM, Najam-ul-Haq M, Rainer M, Szabo Z, Huck CW, et al. Medicinal applications of fullerenes. Int J Nanomedicine 2(4): 639-49. (2007).
[74]
Dugan LL, Turetsky DM, Du C, Lobner D, Wheeler M, Almli CR, et al. Carboxyfullerenes as neuroprotective agents. Proc Natl Acad Sci USA 94(17): 9434-9. (1997).
[75]
Dugan LL, Gabrielsen JK, Yu SP, Lin TS, Choi DW. Buckminsterfullerenol free radical scavengers reduce excitotoxic and apoptotic death of cultured cortical neurons. Neurobiol Dis 3(2): 129-35. (1996).
[76]
Huang HM, Ou HC, Hsieh SJ, Chiang LY. Blockage of amyloid beta peptide-induced cytosolic free calcium by fullerenol-1, carboxylate C60 in PC12 cells. Life Sci 66(16): 1525-33. (2000).
[77]
Huang X, Atwood CS, Moir RD, Hartshorn MA, Tanzi RE, Bush AI. Trace metal contamination initiates the apparent auto-aggregation, amyloidosis, and oligomerization of Alzheimer’s Abeta peptides. J Biol Inorg Chem 9(8): 954-60. (2004).
[78]
Smith MA, Harris PL, Sayre LM, Perry G. Iron accumulation in Alzheimer disease is a source of redox-generated free radicals. Proc Natl Acad Sci USA 94(18): 9866-8. (1997).
[79]
Rao KJ, Rao RV, Shanmugavelu P, Menon RB. Trace elements in Alzheimer’s disease brain: a new hypothesis. Alzheimers Rep 2(4): 241-6. (1999).
[80]
Bush AI, Pettingell WH, Multhaup G. Rapid induction of Alzheimer A beta amyloid formation by zinc. Science 265(5177): 1464-7. (1994).
[81]
Faller P. Copper and zinc binding to amyloid-beta: coordination, dynamics, aggregation, reactivity and metal-ion transfer. Chembiochem 10(18): 2837-45. (2009).
[82]
Huang X, Atwood CS, Moir RD, Hartshorn MA, Vonsattel JP, Tanzi RE, et al. Zinc-induced Alzheimer’s Abeta1-40 aggregation is mediated by conformational factors. J Biol Chem 272(42): 26464-70. (1997).
[83]
Huang X, Moir RD, Tanzi RE, Bush AI, Rogers JT. Redox-active metals, oxidative stress, and Alzheimer’s disease pathology. Ann N Y Acad Sci 1012: 153-63. (2004).
[84]
Lovell MA, Robertson JD, Teesdale WJ, Campbell JL, Markesbery WR. Copper, iron and zinc in Alzheimer’s disease senile plaques. J Neurol Sci 158(1): 47-52. (1998).
[85]
Hegde ML, Bharathi P, Suram A, Venugopal C, Jagannathan R, Poddar P, et al. Challenges associated with metal chelation therapy in Alzheimer’s disease. J Alzheimers Dis 17(3): 457-68. (2009).
[86]
Pai AS, Rubinstein I, Onyuksel H. PEGylated phospholipid nanomicelles interact with beta-amyloid((1-42)) and mitigate its beta-sheet formation, aggregation and neurotoxicity in vitro. Peptides 27(11): 2858-66. (2006).
[87]
Rocha S, Thunemann AF, Pereira Mdo C, Coelho M, Mohwald H, Brezesinski G. Influence of fluorinated and hydrogenated nanoparticles on the structure and fibrillogenesis of amyloid beta-peptide. Biophys Chem 137(1): 35-42. (2008).
[88]
Saraiva AM, Cardoso I, Saraiva MJ, Tauer K, Pereira MC, Coelho MA, et al. Randomization of amyloid-beta-peptide(1-42) conformation by sulfonated and sulfated nanoparticles reduces aggregation and cytotoxicity. Macromol Biosci 10(10): 1152-63. (2010).
[89]
Xiao L, Zhao D, Chan WH, Choi MM, Li HW. Inhibition of beta 1-40 amyloid fibrillation with N-acetyl-L-cysteine capped quantum dots. Biomaterials 31(1): 91-8. (2010).
[90]
Thakur G, Micic M, Yang Y, Li W, Movia D, Giordani S, et al. Conjugated quantum dots inhibit the amyloid beta (1-42) fibrillation process. Int J Alzheimers Dis 2011502386 (2011).
[91]
Bastus NG, Kogan MJ, Amigo R, Grillo-Bosch D, Araya E, Turiel A, et al. Gold nanoparticles for selective and remote heating of β-amyloid protein aggregates. Mater Sci Eng C 27(5-8): 1236-40. (2007).
[92]
Kogan MJ, Bastus NG, Amigo R, Grillo-Bosch D, Araya E, Turiel A, et al. Nanoparticle-mediated local and remote manipulation of protein aggregation. Nano Lett 6(1): 110-5. (2006).
[93]
Englund U, Bjorklund A, Wictorin K, Lindvall O, Kokaia M. Grafted neural stem cells develop into functional pyramidal neurons and integrate into host cortical circuitry. Proc Natl Acad Sci USA 99(26): 17089-94. (2002).
[94]
Kim JH, Auerbach JM, Rodriguez-Gomez JA, Velasco I, Gavin D, Lumelsky N, et al. Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson’s disease. Nature 418(6893): 50-6. (2002).
[95]
Yamasaki TR, Blurton-Jones M, Morrissette DA, Kitazawa M, Oddo S, LaFerla FM. Neural stem cells improve memory in an inducible mouse model of neuronal loss. J Neurosci 27(44): 11925-33. (2007).
[96]
McMurray RJ, Gadegaard N, Tsimbouri PM, Burgess KV, McNamara LE, Tare R, et al. Nanoscale surfaces for the long-term maintenance of mesenchymal stem cell phenotype and multipotency. Nat Mater 10(8): 637-44. (2011).
[97]
Nayak TR, Andersen H, Makam VS, Khaw C, Bae S, Xu X, et al. Graphene for controlled and accelerated osteogenic differentiation of human mesenchymal stem cells. ACS Nano 5(6): 4670-8. (2011).
[98]
Silva GA, Czeisler C, Niece KL, Beniash E, Harrington DA, Kessler JA, et al. Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science 303(5662): 1352-5. (2004).
[99]
Ashraf GM, Tabrez S, Jabir NR, Firoz CK, Ahmad S, Hassan I, et al. An overview on global trends in nanotechnological approaches for alzheimer therapy. Curr Drug Metab 16(8): 719-27. (2015).
[100]
Soursou G, Alexiou A, Ashraf GM, Siyal AA, Mushtaq G, Kamal MA. Applications of nanotechnology in diagnostics and thera-peutics of Alzheimer’s and parkinson’s disease. Curr Drug Metab 16(8): 705-12. (2015).
[101]
Bhat SA, Kamal MA, Ashraf GM. Synopsis on managing strategies for neurodegenerative disorders: challenges from bench to bedside in successful drug discovery and development. Curr Top Med Chem 17(12): 1371-8. (2017).


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 14
ISSUE: 11
Year: 2017
Page: [1182 - 1189]
Pages: 8
DOI: 10.2174/1567205014666170203125008
Price: $65

Article Metrics

PDF: 69
HTML: 12
EPUB: 1