Congenital Malformations Attributed to Prenatal Exposure to Cyclophosphamide

Author(s): Padmanabhan Rengasamy*

Journal Name: Anti-Cancer Agents in Medicinal Chemistry
(Formerly Current Medicinal Chemistry - Anti-Cancer Agents)

Volume 17 , Issue 9 , 2017

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Cyclophosphamide (CPA) remains one of the most widely prescribed anticancer drugs. It is also used in the treatment of rheumatoid arthritis, childhood nephrotic syndrome and systemic lupus erythematosus. It is a potent immunosuppressive agent. It is commonly used in blood and bone marrow transplantation. With the growing trend among women postponing childbearing, the number of women who are diagnosed with breast cancer is also increasing thus escalating the chances of exposure of the unborn child to antineoplastic drugs. A review of the literature provides strong evidence for the teratogenic effects on infants prenatally exposed to CPA. Both sporadic case reports and larger case series have demonstrated that babies with cyclophosphamide embryopathy are afflicted with intrauterine growth restriction, small for gestational age, and craniofacial malformations including eye anomalies, cleft/arched palate, hydrocephaly, micrognathia, low set microtia, hearing defects, craniosynostosis, and facial asymmetry. Also observed in these cases are limb defects such as radial, ulnar and tibial hypoplasia, club foot, digital defects of the hand and feet as well as vertebral fusion, brevicolis, and occasional Sprengel’s deformity. These anomalies vary in consistency of occurrence and severity of the phenotype across cases and lack the specificity of thalidomide embryopathy or rubella embryopathy. However, they do occur is no longer in doubt. First trimester of pregnancy seems to be particularly susceptible to fetal malformations, although CPA effects on fetuses of later stages of gestation (hearing defects, growth restriction for example) are also reported occasionally. One of the major concerns from a mechanistic point of view is our inability to dissect the teratogenic effects of CPA from those of other drugs administered together with CPA as combination therapy. Animal experiments have been of particular value in that they are able to circumvent the numerous extraneous variables inherent to human case reports. They have also revealed the detrimental effects of CPA on gametes, preimplantation embryos, organogenesis as well as their potential teratogenic mechanisms. Of particular importance are the role of genetic polymorphisms, male mediated teratogenesis, ovarian failure, preimplantation embryo loss, epigenetic modifications, proxidant-antioxidant imbalance, autophagy, apoptosis, microRNAs and postclosure neural tube defects induced by CPA -all of which are areas for further research in CPA teratogenesis.

Keywords: Cyclophosphamide, congenital, malformations, CPA metabolism, ALDH, GST.

[1]
Centers for Disease Control and Prevention. Birth Defects.; Data and Statistics last updated Sept 21, . 2015.http: //www.cdc.gov/ ncbddd/birthdefects/data.html
[2]
Update on overall prevalence of major birth defects- Atlanta, Georgia 1978-2005. MMWR January 11,. 2008, 57(01), 1-5.http: //www.cdc.gov/mmwr/preview/mmwrhtml/mm5701a2.htm
[3]
World Health Organization Congenital Anomalies. Updated September,. 2016.http: //www.who.int/mediacentre/factsheets/fs370/en/
[4]
Prevalence of birth defects in an Arctic Russian setting from 1973 to 2011: a register-based study. Postoev VA, Nieboer E, Grjibovski AM, Odland JØ. Reprod Health. 2015 Jan 10;. 12(1), 3.
[http://dx.doi.org/10.1186/ 1742-4755-12-3]
[5]
Mashuda, F.; Zuechner, A.; Chalya, P.L.; Kidenya, B.R.; Manyama, M. Pattern and factors associated with congenital anomalies among young infants admitted at Bugando medical centre, Mwanza, Tanzania. BMC Res. Notes, 2014, 7, 195.
[6]
Ambe, J.P.; Madziga, A.G.; Akpede, G.O.; Mava, Y. Pattern and outcome of congenital malformations in newborn babies in a Nigerian teaching hospital. West Afr. J. Med., 2010, 29(1), 24-29.
[7]
Mathews, T.J.; MacDorman, M.F.; Thoma, M.E. Infant Mortality Statistics from the 2008 period linked birth/infant death data set. Center for Disease Control. Natl. Vital Stat. Rep., 2015, 64(9)
[8]
Hobbs, C.A.; Chowdhury, S.; Cleves, M.A.; Erickson, S.; MacLeod, S.L.; Shaw, G.M.; Shete, S.; Witte, J.S.; Tycko, B. Genetic epidemiology and nonsyndromic structural birth defects: from candidate genes to epigenetics. JAMA Pediatr., 2014, 168(4), 371-377.
[9]
Brent, R.L. Environmental causes of human congenital malformations: the pediatrician’s role in dealing with these complex clinical problems caused by a multiplicity of environmental and genetic factors. Pediatrics, 2004, 113(4), 957-968.
[10]
Cragan, J.D.; Friedman, J.M.; Holmes, L.B.; Uhl, K.; Green, N.S.; Riley, L. Ensuring the safe and effective use of medications during pregnancy: planning and prevention through preconception care. Matern. Child Health J., 2006, 10(5), 129-135.
[11]
Sípek, A.; Gregor, V.; Velebil, P.; Horácek, J.; Masátová, D.; Svĕtnicová, K. Incidence of congenital defects in the children of mothers who used medications in the first trimester of pregnancy in the Czech Republic 1996-2001. Ceska Gynekol., 2003, 68(6), 401-419.
[12]
Daw, J.R.; Hanley, G.E.; Greyson, D.L.; Morgan, S.G. Prescription drug use during pregnancy in developed countries: a systematic review. Pharmacoepidemiol. Drug Saf., 2011, 20(9), 895-902.
[13]
Andrade, S.E.; Gurwitz, J.H.; Davis, R.L.; Chan, K.A.; Finkelstein, J.A.; Fortman, K.; McPhillips, H.; Raebel, M.A.; Roblin, D.; Smith, D.H.; Yood, M.U.; Morse, A.N.; Platt, R. Prescription drug use in pregnancy. Am. J. Obstet. Gynecol., 2004, 191(2), 398-407.
[14]
Van, Gelder,. M.M.; Bos, J.H.; Roeleveld, N.; de Jong-van, den Berg, L.T. Drugs associated with teratogenic mechanisms. Part I: dispensing rates among pregnant women in the Netherlands, 1998-2009. Hum. Reprod., 2014, 29(1), 161-167.
[15]
Mitchell, A.A.; Gilboa, S.M.; Werler, M.M.; Kelley, K.E.; Louik, C.; Hernández-Díaz, S. National Birth Defects Prevention Study. Medication use during pregnancy, with particular focus on prescription drugs: 1976-2008. Am. J. Obstet. Gynecol., 2011, 205(1), 1-8.
[16]
Sharma, R.; Kapoor, B.; Verma, U. Drug utilization during pregnancy in North India. J. Med. Sci, 2006, 60(7), 277-287.
[17]
Liu, J.; Zhao, Y.; Song, Y.; Zhang, W.; Bian, X.; Yang, J.; Liu, D.; Zeng, X.; Zhang, F. Pregnancy in women with systemic lupus erythematosus: a retrospective study of 111 pregnancies in Chinese women. J. Matern. Fetal Neonatal Med., 2012, 25(3), 261-266.
[18]
Smyth, A.; Oliveira, G.H.; Lahr, B.D.; Bailey, K.R.; Norby, S.M.; Garovic, V.D. A systematic review and meta-analysis of pregnancy outcomes in patients with systemic lupus erythematosus and lupus nephritis. Clin. J. Am. Soc. Nephrol., 2010, 5(11), 2060-2068.
[19]
Johansson, A.L.; Andersson, T.M.; Hsieh, C.C.; Jirström, K.; Dickman, P.; Cnattingius, S.; Lambe, M. Stage at diagnosis and mortality in women with pregnancy-associated breast cancer (PABC). Breast Cancer Res. Treat., 2013, 139(1), 183-192.
[20]
Andersson, T.M.; Johansson, A.L.; Hsieh, C.C.; Cnattingius, S.; Lambe, M. Increasing incidence of pregnancy-associated breast cancer in Sweden. Obstet. Gynecol., 2009, 114(3), 568-572.
[21]
Lee, Y.Y.; Roberts, C.L.; Dobbins, T.; Stavrou, E.; Black, K.; Morris, J.; Young, J. Incidence and outcomes of pregnancy-associated cancer in Australia, 1994-2008: a population-based linkage study. BJOG, 2012, 119(13), 1572-1582.
[22]
Amant, F.; Deckers, S. Van, Calsteren, K.; Loibl, S.; Halaska, M.; Brepoels, L.; Beijnen, J.; Cardoso, F.; Gentilini, O.; Lagae, L.; Mir, O.; Neven, P.; Ottevanger, N.; Pans, S.; Peccatori, F.; Rouzier, R.; Senn, H.J.; Struikmans, H.; Christiaens, M.R.; Cameron, D.; Du, Bois, A. Breast cancer in pregnancy: recommendations of an international consensus meeting. Eur. J. Cancer, 2010, 46(18), 3158-3168.
[23]
Henderson, L.; Masson, P.; Craig, J.C.; Flanc, R.S.; Roberts, M.A.; Strippoli, G.F.; Webster, A.C. Treatment for lupus nephritis. Cochrane Database Syst. Rev., 2012, 12.
[24]
Nelson, D.R.; Koymans, L.; Kamataki, T.; Stegeman, J.J.; Feyereisen, R.; Waxman, D.J.; Waterman, M.R.; Gotoh, O.; Coon, M.J.; Estabrook, R.W.; Gunsalus, I.C.; Nebert, D.W. P450 superfamily: update on new sequences, gene mapping, accession numbers and nomenclature. Pharmacogenetics, 1996, 6(1), 1-42.
[25]
Huang, Z. Ray, Chowdhury, M.K.; Waxman, D.J. Impact of liver P450 reductase suppression on cyclophosphamide activation, phar-macokinetics and antitumoral activity in a cytochrome P450-based cancer gene therapy model. Gene Ther., 2000, 7(7), 1034-1042.
[26]
Timm, R.; Kaiser, R.; Lötsch, J.; Heider, U.; Sezer, O.; Weisz, K.; Montemurro, M.; Roots, I.; Cascorbi, I. Association of cyclophosphamide pharmacokinetics to polymorphic cytochrome P450 2C19. Pharmacogenomics J., 2005, 5(6), 365-373.
[27]
Xie, H.; Griskevicius, L.; Ståhle, L.; Hassan, Z.; Yasar, U.; Rane, A.; Broberg, U.; Kimby, E.; Hassan, M. Pharmacogenetics of cyclophosphamide in patients with hematological malignancies. Eur. J. Pharm. Sci., 2006, 27(1), 54-61.
[28]
Yu, L.J.; Drewes, P.; Gustafsson, K.; Brain, E.G.; Hecht, J.E.; Waxman, D.J. In vivo modulation of alternative pathways of P-450-catalyzed cyclophosphamide metabolism: impact on pharmacokinetics and antitumor activity. Pharmacol. Exp. Ther., 1999, 288(3), 928-937.
[29]
Chen, C.S.; Lin, J.T.; Goss, K.A.; He, Y.A.; Halpert, J.R.; Waxman, D.J. Activation of the anticancer prodrugs cyclophosphamide and ifosfamide: identification of cytochrome P450 2B enzymes and site-specific mutants with improved enzyme kinetics. Mol. Pharmacol., 2004, 65(5), 1278-1285.
[30]
Pass, G.J.; Carrie, D.; Boylan, M.; Lorimore, S.; Wright, E.; Houston, B.; Henderson, C.J.; Wolf, C.R. Role of hepatic cytochrome p450s in the pharmacokinetics and toxicity of cyclophosphamide: studies with the hepatic cytochrome p450 reductase null mouse. Cancer Res., 2005, 65(10), 4211-4217.
[31]
Lang, T.; Klein, K.; Richter, T.; Zibat, A.; Kerb, R.; Eichelbaum, M.; Schwab, M.; Zanger, U.M. Multiple novel nonsynonymous CYP2B6 gene polymorphisms in Caucasians: demonstration of phenotypic null alleles. J. Pharmacol. Exp. Ther., 2004, 311(1), 34-43.
[32]
Mo, S.L.; Liu, Y.H.; Duan, W.; Wei, M.Q.; Kanwar, J.R.; Zhou, S.F. Substrate specificity, regulation, and polymorphism of human cytochrome P450 2B6. Curr. Drug Metab., 2009, 10(7), 730-753.
[33]
Guan, S.; Huang, M.; Chan, E.; Chen, X.; Duan, W.; Zhou, S.F. Genetic polymorphisms of cytochrome P450 2B6 gene in Han Chinese. Eur. J. Pharm. Sci., 2006, 29(1), 14-21.
[34]
Hodgson, E.; Rose, R.L. The importance of cytochrome P450 2B6 in the human metabolism of environmental chemicals. Pharmacol. Ther., 2007, 113(2), 420-428.
[35]
Turpeinen, M.; Zanger, U.M. Cytochrome P450 2B6: function, genetics, and clinical relevance. Drug Metabol. Drug Interact., 2012, 27(4), 185-197.
[36]
Zanger, U.M.; Klein, K. Pharmacogenetics of cytochrome P450 2B6 (CYP2B6): advances on polymorphisms, mechanisms, and clinical relevance. Front. Genet., 2013, 4(24)
[37]
CYP2B6 allele nomenclature. . http: //www.cypalleles.ki.se/ cyp2b6.htm
[38]
Turpeinen, M.; Zanger, U.M. Cytochrome P450 2B6: function, genetics, and clinical relevance. Drug Metabol. Drug Interact., 2012, 27(4), 185-197.
[39]
Kim, J.H.; Cheong, H.S.; Park, B.L.; Kim, L.H.; Shin, H.J.; Na, H.S.; Chung, M.W.; Shin, H.D. Direct sequencing and comprehensive screening of genetic polymorphisms on CYP2 family genes (CYP2A6, CYP2B6, CYP2C8, and CYP2E1) in five ethnic populations. Arch. Pharm. Res., 2015, 38(1), 115-128.
[40]
Zanger, U.M.; Schwab, M. Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol. Ther., 2013, 138(1), 103-141.
[41]
George, J.; Byth, K.; Farrell, G.C. Influence of clinicopathological variables on CYP protein expression in human liver. J. Gastroenterol. Hepatol., 1996, 11(1), 33-39.
[42]
Helsby, N.A.; Hui, C.Y.; Goldthorpe, M.A.; Coller, J.K.
Soh, M.C.; Gow, P.J.; De Zoysa, J.Z.; Tingle, M.D. The combined impact of CYP2C19 and CYP2B6 pharmacogenetics on cyclophosphamide bioactivation. British. J. Clin. Pharmacol., 2010, 70(6), 844-853.
[43]
Takada, K.; Arefayene, M.; Desta, Z.; Yarboro, C.H.; Boumpas, D.T.; Balow, J.E.; Flockhart, D.A.; Illei, G.G. Cytochrome P450 pharmacogenetics as a predictor of toxicity and clinical response to pulse cyclophosphamide in lupus nephritis. Arthritis Rheum., 2004, 50(7), 2202-2210.
[44]
Moreb, J.S.; Mohuczy, D.; Ostmark, B.; Zucali, J.R. RNAi-mediated knockdown of aldehyde dehydrogenase class-1A1 and class-3A1 is specific and reveals that each contributes equally to the resistance against 4-hydroperoxycyclophosphamide. Cancer Chemother. Pharmacol., 2007, 59(1), 127-136.
[45]
Mannervik, B.; Board, P.G.; Hayes, J.D.; Listowsky, I.; Pearson, W.R. Nomenclature for mammalian soluble glutathione transferases. Methods Enzymol., 2005, 401, 1-8.
[46]
Tran, A.; Bournerias, F.; Le Beller, C.; Mir, O.; Rey, E.; Pons, G.; Delahousse, M.; Tréluyer, J.M. Serious hematological toxicity of cyclophosphamide in relation to CYP2B6, GSTA1 and GSTP1 polymorphisms. British. J. Clin. Pharmacol., 2008, 65(2), 279-280.
[47]
Sweeney, C.; Ambrosone, C.B.; Joseph, L.; Stone, A.; Hutchins, L.F.; Kadlubar, F.F.; Coles, B.F. Association between a glutathione S-transferase A1 promoter polymorphism and survival after breast cancer treatment. Int. J. Cancer, 2003, 103(6), 810-814.
[48]
Zhang, R.; Su, B. Small but influential: the role of microRNAs on gene regulatory network and 3'UTR evolution. J. Genet. Genomics, 2009, 36(1), 1-6.
[49]
Du, T.; Zamore, P.D. Microprimer: the biogenesis and function of microRNA. Development, 2005, 132(21), 4645-4652.
[50]
Ferdin, J.; Kunej, T.; Calin, G.A. Non-coding RNAs: identification of cancer-associated microRNAs by gene profiling. Technol. Cancer Res. Treat., 2010, 9(2), 123-138.
[51]
Friedman, R.C.; Farh, K.K.; Burge, C.B.; Bartel, D.P. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res., 2009, 19(1), 92-105.
[52]
Lü, J.; Qian, J.; Chen, F.; Tang, X.; Li, C.; Cardoso, W.V. Differential expression of components of the microRNA machinery during mouse organogenesis. Biochem. Biophys. Res. Commun., 2005, 334(2), 319-323.
[53]
Calin, G.A.; Sevignani, C.; Dumitru, C.D.; Hyslop, T.; Noch, E.; Yendamuri, S.; Shimizu, M.; Rattan, S.; Bullrich, F.; Negrini, M.; Croce, C.M. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc. Natl. Acad. Sci. USA, 2004, 101(9), 2999-3004.
[54]
Lu, J.; Getz, G.; Miska, E.A.; Alvarez-Saavedra, E.; Lamb, J.; Peck, D.; Sweet-Cordero, A.; Ebert, B.L.; Mak, R.H.; Ferrando, A.A.; Downing, J.R.; Jacks, T.; Horvitz, H.R.; Golub, T.R. MicroRNA expression profiles classify human cancers. Nature, 2005, 435(7043), 834-838.
[55]
Peng, S.; Zeng, X.; Li, X.; Peng, X.; Chen, L. Multi-class cancer classification through gene expression profiles: microRNA versus mRNA. J. Genet. Genomics, 2009, 36(7), 409-416.
[56]
Roa, W.; Brunet, B.; Guo, L.; Amanie, J.; Fairchild, A.; Gabos, Z.; Nijjar, T.; Scrimger, R.; Yee, D.; Xing, J. Identification of a new microRNA expression profile as a potential cancer screening tool. Clin. Invest. Med., 2010, 33(2)
[57]
Cava, C.; Bertoli, G.; Ripamonti, M.; Mauri, G.; Zoppis, I. Della, Rosa, P.A.; Gilardi, M.C.; Castiglioni, I. Integration of mRNA expression profile, copy number alterations, and microRNA expression levels in breast cancer to improve grade definition. PLoS One, 2014, 9(5)
[58]
Wu, P.Y.; Zhang, X.D.; Zhu, J.; Guo, X.Y.; Wang, J.F. Low expression of microRNA-146b-5p and microRNA-320d predicts poor outcome of large B-cell lymphoma treated with cyclophosphamide, doxorubicin, vincristine, and prednisone. Hum. Pathol., 2014, 45(8), 1664-1673.
[59]
Takagi, S.; Nakajima, M.; Mohri, T.; Yokoi, T. Post-transcriptional regulation of human pregnane X receptor by micro-RNA affects the expression of cytochrome P450 3A4. J. Biol. Chem., 2008, 283(15), 9674-9680.
[60]
Pan, Y.Z.; Gao, W.; Yu, A.M. MicroRNAs Regulate CYP3A4 Expression via Direct and Indirect Targeting. Drug Metab. Dispos., 2009, 37(10), 2112-2117.
[61]
Berry, D.L.; Theriault, R.L.; Holmes, F.A.; Parisi, V.M.; Booser, D.J.; Singletary, S.E.; Buzdar, A.U.; Hortobagyi, G.N. Management of breast cancer during pregnancy using a standardized protocol. J. Clin. Oncol., 1999, 17(3), 855-861.
[62]
Toesca, A.; Gentilini, O.; Peccatori, F.; Azim, H.A.; Amant, F. Locoregional treatment of breast cancer during pregnancy. Gynecol. Surg., 2014, 11(4), 279-284.
[63]
Allaert, S.E.; Carlier, S.P.; Weyne, L.P.; Vertommen, D.J.; Dutré, P.E.; Desmet, M.B. First trimester anesthesia exposure and fetal outcome. A review. Acta Anaesthesiol. Belg., 2007, 58(2), 119-123.
[64]
Berretta, M.; Di Francia, R.; Lleshi, A.; De Paoli, P.; Li Volti, G.; Bearz, A.; Pup, D.L.; Tirelli, U.; Michieli, M. Antiblastic treatment, for solid tumors, during pregnancy: a crucial decision. Int. J. Immunopathol. Pharmacol., 2012, 25(2), 1S-19S.
[65]
Zagouri, F.; Psaltopoulou, T.; Dimitrakakis, C.; Bartsch, R.; Dimopoulos, M.A. Challenges in managing breast cancer during pregnancy. J. Thorac. Dis., 2013, 5(1), S62-S67.
[66]
Cardonick, E.; Usmani, A.; Ghaffar, S. Perinatal outcomes of a pregnancy complicated by cancer, including neonatal follow-up after in utero exposure to chemotherapy: results of an international registry. Am. J. Clin. Oncol., 2010, 33(3), 221-228.
[67]
Sorosky, J.I.; Sood, A.K.; Buekers, T.E. The use of chemotherapeutic agents during pregnancy. Obstet. Gynecol. Clin. North Am., 1997, 24(3), 591-599.
[68]
Brewer, M. 1.; Kueck, A.; Runowicz, C.D. Chemotherapy in pregnancy. Clin. Obstet. Gynecol., 2011, 54(4), 602-618.
[69]
Karson, B.; Wasserstrum, N.; Willis, R.; Herman, G.E.; McCabe, E.R. Teratogenic effects of first-trimester cyclophosphamide therapy. Obstet. Gynecol., 1988, 72(3), 462-464.
[70]
Clowse, M.E.; Magder, L.; Petri, M. Cyclophosphamide for lupus during pregnancy. Lupus, 2005, 14(8), 593-597.
[71]
Greenberg, L.H.; Tanaka, K.R. Congenital anomalies probably induced by cyclophosphamide. JAMA, 1964, 188, 423-426.
[72]
Toledo, T.M.; Harper, R.C.; Moser, R.H. Fetal effects during cyclophosphamide and irradiation therapy. Ann. Intern. Med., 1971, 74(1), 87-91.
[73]
Murray, C.L.; Reichert, J.A.; Anderson, J.; Twiggs, L.B. Multimodal cancer therapy for breast cancer in the first trimester of pregnancy. A case report. JAMA, 1984, 252(18), 2607-2608.
[74]
Kirshon, B.; Wasserstrum, N.; Willis, R.; Herman, G.E.; McCabe, E.R. Teratogenic effect of first trimester cyclophosphamide therapy. Obstet. Gynecol., 1988, 72, 462-464.
[75]
Coates, A. Cyclophosphamide in pregnancy. Aust. N. Z. J. Obstet. Gynaecol., 1970, 10, 33-34.
[76]
Zemlickis, D.; Lishner, M.; Erlich, R.; Koren, G. Teratogenicity and carcinogenicity in a twin exposed in utero to cyclophosphamide. Teratog. Carcinog. Mutagen., 1993, 13(3), 139-143.
[77]
Enns, G.M.; Roeder, E.; Chan, R.T.; , Ali-Khan; Catts, Z.; Cox, V.A.; Golabi, M. Apparent cyclophosphamide (cytoxan) embryopathy: a distinct phenotype? Am. J. Med. Genet., 1999, 86(3), 237-241.
[78]
Giannakopoulou, C.; Manoura, A.; Hatzidaki, E.; Korakaki, E.; Froudarakis, G.; Koumandakis, E. Multimodal cancer chemo-therapy during the first and second trimester of pregnancy: a case report. Eur. J. Obstet. Gynecol. Reprod. Biol., 2000, 91(1), 95-97.
[79]
Vaux, K.K.; Kahole, N.C.; Jones, K.L. Cyclophosphamide, methotrexate, and cytarabine embryopathy: is apoptosis the common pathway? Birth Defects Res. A Clin. Mol. Teratol., 2003, 67(6), 403-408.
[80]
Paladini, D.; Vassallo, M.; D’Armiento, M.R.; Cianciaruso, B.; Martinelli, P. Prenatal detection of multiple fetal anomalies following inadvertent exposure to cyclophosphamide in the first trimester of pregnancy. Birth Defects Res. A Clin. Mol. Teratol., 2004, 70(2), 99-100.
[81]
Paskulin, G.A.; Gazzola, Z.P.R.; de Camargo, P.L.L.; Rosa, R.; Graziadio, C. Combined chemotherapy and teratogenicity. Birth Defects Res. A Clin. Mol. Teratol., 2005, 73(9), 634-637.
[82]
Lazalde, B.; Grijalva-Flores, J.; Guerrero-Romero, F. Klippel-Feil syndrome in a boy exposed inadvertently to cyclophosphamide during pregnancy: a case report. Birth Defects Res. A Clin. Mol. Teratol., 2012, 94(4), 249-252.
[83]
Vasilakis-Scaramozza, C.; Aschengrau, A.; Cabral, H.J.; Jick, S.S. Antihypertensive drugs and the risk of congenital anomalies. Pharmacotherapy, 2013, 33(5), 476-482.
[84]
Selig, B.P.; Furr, J.R.; Huey, R.W.; Moran, C.; Alluri, V.N.; Medders, G.R.; Mumm, C.D.; Hallford, H.G.; Mulvihill, J.J. Cancer chemotherapeutic agents as human teratogens. Birth Defects Res. A Clin. Mol. Teratol., 2012, 94(8), 626-650.
[85]
Silva, C.A.; Hilario, M.O.; Febronio, M.V.; Oliveira, S.K.; Almeida, R.G.; Fonseca, A.R.; Yamashita, E.M.; Ronchezel, M.V.; Campos, L.L.; Appenzeller, S.; Quintero, M.V.; Santos, A.B.; Medeiros, A.C.; Carvalho, L.M.; Robazzi, T.C.; Cardin, S.P.; Bonfa, E. Pregnancy outcome in juvenile systemic lupus erythematosus: a Brazilian multicenter cohort study. J. Rheumatol., 2008, 35(7), 1414-1418.
[86]
Devakumar, V.N.; Castelino, M.; Chow, S.C.; The, L.S. Wegener’s granulomatosis in pregnancy: a case report and review of the medical literature. BMJ Case Rep., 2010.
[87]
Amant, F.; Van, C.K.; Halaska, M.J.; Gziri, M.M.; Hui, W.; Lagae, L.; Willemsen, M.A.; Kapusta, L.; Van, C.B.; Wouters, H.; Heyns, L.; Han, S.N.; Tomek, V.; Mertens, L.; Ottevanger, P.B. Long-term cognitive and cardiac outcomes after prenatal exposure to chemotherapy in children aged 18 months or older: an observational study. Lancet Oncol., 2012, 13(3), 256-264.
[88]
Van, C.K.; Heyns, L.; De Smet, F.; Van, E.L.; Gziri, M.M.; Van, G.W.; Halaska, M.; Vergote, I.; Ottevanger, N.; Amant, F. Cancer during pregnancy: an analysis of 215 patients emphasizing the obstetrical and the neonatal outcomes. J. Clin. Oncol., 2010, 28(4), 683-689.
[89]
Nau, H. Species differences in pharmacokinetics and drug teratogenesis. Environ. Health Perspect., 1986, 70, 113-129.
[90]
Fort, D.J.; Dawson, D.A.; Bantle, J.A. Development of a metabolic activation system for the frog embryo teratogenesis assay: Xenopus (FETAX). Teratog. Carcinog. Mutagen., 1988, 8(5), 251-263.
[91]
Shah, R.M.; Arcadi, F.; Suen, R.; Burdett, D.N. Effects of cyclophosphamide on the secondary palate development in golden Syrian hamster: teratology, morphology, and morphometry. J. Craniofac. Genet. Dev. Biol., 1989, 9(4), 381-396.
[92]
Shah, R.M. Differentiation of cyclophosphamide-treated hamster secondary palate: ultrastructural and biochemical observations. Am. J. Anat., 1990, 187(1), 1-11.
[93]
Gebhardt, D.O. The embryolethal and teratogenic effects of cyclophosphamide on mouse embryos. Teratology, 1970, 3(3), 273-277.
[94]
Claussen, U.; Hellmann, W.; Pache, G. The embryotoxicity of the cyclophosphamide metabolite acrolein in rabbits, tested in vivo by i.v. injection and by the yolk-sac method. Arzneimittelforschung, 1980, 30(12), 2080-2083.
[95]
Claussen, U.; Hettwer, H.; Voelcker, G.; Krengel, H.G.; Servos, G. The embryotoxicity of cyclophosphamide in rabbits during the histiotrophic phase of nutrition. Teratog. Carcinog. Mutagen., 1985, 5(2), 89-100.
[96]
Fritz, H.; Hess, R. Effects of cyclophosphamide on embryonic development in the rabbit. Agents Actions, 1971, 2(2), 83-86.
[97]
Fritz, H.; Giese, K. Evaluation of the teratogenic potential of chemicals in the rat. Pharmacology, 1990, 40(1), 1-27.
[98]
Wei, X.; Senders, C.; Owiti, G.O.; Liu, X.; Wei, Z.N.; Dillard-Telm, L.; McClure, H.M.; Hendrickx, A.G. The origin and development of the upper lateral incisor and premaxilla in normal and cleft lip/palate monkeys induced with cyclophosphamide. Cleft Palate Craniofac. J., 2000, 37(6), 571-583.
[99]
Mcclure, H.M.; Wilk, A.L.; Horigan, E.A.; Pratt, R.M. Induction of craniofacial malformations in rhesus monkeys (Macaca mulatta) with cyclophosphamide. Cleft Palate J., 1979, 16(3), 248-256.
[100]
Murphy, M.L.; Del, M.A.; Lacon, C. The comparative effects of five polyfunctional alkylating agents on the rat fetus, with additional notes on the chick embryo. Ann. N. Y. Acad. Sci., 1958, 68(3), 762-781.
[101]
Gerlinger, P.; Clavert, J. Anomalies chez des Lapins Issus de Meres Traitees au Cyclophosphamide. Comp. Rend. Soc. Biol., 1965, 159, 1462-1466.
[102]
Singh, S.; Tuli, S.M.; Gupta, P.K. Skeletal defects induced by cyclophosphamide (endoxan-asta) in chick embryos--preliminary report. Acta Orthop. Scand., 1971, 42(3), 217-226.
[103]
Pexieder, T. Cell death in the morphogenesis and teratogenesis of the heart. Adv. Anat. Embryol. Cell Biol., 1975, 51(3), 3-99.
[104]
Krstić, R.; Pexieder, T. Ultrastructure of cell death in bulbar cushions of chick embryo heart. Z. Anat. Entwicklungsgesch., 1973, 140(3), 337-350.
[105]
Jelínek, R. , 1977; pp. The chick embryotoxicity screening test (CHEST). In: Neubert D, Merker HJ, [editors]. Methods in prenatal toxicology. Stuttgart: G. Thieme.. 381-386.
[106]
Novotná, B.; Jelínek, R. Mutagenic and teratogenic effects of cyclophosphamide on the chick embryo: chromosomal aberrations and cell proliferation in affected and unaffected tissues. Carcinog. Mutagen., 1990, 10(4), 341-350.
[107]
Gilani, S.H.; Chatzinoff, M. World Health Organization. Congenital Anomalies. Updated April 15,. 2015, http: //www.who. int/mediacentre/factsheets/fs370/en/Environ. Res., , 1983, 31(2), 296-301.
[108]
Heringová, L.; Jelínek, R.; Dostál, M. Cell-cycle alterations underlie cyclophosphamide-induced teratogenesis in the chick embryo. Birth Defects Res. A Clin. Mol. Teratol., 2003, 67(6), 438-443.
[109]
Mirkes, P.E. Cell death in normal and abnormal development. Congenit. Anom. (Kyoto), 2008, 48(1), 7-17.
[110]
Kue, C.S.; Tan, K.Y.; Lam, M.L.; Lee, H.B. Chick embryo chorioallantoic membrane (CAM): an alternative predictive model in acute toxicological studies for anti-cancer drugs. Exp. Anim., 2015.
[111]
D’Incalci, M.; Sessa, C.; Colombo, N.; de Palo, G.; Semprini, A.E.; Pardi, G. Transplacental passage of cyclophosphamide. Cancer Treat. Rep., 1982, 66(8), 1681-1682.
[112]
Gibson, J.E.; Becker, B.A. Effect of phenobarbital and SKF 525A on placental transfer of cyclophosphamide in mice. J. Pharmacol. Exp. Ther., 1971, 177(1), 256-262.
[113]
Murthy, V.V.; Becker, B.A.; Steele, W.J. Effects of dosage, phenobarbital, and 2-diethylaminoethyl-2, 2-diphenylvalerate on the binding of cyclophosphamide and-or its metabolites to the DNA, RNA, and protein of the embryo and liver in pregnant mice. Cancer Res., 1973, 33(4), 664-670.
[114]
Gibson, J.E.; Becker, B.A. The teratogenicity of cyclophosphamide in mice. Cancer Res., 1968, 28(3), 475-480.
[115]
Short, R.D.; Rao, K.S.; Gibson, J.E. The in vivo biosynthesis of DNA, RNA, and proteins by mouse embryos after a teratogenic dose of cyclophosphamide. Teratology, 1972, 6(2), 129-137.
[116]
Shogi, R.; Ohzu, E. Effect of endoxan on developing mouse embryos. J. Fac. Sc. Hokkaido Univ., 1965, 15, 662-665.
[117]
Von, K.T. Die Teratogene wirkung Cyclophosphamide Waarend der Embryonalen Entwicklungsphase bei der Ratte. Naunyn-Schmeideberg’s. Arch. Pharmakol, 1965, 252, 173-195.
[118]
Shah, R.M.; Arcadi, F.; Suen, R.; Burdett, D.N. Effects of cyclophosphamide on the secondary palate development in golden Syrian hamster: teratology, morphology, and morphometry. J. Craniofac. Genet. Dev. Biol., 1989, 9(4), 381-396.
[119]
Mirkes, P.E. Cyclophosphamide teratogenesis: a review. Teratog. Carcinog. Mutagen., 1985, 5(2), 75-88.
[120]
Haskin, D. Some effects of nitrogen mustard on the development of body form in the fetal rat. Anat. Rec., 1948, 102, 493-509.
[121]
Shiota, K.; Uwabe, C.; Yamamoto, M.; Arishima, K. Susceptibility to cyclophosphamide and thalidomide of fetal rat limb buds grafted in athymic (nude) mice. Toxicol. Lett., 1990, 50(2-3), 309-318.
[122]
Porter, A.J.; Singh, S.M. Transplacental teratogenesis and mutagenesis in mouse fetuses treated with cyclophosphamide. Teratog. Carcinog. Mutagen., 1988, 8(4), 191-203.
[123]
Chernoff, N.; Rogers, J.M.; Alles, A.J.; Zucker, R.M.; Elstein, K.H.; Massaro, E.J.; Sulik, K.K. Cell cycle alterations and cell death in cyclophosphamide teratogenesis. Teratog. Carcinog. Mutagen., 1989, 9(4), 199-209.
[124]
Torchinsky, A.; Savion, S.; Gorivodsky, M.; Shepshelovich, J.; Zaslavsky, Z.; Fein, A.; Toder, V. Cyclophosphamide-induced teratogenesis in ICR mice: the role of apoptosis. Teratog. Carcinog. Mutagen., 1995, 15(4), 179-190.
[125]
Padmanabhan, R.; Singh, S. Axial skeletal malformations associated with cranioschisis aperta and exencephaly. The result of experimental intervention after the neural tube closure in rats. Acta Orthop. Scand., 1983, 54(1), 104-112.
[126]
Padmanabhan, R. Experimental induction of cranioschisis aperta and exencephaly after neural tube closure. A rat model. J. Neurol. Sci., 1984, 66(2-3), 235-243.
[127]
Padmanabhan, R. Etiology, pathogenesis and prevention of neural tube defects. Congenit. Anom. (Kyoto), 2006, 46(2), 55-67.
[128]
Padmanabhan, R. Light microscopic studies on the pathogenesis of exencephaly and cranioschisis induced in the rat after neural tube closure. Teratology, 1988, 37(1), 29-36.
[129]
Padmanabhan, R. Pathogenesis of exencephaly and cranioschisis induced in the rat after neural tube closure: role of the mesenchyme. J. Craniofac. Genet. Dev. Biol., 1989, 9(3), 239-255.
[130]
Padmanabhan, R. Electron-microscopic studies on the pathogenesis of exencephaly and cranioschisis induced in the rat after neural tube closure: role of the neuroepithelium and choroid plexus. Acta Anat. (Basel), 1990, 137(1), 5-18.
[131]
Padmanabhan, R. Scanning-electron-microscopic studies on the pathogenesis of exencephaly and cranioschisis induced in the rat after neural tube closure. Acta Anat. (Basel), 1990, 138(2), 97-110.
[132]
Padmanabhan, R. Is exencephaly the forerunner of anencephaly? An experimental study on the effect of prolonged gestation on the exencephaly induced after neural tube closure in the rat. Acta Anat. (Basel), 1991, 141(2), 182-192.
[133]
Xiao, R.; Yu, H.L.; Zhao, H.F.; Liang, J.; Feng, J.F.; Wang, W. Developmental neurotoxicity role of cyclophosphamide on post-neural tube closure of rodents in vitro and in vivo. Int. J. Dev. Neurosci., 2007, 25(8), 531-537.
[134]
Zhao, H.; Liang, J.; Li, X.; Yu, H.; Li, X.; Xiao, R. Folic acid and soybean isoflavone combined supplementation protects the post-neural tube closure defects of rodents induced by cyclophosphamide in vivo and in vitro. Neurotoxicology, 2010, 31(2), 180-187.
[135]
Hales, B.F. Comparison of the mutagenicity and teratogenicity of cyclophosphamide and its active metabolites, 4-hydro-xycyclophosphamide, phosphoramide mustard, and acrolein. Cancer Res., 1982, 42(8), 3016-3021.
[136]
Mirkes, P.E.; Greenaway, J.C.; Rogers, J.G.; Brundrett, R.B. Role of acrolein in cyclophosphamide teratogenicity in rat embryos in vitro. Toxicol. Appl. Pharmacol., 1984, 72(2), 281-291.
[137]
Slott, V.L.; Hales, B.F. Enhancement of the embryotoxicity of acrolein, but not phosphoramide mustard, by glutathione depletion in rat embryos in vitro. Biochem. Pharmacol., 1987, 36(12), 2019-2025.
[138]
Slott, V.L.; Hales, B.F. Protection of rat embryos in culture against the embryo toxicity of acrolein using exogenous glutathione. Biochem. Pharmacol., 1987, 36(13), 2187-2194.
[139]
Zhu, Q.; Sun, Z.; Jiang, Y.; Chen, F.; Wang, M. Acrolein scavengers: reactivity, mechanism and impact on health. Mol. Nutr. Food Res., 2011, 55(9), 1375-1390.
[140]
Park, J.; Muratori, B.; Shi, R. Acrolein as a novel therapeutic target for motor and sensory deficits in spinal cord injury. Neural Regen. Res., 2014, 9(7), 677-683.
[141]
Yu, L.J.; Drewes, P.; Gustafsson, K.; Brain, E.G.; Hecht, J.E.; Waxman, D.J. In vivo modulation of alternative pathways of P-450-catalyzed cyclophosphamide metabolism: impact on pharmacokinetics and antitumor activity. J. Pharmacol. Exp. Ther., 1999, 288(3), 928-937.
[142]
Gurtoo, H.L.; Dahms, R.; Hipkens, J.; Vaught, J.B. Studies on the binding of [3H-chloroethyl]-cyclophosphamide and 14[C-4]-cyclophosphamide to hepatic microsomes and native calf thymus DNA. Life Sci., 1978, 22(1), 45-52.
[143]
Gomes-Carneiro, M.R.; De-Oliveira, A.C.; De-Carvalho, R.R.; Araujo, I.B.; Souza, C.A.; Kuriyama, S.N.; Paumgartten, F.J. Inhibition of cyclophosphamide-induced teratogenesis by beta-ionone. Toxicol. Lett., 2003, 138(3), 205-213.
[144]
Ryu, D.Y.; Levi, P.E.; Hodgson, E. Regulation of hepatic CYP1A isozymes by piperonyl butoxide and acenaphthylene in the mouse. Chem. Biol. Interact., 1997, 105(1), 53-63.
[145]
Park, D.; Kim, S.; Kang, H.; Oh, J.; Jang, J.Y.; Shin, S.; Kim, T.K.; Choi, Y.J.; Lee, S.H.; Kim, K.Y.; Joo, S.S.; Kim, Y.B. Preventive effect of piperonyl butoxide on cyclophosphamide-induced teratogenesis in rats. Defects Res. B. Dev. Reprod. Toxicol., 2009, 86(5), 402-408.
[146]
Paolini, M.; Pozz, E.L.; Sapone, A.; Cantelli-Forti, G. Effect of licorice and glycyrrhizin on murine liver CYP-dependent monooxygenases. Life Sci., 1998, 62(6), 571-582.
[147]
Paolini, M.; Barillari, J.; Broccoli, M.; Pozzetti, L.; Perocco, P.; Cantelli-Forti, G. Effect of liquorice and glycyrrhizin on rat liver carcinogen metabolizing enzymes. Cancer Lett., 1999, 145(1-2), 35-42.
[148]
Park, D.; Yang, Y.H.; Choi, E.K.; Yang, G.; Bae, D.K.; Lee, S.H.; Kim, T.K.; Kyung, J.; Kim, D.; Choi, K.C.; Kim, Y.B. Licorice extract increases cyclophosphamide teratogenicity by upregulating the expression of cytochrome P-450 2B mRNA. Birth Defects Res. B Dev. Reprod. Toxicol., 2011, 92(6), 553-559.
[149]
Park, D.; Jeon, J.H.; Shin, S.; Joo, S.S.; Kang, D.H.; Moon, S.H.; Jang, M.J.; Cho, Y.M.; Kim, J.W.; Ji, H.J.; Ahn, B.; Oh, K.W.; Kim, Y.B. Green tea extract increases cyclophosphamide-induced teratogenesis by modulating the expression of cytochrome P-450 mRNA. Reprod. Toxicol., 2009, 27(1), 79-84.
[150]
Kim, S.H.; Lee, I.C.; Baek, H.S.; Moon, C.; Kim, S.H.; Yoo, J.C.; Shin, I.S.; Kim, J.C. Induction of cytochrome P450 3A1 expression by diallyl disulfide: protective effects against cyclophosphamide-induced embryo-fetal developmental toxicity. Food Chem. Toxicol., 2014, 69, 312-319.
[151]
Bailey, M.M.; Sawyer, R.D.; Behling, J.E.; Boohaker, J.G.; Hicks, J.G.; O’donnell, M.A.; Stringer, K.R.; Rasco, J.F.; Hood, R.D. Prior exposure to indole-3-carbinol decreases the incidence of specific cyclophosphamide-induced developmental defects in mice. Birth Defects Res. B Dev. Reprod. Toxicol., 2005, 74(3), 261-267.
[152]
Chinni, S.R.; Li, Y.; Upadhyay, S.; Koppolu, P.K.; Sarkar, F.H. Indole-3-carbinol (I3C)-induced cell growth inhibition, G1 cell cycle arrest and apoptosis in prostate cancer cells. Oncogene, 2001, 20(23), 2927-2936.
[153]
Li, Y.; Li, X.; Guo, B. Chemopreventive agent 3, 3′-diindolylmethane selectively induces proteasomal degradation of class I histone deacetylases. Cancer Res., 2010, 70(2), 646-654.
[154]
Menegola, E.; Di, R.F.; Broccia, M.L.; Giavini, E. Inhibition of histone deacetylase as a new mechanism of teratogenesis. Birth Defects Res. C Embryo Today, 2006, 78(4), 345-353.
[155]
Giavini, E.; Menegola, E. Biomarkers of teratogenesis: suggestions from animal studies. Reprod. Toxicol., 2012, 34(2), 180-185.
[156]
Wu, Q.; Ni, X. ROS-mediated DNA methylation pattern alterations in carcinogenesis. Curr. Drug Targets, 2015, 16(1), 13-19.
[157]
Centers for Disease Control and Prevention Breast cancer in young women last updated May 8. 2014.http: //www.cdc.gov/cancer/ breast/young_women
[158]
Meirow, D. Reproduction post-chemotherapy in young cancer patients. Mol. Cell. Endocrinol., 2000, 169(1-2), 123-131.
[159]
Devine, P.J.; Perreault, S.D.; Luderer, U. Roles of reactive oxygen species and antioxidants in ovarian toxicity. Biol. Reprod., 2012, 86(2), 27.
[160]
Soleimani, R.; Heytens, E.; Darzynkiewicz, Z.; Oktay, K. Mechanisms of chemotherapy-induced human ovarian aging: double strand DNA breaks and microvascular compromise. Aging (Albany NY), 2011, 3(8), 782-793.
[161]
Meirow, D.; Assad, G.; Dor, J.; Rabinovici, J. The GnRH antagonist cetrorelix reduces cyclophosphamide-induced ovarian follicular destruction in mice. Hum. Reprod., 2004, 19(6), 1294-1299.
[162]
Kelly, S.M.; Robaire, B.; Hales, B.F. Paternal cyclophosphamide treatment causes postimplantation loss via inner cell mass-specific cell death. Teratology, 1992, 45(3), 313-318.
[163]
Harrouk, W.; Robaire, B.; Hales, B.F. Paternal exposure to cyclophosphamide alters cell-cell contacts and activation of embryonic transcription in the preimplantation rat embryo. Biol. Reprod., 2000, 63(1), 74-81.
[164]
Harrouk, W.; Codrington, A.; Vinson, R.; Robaire, B.; Hales, B.F. Paternal exposure to cyclophosphamide induces DNA damage and alters the expression of DNA repair genes in the rat preimplantation embryo. Mutat. Res., 2000, 461(3), 229-241.
[165]
Grenier, L.; Robaire, B.; Hales, B.F. The activation of DNA damage detection and repair responses in cleavage-stage rat embryos by a damaged paternal genome. Toxicol. Sci., 2012, 127(2), 555-566.
[166]
Macklon, N.S.; Geraedts, J.P.; Fauser, B.C. Conception to ongoing pregnancy: the ‘black box’ of early pregnancy loss. Hum. Reprod. Update, 2002, 8(4), 333-343.
[167]
Houghton, F.D. Energy metabolism of the inner cell mass and trophectoderm of the mouse blastocyst. Differentiation, 2006, 74(1), 11-18.
[168]
Adjaye, J.; Huntriss, J.; Herwig, R.; BenKahla, A.; Brink, T.C.; Wierling, C.; Hultschig, C.; Groth, D.; Yaspo, M.L.; Picton, H.M.; Gosden, R.G.; Lehrach, H. Primary differentiation in the human blastocyst: comparative molecular portraits of inner cell mass and trophectoderm cells. Stem Cells, 2005, 23(10), 1514-1525.
[169]
Iqbal, K.; Chitwood, J.L.; Meyers-Brown, G.A.; Roser, J.F.; Ross, P.J. RNA-seq transcriptome profiling of equine inner cell mass and trophectoderm. Biol. Reprod., 2014, 90(3), 61.
[170]
Bell, C.E.; Watson, A.J. p38 MAPK regulates cavitation and tight junction function in the mouse blastocyst. PLoS One, 2013, 8(4), e59528
[171]
Saba-El-Leil, M.K.; Frémin, C.; Meloche, S. Redundancy in the World of MAP Kinases: all for One. Front. Cell Dev. Biol., 2016, 4, 67.
[172]
Fabian, D.; Koppel, J.; Maddox-Hyttel, P. Apoptotic processes during mammalian preimplantation development. Theriogenology, 2005, 64(2), 221-231.
[173]
Fabian, D.; Makarevich, A.V.; Chrenek, P.; Bukovská, A.; Koppel, J. Chronological appearance of spontaneous and induced apoptosis during preimplantation development of rabbit and mouse embryos. Theriogenology, 2007, 68(9), 1271-1281.
[174]
Pampfer, S. Apoptosis in rodent peri-implantation embryos: differential susceptibility of inner cell mass and trophectoderm cell lineages-a review. Placenta, 2000, 21(Suppl. A), S3-S10.
[175]
Jurisicova, A.; Latham, K.E.; Casper, R.F.; Casper, R.F.; Varmuza, S.L. Expression and regulation of genes associated with cell death during murine preimplantation embryo development. Mol. Reprod. Dev., 1998, 51(3), 243-253.
[176]
Handyside, A.H.; Hunter, S.P. Cell division and death in the mouse blastocyst before implantation. Roux Arch. Dev. Biol., 195, 519-526.
[177]
Wilson, J.G. , 1973; pp. Environment and Birth Defects. Chapter 2 Principles of Teratology 11-34.Academic Press, New York.
[178]
Austin, C.R. Embryo transfer and sensitivity to teratogenesis. Nature, 1973, 244, 333-334.
[179]
Giavini, E.; Bonanomi, L.; Ornaghi, F. Developmental toxicity during the preimplantation period: embryotoxicity and clastogenic effects of chlorambucil in the rat. Teratog. Carcinog. Mutagen., 1984, 4(4), 341-348.
[180]
Giavini, E.; Lemonica, I.P.; Lou, Y.; Broccia, M.L.; Prati, M. Induction of micronuclei and toxic effects in embryos of pregnant rats treated before implantation with anticancer drugs: cyclophosphamide, cis-platinum, adriamycin. Teratog. Carcinog. Mutagen., 1990, 10(5), 417-426.
[181]
Austin, S.M.; Robaire, B.; Hales, B.F.; Kelly, S.M. Paternal cyclophosphamide exposure causes decreased cell proliferation in cleavage-stage embryos. Biol. Reprod., 1994, 50(1), 55-64.
[182]
Spielmann, H.; Jacob-Müller, U.; Eibs, H.G.; Beckord, W. Investigations on cyclophosphamide treatment during the preimplantation period. Differential sensitivity to maternal cyclophosphamide treatment. Teratology, 1981, 23(1), 1-5.
[183]
Spielmann, H.; Eibs, H.G.; Merker, H.J. Effects of cyclophosphamide treatment before implantation on the development of rat embryos after implantation. J. Embryol. Exp. Morphol., 1977, 41, 65-78.
[184]
Cheng, Y.; Ren, X.; Hait, W.N.; Yang, J.M. Therapeutic targeting of autophagy in disease: biology and pharmacology. Pharmacol. Rev., 2013, 65(4), 1162-1197.
[185]
Tsujimoto, Y.; Shimizu, S. Another way to die: autophagic programmed cell death. Cell Death Differ., 2005(Suppl. 2), 1528-1534.
[186]
Ryter, S.W.; Mizumura, K.; Choi, A.M. The impact of autophagy on cell death modalities. Int. J. Cell Biol., 2014, 2014, 502676
[187]
Djehiche, B.; Segalen, J.; Chambon, Y. Inhibition of autophagy of fetal rabbit gonoducts by puromycin, tunicamycin and chloroquin in organ culture. Tissue Cell, 1996, 28(1), 115-121.
[188]
D’Herde, K.; De Prest, B.; Roels, F. Subtypes of active cell death in the granulosa of ovarian atretic follicles in the quail (Coturnix coturnix japonica). Reprod. Nutr. Dev., 1996, 36(2), 175-189.
[189]
Réz, G.; Pálfia, Z.; Fellinger, E. Occurrence and inhibition by cycloheximide of apoptosis in vinblastine-treated murine pancreas. A role for autophagy? Acta Biol. Hung., 1991, 42(1-3), 133-140.
[190]
Merker, H.J.; Köhler, E.; Neuber, T.; Spors, S. [Electron microscope studies on the influence of cyclophosphamide on development of the rat brain]. Naunyn Schmiedebergs Arch. Exp. Pathol. Pharmakol., 1968, 260(2), 176-177. [Article in German].
[191]
Krowke, R.; Zimmermann, B.; Merker, H.J. Biochemical and electron microscope studies of rat embryos in in vitro culture. Naunyn Schmiedebergs Arch. Exp. Pathol. Pharmakol., 1970, 266(4), 382-383.
[192]
Mirkes, P.E.; Little, S.A. Teratogen-induced cell death in postimplantation mouse embryos: differential tissue sensitivity and hallmarks of apoptosis. Cell Death Differ., 1998, 5(7), 592-600.
[193]
Mirkes, P.E. Cell death in normal and abnormal development. Congenit. Anom. (Kyoto), 2008, 48(1), 7-17.
[194]
Moallem, S.A.; Hales, B.F. The role of p53 and cell death by apoptosis and necrosis in 4-hydroperoxycyclophosphamide-induced limb malformations. Development, 1998, 125(16), 3225-3234.
[195]
Molotski, N.; Savion, S.; Gerchikov, N.; Fein, A.; Toder, V.; Torchinsky, A. Teratogen-induced distortions in the classical NF-kappaB activation pathway: correlation with the ability of embryos to survive teratogenic stress. Toxicol. Appl. Pharmacol., 2008, 229(2), 197-205.
[196]
Hosako, H.; Little, S.A.; Barrier, M.; Mirkes, P.E. Teratogen-induced activation of p53 in early postimplantation mouse embryos. Toxicol. Sci., 2007, 95(1), 257-269.
[197]
Pekar, O.; Molotski, N.; Savion, S.; Fein, A.; Toder, V.; Torchinsky, A. p53 regulates cyclophosphamide teratogenesis by controlling caspases 3, 8, 9 activation and NF-kappaB DNA binding. Reproduction, 2007, 134(2), 379-388.
[198]
Wullaert, A.; Heyninck, K.; Beyaert, R. Mechanisms of crosstalk between TNF-induced NF-kappaB and JNK activation in hepatocytes. Biochem. Pharmacol., 2006, 72(9), 1090-1101.
[199]
Papa, S.; Bubici, C.; Zazzeroni, F.; Pham, C.G.; Kuntzen, C.; Knabb, J.R.; Dean, K.; Franzoso, G. The NF-kappaB-mediated control of the JNK cascade in the antagonism of programmed cell death in health and disease. Cell Death Differ., 2006, 13(5), 712-729.
[200]
Snow, M.H.; Tam, P.P. Is compensatory growth a complicating factor in mouse teratology? Nature, 1979, 279(5713), 555-557.
[201]
Leung, A.K.; Sharp, P.A. microRNAs: a safeguard against turmoil? Cell, 2007, 130(4), 581-585.
[202]
Novello, C.; Pazzaglia, L.; Conti, A.; Quattrini, I.; Pollino, S.; Perego, P.; Picci, P.; Benassi, M.S. p53-dependent activation of microRNA-34a in response to etoposide-induced DNA damage in osteosarcoma cell lines not impaired by dominant negative p53 expression. PLoS One, 2014, 9(12), e114757 Epub 2014 Dec 9.
[203]
Rokavec, M.; Li, H.; Jiang, L.; Hermeking, H. The p53/miR-34 axis in development and disease. J. Mol. Cell Biol., 2014, 6(3), 214-230.
[204]
Gueta, K.; Molotski, N.; Gerchikov, N.; Mor, E.; Savion, S.; Fein, A.; Toder, V.; Shomron, N.; Torchinsky, A. Teratogen-induced alterations in microRNA-34, microRNA-125b and microRNA-155 expression: correlation with embryonic p53 genotype and limb phenotype. BMC Dev. Biol., 2010, 10, 20.
[http://dx.doi.org/10.1186/1471-213X-10-20]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 17
ISSUE: 9
Year: 2017
Page: [1211 - 1227]
Pages: 17
DOI: 10.2174/1871520616666161206150421
Price: $65

Article Metrics

PDF: 73
HTML: 11