Usefulness of 18F Florbetaben in Diagnosis of Alzheimer’s Disease and Other Types of Dementia

Author(s): Agostino Chiaravalloti, Roberta Danieli, Annamaria Lacanfora, Barbara Palumbo, Carlo Caltagirone, Orazio Schillaci

Journal Name: Current Alzheimer Research

Volume 14 , Issue 2 , 2017


  Journal Home
Translate in Chinese
Become EABM
Become Reviewer
Call for Editor

Abstract:

In the last decade, several radiolabeled compounds have been developed for the imaging in vivo of amyloid pathology by means of Positron Emission Tomography (PET). Among these, 18F Florbetaben appear to be one of the most reliable for its high affinity for amyloid plaques in brain and its radio-chemical properties that make it usable in common clinical routine.

The aim of this review is to provide a general overview of the application in vivo of 18F Florbetaben, describing for first the physiopathological basis of amyloid pathology. Afterwards, the chemical characteristics of this radiolabeled compound will be described, with a particular attention to the synthesis process and the kinetic in vivo. An overview on the imaging protocols and image interpretation will be provided as well and, as a last aspect, the results of the main studies performed in subjects with advanced and early AD will be summarized.

Keywords: Amyloid, Alzheimer’s disease, florbetaben, PET, mild cognitive impairment.

[1]
Alzheimer A, Stelzmann RA, Schnitzlein HN, Murtagh FR. An English translation of Alzheimer’s 1907 paper, “Uber eine eigenartige Erkankung der Hirnrinde. Clin Anat 8(6): 429-31.(1995);
[2]
McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr, Kawas CH, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7(3): 263-9.(2011);
[3]
Frisoni GB, Bocchetta M, Chetelat G, Rabinovici GD, de Leon MJ, Kaye J, et al. Imaging markers for Alzheimer disease: which vs. how. Neurology 81(5): 487-500.(2013);
[4]
Cordell B. beta-Amyloid formation as a potential therapeutic target for Alzheimer’s disease. Annu Rev Pharmacol Toxicol 34: 69-89.(1994);
[5]
Zimmermann M, Gardoni F, Di Luca M. Molecular rationale for the pharmacological treatment of Alzheimer’s disease. Drugs Aging 1: 27-37.(2005);
[6]
Geldenhuys WJ, Darvesh AS. Pharmacotherapy of Alzheimer’s disease: Current and future trends. Expert Rev Neurother 15(1): 3-5.(2014);
[7]
Murphy MP, LeVine H III. Alzheimer’s disease and the amyloid-beta peptide. J Alzheimers Dis 19(1): 311-23.(2010);
[8]
Hardy J, Allsop D. Amyloid deposition as the central event in the aetiology of Alzheimer’s disease. Trends Pharmacol Sci 12(10): 383-8.(1991);
[9]
Tabaton M, Cammarata S, Manetto V, Perry G, Mancardi G. Tau-reactive neurofibrillary tangles in cerebellar cortex from patients with Alzheimer’s disease. Neurosci Lett 103(3): 259-62.(1989);
[10]
Hardy JA, Higgins GA. Alzheimer’s disease: the amyloid cascade hypothesis. Science 256(5054): 184-5.(1992);
[11]
Braak H, Braak E. Frequency of stages of Alzheimer-related lesions in different age categories. Neurobiol Aging 18(4): 351-7.(1997);
[12]
Priller C, Bauer T, Mitteregger G, Krebs B, Kretzschmar HA, Herms J. Synapse formation and function is modulated by the amyloid precursor protein. J Neurosci 26(27): 7212-21.(2006);
[13]
Turner PR, O’Connor K, Tate WP, Abraham WC. Roles of amyloid precursor protein and its fragments in regulating neural activity, plasticity and memory. Prog Neurobiol 70(1): 1-32.(2003);
[14]
Hiltunen M, van Groen T, Jolkkonen J. Functional roles of amyloid-beta protein precursor and amyloid-beta peptides: evidence from experimental studies. J Alzheimers Dis 18(2): 401-12.(2009);
[15]
Kopke E, Tung YC, Shaikh S, Alonso AC, Iqbal K, Grundke-Iqbal I. Microtubule-associated protein tau. Abnormal phosphorylation of a non-paired helical filament pool in Alzheimer disease. J Biol Chem 268(32): 24374-84.(1993);
[16]
Tabaton M, Mandybur TI, Perry G, Onorato M, Autilio-Gambetti L, Gambetti P. The widespread alteration of neurites in Alzheimer’s disease may be unrelated to amyloid deposition. Ann Neurol 26(6): 771-8.(1989);
[17]
Iqbal K, Alonso Adel C, Chen S, Chohan MO, El-Akkad E, Gong CX, et al. Tau pathology in Alzheimer disease and other tauopathies. Biochim Biophys Acta 3: 2-3.(2005);
[18]
Ashford JW, Salehi A, Furst A, Bayley P, Frisoni GB, Jack CR Jr, et al. Imaging the Alzheimer brain. J Alzheimers Dis 3: 1-27.(2011);
[19]
Goate A, Chartier-Harlin MC, Mullan M, Brown J, Crawford F, Fidani L, et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature 349(6311): 704-6.(1991);
[20]
Karran E, Mercken M, De Strooper B. The amyloid cascade hypothesis for Alzheimer’s disease: an appraisal for the development of therapeutics. Nat Rev Drug Discov 10(9): 698-712.(2011);
[21]
Hampel H. Amyloid-β and cognition in aging and Alzheimer’s disease: Molecular and neurophysiological mechanisms. J Alzheimers Dis 33(1): S79-86.(2013);
[22]
Iqbal K, Del C, Alonso A, et al. Tau pathology in Alzheimer disease and other tauopathies. Biochim Biophys Acta 1739(2): 198-210.(2005);
[23]
Oddo S, Caccamo A, Kitazawa M, Tseng BP, LaFerla FM. Amyloid deposition precedes tangle formation in a triple transgenic model of Alzheimer’s disease. Neurobiol Aging 24(8): 1063-70.(2003);
[24]
Doody RS, Thomas RG, Farlow M, Iwatsubo T, Vellas B, Joffe S, et al. Phase 3 trials of solanezumab for mild-to-moderate alzheimer’s disease. N Engl J Med 370(4): 311-21.(2014);
[25]
Gauthier SG. Alzheimer’s disease: the benefits of early treatment. Eur J Neurol 12(3): 11-6.(2005);
[26]
Guo S, Getsios D, Hernandez L, Cho K, Lawler E, Altincatal A, et al. Florbetaben PET in the early diagnosis of Alzheimer’s disease: a discrete event simulation to explore its potential value and key data gaps. Int J Alzheimers Dis 2012 548157(2012);
[27]
Patt M, Schildan A, Barthel H, Becker G, Schultze-Mosgau MH, Rohde B, et al. Metabolite analysis of [18F]Florbetaben (BAY 94-9172) in human subjects: a substudy within a proof of mechanism clinical trial. J Radioanal Nucl Chem 284: 557-62.(2010);
[28]
Lide D. CRC Handbook of Chemistry and Physics. 76th ed. USA: CRC Press Inc. (1995).
[29]
Mason NS, Mathis CA, Klunk WE. Positron emission tomography radioligands for in vivo imaging of Abeta plaques. J Labelled Comp Radiopharm 56(3-4): 89-95.(2013);
[30]
Zhang W, Oya S, Kung MP, Hou C, Maier DL, Kung HF. F-18 Polyethyleneglycol stilbenes as PET imaging agents targeting Abeta aggregates in the brain. Nucl Med Biol 32(8): 799-809.(2005);
[31]
Wang H, Guo X, Jiang S, Tang G. Automated synthesis of [18F]Florbetaben as Alzheimer’s disease imaging agent based on a synthesis module system. Appl Radiat Isot 71(1): 41-6.(2013);
[33]
Fodero-Tavoletti MT, Brockschnieder D, Villemagne VL, Martin L, Connor AR, Thiele A, et al. In vitro characterization of [18F]-florbetaben, an Abeta imaging radiotracer. Nucl Med Biol 39(7): 1042-8.(2012);
[34]
Rowe CC, Ackerman U, Browne W, Mulligan R, Pike KL, O’Keefe G, et al. Imaging of amyloid beta in Alzheimer’s disease with 18F-BAY94-9172, a novel PET tracer: proof of mechanism. Lancet Neurol 7(2): 129-35.(2008);
[35]
Sabri O, Sabbagh MN, Seibyl J, Barthel H, Akatsu H, Ouchi Y, et al. Florbetaben PET imaging to detect amyloid beta plaques in Alzheimer disease: Phase 3 study. Alzheimers Dement 28(15)11(8): 964-74.(2015);
[36]
Clark CM, Pontecorvo MJ, Beach TG, Bedell BJ, Coleman RE, Doraiswamy PM, et al. Cerebral PET with florbetapir compared with neuropathology at autopsy for detection of neuritic amyloid-beta plaques: a prospective cohort study. Lancet Neurol 11(8): 669-78.(2012);
[37]
Barthel H, Luthardt J, Becker G, Patt M, Hammerstein E, Hartwig K, et al. Individualized quantification of brain beta-amyloid burden: results of a proof of mechanism phase 0 florbetaben PET trial in patients with Alzheimer’s disease and healthy controls. Eur J Nucl Med Mol Imaging 38(9): 1702-14.(2011);
[38]
Becker GA, Ichise M, Barthel H, Luthardt J, Patt M, Seese A, et al. PET quantification of 18F-florbetaben binding to beta-amyloid deposits in human brains. J Nucl Med 54(5): 723-31.(2013);
[39]
Jennings D, Seibyl J, Sabbagh M, Lai F, Hopkins W, Bullich S, et al. Age dependence of brain beta-amyloid deposition in Down syndrome: An [18F]florbetaben PET study. Neurology 84(5): 500-7.(2015);
[40]
O’Keefe GJ, Saunder TH, Ng S, Ackerman U, Tochon-Danguy HJ, Chan JG, et al. Radiation dosimetry of beta-amyloid tracers 11C-PiB and 18F-BAY94-9172. J Nucl Med 50(2): 309-15.(2009);
[41]
Boellaard R, O’Doherty MJ, Weber WA, Mottaghy FM, Lonsdale MN, Stroobants SG, et al. FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0. Eur J Nucl Med Mol Imaging 37(1): 181-200.(2010);
[42]
Barthel H, Gertz HJ, Dresel S, Peters O, Bartenstein P, Buerger K, et al. Cerebral amyloid-beta PET with florbetaben (18F) in patients with Alzheimer’s disease and healthy controls: a multicentre phase 2 diagnostic study. Lancet Neurol 10(5): 424-35.(2011);
[43]
Tiepolt S, Barthel H, Butzke D, Hesse S, Patt M, Gertz HJ, et al. Influence of scan duration on the accuracy of beta-amyloid PET with florbetaben in patients with Alzheimer’s disease and healthy volunteers. Eur J Nucl Med Mol Imaging 40(2): 238-44.(2013);
[44]
Ong KT, Villemagne VL, Bahar-Fuchs A, Lamb F, Langdon N, Catafau AM, et al. Abeta imaging with 18F-florbetaben in prodromal Alzheimer’s disease: a prospective outcome study. J Neurol Neurosurg Psychiatry 86(4): 431-6.(2015);
[45]
Jaskowiak CJ, Bianco JA, Perlman SB, Fine JP. Influence of reconstruction iterations on 18F-FDG PET/CT standardized uptake values. J Nucl Med 46(3): 424-8.(2005);
[46]
Mann DM, Jones D, Prinja D, Purkiss MS. The prevalence of amyloid (A4) protein deposits within the cerebral and cerebellar cortex in Down’s syndrome and Alzheimer’s disease. Acta Neuropathol 80(3): 318-27.(1990);
[47]
van Berckel BN, Ossenkoppele R, Tolboom N, Yaqub M, Foster-Dingley JC, Windhorst AD, et al. Longitudinal amyloid imaging using 11C-PiB: methodologic considerations. J Nucl Med 54(9): 1570-6.(2013);
[48]
Knight WD, Okello AA, Ryan NS, Turkheimer FE, Rodriguez Martinez de Llano S, Edison P, et al. Carbon-11-Pittsburgh compound B positron emission tomography imaging of amyloid deposition in presenilin 1 mutation carriers. Brain 134(Pt 1): 293-300.(2011);
[49]
Chiaravalloti A, Pagani M, Micarelli A, Di Pietro B, Genovesi G, Alessandrini M, et al. Cortical activity during olfactory stimulation in multiple chemical sensitivity: a (18)F-FDG PET/CT study. Eur J Nucl Med Mol Imaging 42(5): 733-40.(2015);
[50]
Chiaravalloti A, Martorana A, Koch G, Toniolo S, di Biagio D, di Pietro B, et al. Functional correlates of t-Tau, p-Tau and Abeta1-42 amyloid cerebrospinal fluid levels in Alzheimer’s disease: a 18F-FDG PET/CT study. Nucl Med Commun 36(5): 461-8.(2015);
[51]
Perani D, Schillaci O, Padovani A, Nobili FM, Iaccarino L, Della Rosa PA, et al. A survey of FDG- and amyloid-PET imaging in dementia and GRADE analysis. BioMed Res Int 2014 785039(2014);
[52]
Petersen RC, Doody R, Kurz A, Mohs RC, Morris JC, Rabins PV, et al. Current concepts in mild cognitive impairment. Arch Neurol 58(12): 1985-92.(2001);
[53]
Rominger A, Brendel M, Burgold S, Keppler K, Baumann K, Xiong G, et al. Longitudinal assessment of cerebral β-amyloid deposition in mice overexpressing swedish mutant β-Amyloid precursor protein using 18F-florbetaben PET. J Nucl Med 54(7): 1127-34.(2013);
[54]
Petersen RC, Waring SC, Smith GE, Tangalos EG, Thibodeau SN. Predictive value of APOE genotyping in incipient Alzheimer’s disease. Ann New York Acad Sci 802: 58-69.(1996);
[55]
Ong K, Villemagne VL, Bahar-Fuchs A, Lamb F, Chetelat G, Raniga P, et al. (18)F-florbetaben Abeta imaging in mild cognitive impairment. Alzheimers Res Ther 5(1): 4.(2013);
[56]
Villemagne VL, Ong K, Mulligan RS, Holl G, Pejoska S, Jones G, et al. Amyloid imaging with (18)F-florbetaben in Alzheimer disease and other dementias. J Nucl Med 52(8): 1210-7.(2011);
[57]
Rowe CC, Bourgeat P, Ellis KA, Brown B, Lim YY, Mulligan R, et al. Predicting Alzheimer disease with beta-amyloid imaging: results from the Australian imaging, biomarkers, and lifestyle study of ageing. Ann Neurol 74(6): 905-13.(2013);
[58]
Barthel H, Sabri O. Florbetaben to trace amyloid-beta in the Alzheimer brain by means of PET. J Alzheimers Dis 26(3): 117-21.(2011);
[59]
Johnson KA, Sperling RA, Gidicsin CM, Carmasin JS, Maye JE, Coleman RE, et al. Florbetapir (F18-AV-45) PET to assess amyloid burden in Alzheimer’s disease dementia, mild cognitive impairment, and normal aging. Alzheimers Dement 9(5): S72-83.(2013);
[60]
Rowe CC, Ng S, Ackermann U, Gong SJ, Pike K, Savage G, et al. Imaging beta-amyloid burden in aging and dementia. Neurology 68(20): 1718-25.(2007);
[61]
Schipke CG, Peters O, Heuser I, Grimmer T, Sabbagh MN, Sabri O, et al. Impact of beta-amyloid-specific florbetaben PET imaging on confidence in early diagnosis of Alzheimer’s disease. Dement Geriatr Cogn Disord 33(6): 416-22.(2012);
[62]
Chetelat G, Villemagne VL, Villain N, Jones G, Ellis KA, Ames D, et al. Accelerated cortical atrophy in cognitively normal elderly with high beta-amyloid deposition. Neurology 78(7): 477-84.(2012);
[63]
Jack CR Jr, Lowe VJ, Weigand SD, Wiste HJ, Senjem ML, Knopman DS, et al. Serial PIB and MRI in normal, mild cognitive impairment and Alzheimer’s disease: implications for sequence of pathological events in Alzheimer’s disease. Brain 132(Pt 5): 1355-65.(2009);
[64]
Sojkova J, Zhou Y, An Y, Kraut MA, Ferrucci L, Wong DF, et al. Longitudinal patterns of beta-amyloid deposition in nondemented older adults. Arch Neurol 68(5): 644-9.(2011);
[65]
Vlassenko AG, Mintun MA, Xiong C, Sheline YI, Goate AM, Benzinger TL, et al. Amyloid-beta plaque growth in cognitively normal adults: longitudinal [11C]Pittsburgh compound B data. Ann Neurol 70(5): 857-61.(2011);


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 14
ISSUE: 2
Year: 2017
Published on: 20 June, 2016
Page: [154 - 160]
Pages: 7
DOI: 10.2174/1567205013666160620114309
Price: $65

Article Metrics

PDF: 25
HTML: 6