Calcium Signaling in Mammalian Eggs at Fertilization

Author(s): Hideki Shirakawa, Takashi Kikuchi, Masahiko Ito

Journal Name: Current Topics in Medicinal Chemistry

Volume 16 , Issue 24 , 2016

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


The innovation and development of live-cell fluorescence imaging methods have revealed the dynamic aspects of intracellular Ca2+ in a wide variety of cells. The fertilized egg, the very first cell to be a new individual, has long been under extensive investigations utilizing Ca2+ imaging since its early days, and spatiotemporal Ca2+ dynamics and underlying mechanisms of Ca2+ mobilization, as well as physiological roles of Ca2+ at fertilization, have become more or less evident in various animal species. In this article, we illustrate characteristic patterns of Ca2+ dynamics in mammalian gametes and molecular basis for Ca2+ release from intracellular stores leading to the elevation in cytoplasmic Ca2+ concentration, and describe the identity and properties of sperm-borne egg-activating factor in relation to the induction of Ca2+ waves and Ca2+ oscillations, referring to its potential use in artificial egg activation as infertility treatment. In addition, a possible Ca2+ influx-driven mechanism for slow and long-lasting Ca2+ oscillations characteristic of mammalian eggs is proposed, based on the recent experimental findings and mathematical modeling. Cumulative knowledge about the roles of Ca2+ in the egg activation leading to early embryogenesis is summarized, to emphasize the diversity of functions that Ca2+ can perform in a single type of cell.

Keywords: Calcium influx, Calcium oscillations, Calcium release, Calcium wave, Egg activation, Fertilization, Fluorescence imaging, Infertility, Inositol 1, 4, 5-trisphosphate, Phospholipase Cζ.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2016
Page: [2664 - 2676]
Pages: 13
DOI: 10.2174/1568026616666160413135406
Price: $65

Article Metrics

PDF: 58
PRC: 1