As of 21st century, cancer is arguably the most complex and challenging disease known to mankind and
an inevitable public health concern of this millennium [1, 2]. Presently, it is the second major cause for
death worldwide and it was estimated 8.8 million deaths were reported in 2015[1, 3]. Different treatment
strategies such as surgery, radiation, chemo and hormonal therapy are used for cancer treatment, whereas
chemotherapy is found to be common [1, 4]. We are very much aware that the success of cancer therapy
entirely depends on the early detection and effective therapies modulaties including chemotherapy.
Chemotherapy, one of the main therapeutic modality often suffered with limited success due to off targeting
and non-preferential drug distribution, poor penetration to the solid tumor, poor solubility of hydrophobic
cancer drugs, elimination by reticulo-endothelial system (RES) and multidrug resistance (MDR)
[5-9]. Limitation of conventional chemotherapy prompted a new class of nanoformulations (termed as nanomedicine).
Research and therapy in cancer nanotechnology area is developing fast. New insights and
progress in delivery approaches allows for more precise diagnosis, efficacious treatment and quality care.
Newer ideas such as utilizing combination therapy, multifunctional nanoparticles and theranostics in cancer
nanomedicines have greatly evolved over recent years [5, 6-20]. This is evinced that sizeable accomplishment
has been made in this area however toxicity, poorly reproducible chemistry, scale-up and the
cost remain as constraints in cancer nanotechnology that persuade the development of safe biomaterials
based nanoparticles. Through this thematic issue we brought the understanding and perspective altogether
of the expert researchers of cancer nanomedicines, biomedical science, chemistry and formulation from
which we identify future research needed to overcome the limitations associated with the cancer nanomedicines
and facilitate the clinical realization.