The In-Situ One-Step Synthesis of a PDC Macromolecular Pro-Drug and the Fabrication of a Novel Core-Shell Micell

Author(s): Cui-yun Yu, Sa Yang, Zhi-ping Li, Can Huang, Qian Ning, Wen Huang, Wen-tong Yang, Dongxiu He, Lichun Sun

Journal Name: Current Pharmaceutical Design

Volume 22 , Issue 4 , 2016


Become EABM
Become Reviewer
Call for Editor

Abstract:

The development of slow release nano-sized carriers for efficient antineoplastic drug delivery with a biocompatible and biodegradable pectin-based macromolecular pro-drug for tumor therapy has been reported in this study. Pectin-doxorubicin conjugates (PDC), a macromolecular pro-drug, were prepared via an amide condensation reaction, and a novel amphiphilic core-shell micell based on a PDC macromolecular pro-drug (PDC-M) was self-assembled in situ, with pectin as the hydrophilic shell and doxorubicin (DOX) as the hydrophobic core. Then the chemical structure of the PDC macromolecular pro-drug was identified by both Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance spectroscopy (1H-NMR), and proved that doxorubicin combined well with the pectin and formed macromolecular pro-drug. The PDC-M were observed to have an unregularly spherical shape and were uniform in size by scanning electron microscopy (SEM). The average particle size of PDC-M, further measured by a Zetasizer nanoparticle analyzer (Nano ZS, Malvern Instruments), was about 140 nm. The encapsulation efficiency and drug loading were 57.82% ± 3.7% (n = 3) and 23.852% ±2.3% (n = 3), respectively. The in vitro drug release behaviors of the resulting PDC-M were studied in a simulated tumor environment (pH 5.0), blood (pH 7.4) and a lysosome media (pH 6.8), and showed a prolonged slow release profile. Assays for antiproliferative effects and flow cytometry of the resulting PDC-M in HepG2 cell lines demonstrated greater properties of delayed and slow release as compared to free DOX. A cell viability study against endothelial cells further revealed that the resulting PDC-M possesses excellent cell compatibilities and low cytotoxicities in comparison with that of the free DOX. Hemolysis activity was investigated in rabbits, and the results also demonstrated that the PDC-M has greater compatibility in comparison with free DOX. This shows that the resulting PDC-M can ameliorate the hydrophobicity of free DOX. This work proposes a novel strategy for in-situ one-step synthesis of macromolecular pro-drugs and fabrication of a core-shell micelle, demonstrating great potential for cancer chemotherapy.

Keywords: Pectin-doxorubicin conjugates (PDC), macromolecular pro-drug, core-shell micelle, drug delivery system, slow release, in-situ one-step.

Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 22
ISSUE: 4
Year: 2016
Page: [506 - 513]
Pages: 8
DOI: 10.2174/1381612822888151207095620
Price: $65

Article Metrics

PDF: 29
HTML: 2
EPUB: 1
PRC: 1