Vaccines for Latent Viral Infections

Vaccines for Latent Viral Infections

Indexed in: EBSCO

Many viruses are known to persist in their host’s cells in a latent state without exhibiting virulence or symptoms of infection, hence, giving rise to the term ‘latent infections’. Vaccines for ...
[view complete introduction]

US $

*(Excluding Mailing and Handling)

Vaccines Against Latent Viral Infections: Pathway Forward

Pp. 117-131 (15)

DOI: 10.2174/9781681081328115010011

Author(s): Liljana Stevceva


With new evidence emerging that viral latent infections might have yet unknown negative effects, it is becoming a necessity to look into the factors that allow these viruses to persist and establish latency. Designing vaccines that will prevent the initial infection and establishment of latency should become the main focus. To succeed in such a goal is not impossible but requires major refocusing of the research efforts. The viral escape mechanisms that are used during the initial stages of the acute primary infection should be carefully examined and fully understood. Once this is accomplished, developing strategies that will disarm these escape mechanisms and allow the immune system to clear the virus should become an achievable goal.


EBV, VZV, HIV, CMV, HSV-1, HSV-2, viral latency, persistent viral infection, chronic viral infection, reactivation, mucosa, herpesviridae, herpes zoster, varicella, Varivax®, Zostavax®, retroviruses, gp350, gp220, gp85 (gH), gp25 (gL), gp42/38, CR2, CD21, C3, C3d, C3b, C3a, C3c, iC3b, C5a, C3dg, C3d, gB, gC, gD, gE, gG, gH, gI, gJ, gK, gL, gM, gH-gL, gM-gN, heparan sulphate, lectin pathway, IgA, IgG Fc, DC-SIGN, Trojan horse, CCR5, CXCR4, TGF, regulatory T cells, virokines, viroceptors, CD103+ DCs, DAF, MCP, amplification loop, complement