Role of the Wnt/β-Catenin Pathway in the Pathogenesis of Alcoholic Liver Disease

Author(s): Jaideep Behari*, Karl G. Sylvester

Journal Name: Current Molecular Pharmacology

Volume 10 , Issue 3 , 2017

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


The Wnt pathway is a highly conserved signal transduction pathway that plays an important role in diverse aspects of hepatic physiology. The Wnt pathway, consisting of canonical and noncanonical arms, is composed of secreted glycoproteins, cell surface receptors and co-receptors, and complex intracellular regulatory machinery that regulate a large number of cellular functions. β-Catenin is the main effector of the canonical Wnt pathway and hepatocyte-specific loss of the protein leads to increased susceptibility to alcoholic steatohepatitis. Hepatocytes with disrupted β-catenin demonstrate mitochondrial dysfunction, defective oxidative phosphorylation, and increased oxidative stress. β- Catenin knockout mice have decreased expression of alcohol metabolizing enzymes and increased blood alcohol levels that along with hypoglycemia and hyperammonemia, lead to increased mortality upon alcohol exposure. Disruption of hepatic β-catenin affects fatty acid oxidation and fasting ketogenesis and thereby profoundly affects systemic energy homeostasis. Given the combined roles of Wnt/β-catenin signaling in hepatocellular bioenergetics and regeneration, the Wnt pathway also contributes to alcohol-induced hepatic fibrogenesis and hepatocarcinogenesis. Targeting the Wnt/β-catenin pathway represents an attractive strategy for the treatment of alcohol-induced liver disease.

Keywords: Alcoholic liver disease, alcohol metabolism, alcoholic steatohepatitis, mitochondrial dysfunction, oxidative stress.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2017
Published on: 10 May, 2017
Page: [186 - 194]
Pages: 9
DOI: 10.2174/1874467208666150817111256
Price: $65

Article Metrics

PDF: 32