Didehydro-Cortistatin A Inhibits HIV-1 Tat Mediated Neuroinflammation and Prevents Potentiation of Cocaine Reward in Tat Transgenic Mice

Author(s): Sonia Mediouni, Joseph Jablonski, Jason J. Paris, Mark A. Clementz, Suzie Thenin-Houssier, Jay P. McLaughlin, Susana T. Valente

Journal Name: Current HIV Research

Volume 13 , Issue 1 , 2015

Become EABM
Become Reviewer
Call for Editor


HIV-1 Tat protein has been shown to have a crucial role in HIV-1-associated neurocognitive disorders (HAND), which includes a group of syndromes ranging from undetectable neurocognitive impairment to dementia. The abuse of psychostimulants, such as cocaine, by HIV infected individuals, may accelerate and intensify neurological damage. On the other hand, exposure to Tat potentiates cocaine-mediated reward mechanisms, which further promotes HAND. Here, we show that didehydro-Cortistatin A (dCA), an analog of a natural steroidal alkaloid, crosses the blood-brain barrier, cross-neutralizes Tat activity from several HIV-1 clades and decreases Tat uptake by glial cell lines. In addition, dCA potently inhibits Tat mediated dysregulation of IL-1β, TNF-α and MCP-1, key neuroinflammatory signaling proteins. Importantly, using a mouse model where doxycycline induces Tat expression, we demonstrate that dCA reverses the potentiation of cocaine-mediated reward. Our results suggest that adding a Tat inhibitor, such as dCA, to current antiretroviral therapy may reduce HIV-1-related neuropathogenesis.

Keywords: Cocaine, conditioned place preference, didehydro-Cortistatin A, HAND, HIV-1, neuroinflammation, reward, Tat.

promotion: free to download

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2015
Published on: 16 March, 2015
Page: [64 - 79]
Pages: 16
DOI: 10.2174/1570162X13666150121111548

Article Metrics

PDF: 131