In Vitro High Throughput Phage Display Selection of Ovarian Cancer Avid Phage Clones for Near-Infrared Optical Imaging

Author(s): Mette Soendergaard, Jessica R. Newton-Northup, Susan L. Deutscher

Journal Name: Combinatorial Chemistry & High Throughput Screening
Accelerated Technologies for Biotechnology, Bioassays, Medicinal Chemistry and Natural Products Research

Volume 17 , Issue 10 , 2014

Become EABM
Become Reviewer
Call for Editor


Ovarian cancer is among the leading causes of cancer deaths in women, and is the most fatal gynecological malignancy. Poor outcomes of the disease are a direct result of inadequate detection and diagnostic methods, which may be overcome by the development of novel efficacious screening modalities. However, the advancement of such technologies is often time-consuming and costly. To overcome this hurdle, our laboratory has established a time and cost effective method of selecting and identifying ovarian carcinoma avid bacteriophage (phage) clones using high throughput phage display technology. These phage clones were selected from a filamentous phage fusion vector (fUSE5) 15-amino acid peptide library against human ovarian carcinoma (SKOV-3) cells, and identified by DNA sequencing. Two phage clones, pM6 and pM9, were shown to exhibit high binding affinity and specificity for SKOV-3 cells using micropanning, cell binding and fluorescent microscopy studies. To validate that the binding was mediated by the phage-displayed peptides, biotinylated peptides (M6 and M9) were synthesized and the specificity for ovarian carcinoma cells was analyzed. These results showed that M6 and M9 bound to SKOV-3 cells in a dose-response manner and exhibited EC50 values of 22.9 ± 2.0 μM and 12.2 ± 2.1μM (mean ± STD), respectively. Based on this, phage clones pM6 and pM9 were labeled with the near-infrared fluorophore AF680, and examined for their pharmacokinetic properties and tumor imaging abilities in vivo. Both phage successfully targeted and imaged SKOV-3 tumors in xenografted nude mice, demonstrating the ability of this method to quickly and cost effectively develop novel ovarian carcinoma avid phage

Keywords: Cancer imaging, near-infrared, optical imaging, ovarian cancer, peptide, phage display.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2014
Published on: 08 January, 2015
Page: [859 - 867]
Pages: 9
DOI: 10.2174/1386207317666141031152828
Price: $65

Article Metrics

PDF: 26