Multifaceted Mechanisms for Cell Survival and Drug Targeting in Chronic Myelogenous Leukemia

Author(s): J. Kuroda, Y. Shimura, M. Yamamoto-Sugitani, N. Sasaki, M. Taniwaki.

Journal Name: Current Cancer Drug Targets

Volume 13 , Issue 1 , 2013

Become EABM
Become Reviewer

Abstract:

Treatment outcomes for chronic myelogenous leukemia (CML) have shown major improvements as a result of the development of the tyrosine kinase inhibitors (TKIs) imatinib, nilotinib and dasatinib for the disease-specific molecular target BCR-ABL1 tyrosine kinase (TK), but a cure of CML by BCR-ABL1 TKIs has been rarely achieved. CML cells are protected from cytotoxic insults, including those by TKIs, through various collaborative BCR-ABL1- mediated and -independent mechanisms, as well as cell-intrinsic and -extrinsic molecular mechanisms. These protective mechanisms include overlapping cell signaling pathways for normal hematopoietic proliferation, modulation of molecules associated with the BCL2 family protein-regulated programmed cell death pathway, autophagic cell protection capability, bone marrow environment-mediated cell protective signaling, abnormally upregulated genetic instability and other BCRABL1- independent kinase activities. To develop a more effective treatment strategy for a cure by means of total leukemic cell killing, a thorough understanding of how CML cells survive and resist cytotoxic insults is essential. In this article, we review current knowledge about multifaceted BCR-ABL1-related and -unrelated mechanisms for survival and death of CML cells and present suggestions for the development of new therapeutic strategies for complete elimination of residual CML cells during TKI treatment.

Keywords: Apoptosis, autophagy, CML, gene instability, microenvironment, stem cell

Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 13
ISSUE: 1
Year: 2013
Page: [69 - 79]
Pages: 11
DOI: 10.2174/1568009611309010069

Article Metrics

PDF: 30