The era of application of smart therapeutic systems employing targeted drug delivery strategies for effective
treatment of diseases was started almost several decades. Several research efforts have been undertaken
with time in this area for developing the newer formulation systems and devices. Despite the advantages
of the new developing drugs, the benefits of adopting the modified treatment strategies are highly
promising. Among these, the use of bioinspired drug delivery systems acclaimed with biodegradable
and biocompatible properties has gained increasing acceptance. The current editorial delivers an insight
into a series of reviews compiled befitting the title of the special issue. In this thematic issue, a compilation
of five review articles is presented focusing on general aspects of bio-inspired nanosystems in therapeutics
and disease treatment. This special issue has provided a comprehensive perspective on the concept
of bio-inspired smart drug delivery carriers include scheming and developing biocompatible nanomaterials
which can be loaded with cargo for specific drug delivery application. Such carriers are used for versatile
applications in delivering drugs and pharmaceuticals for therapeutic applications, biological markers and
contrast agents for imaging applications, genes and nucleic acids for gene therapy applications. Some instances
of the bio-inspired nanocarriers include formulations prepared from bio-nanocomposite materials
such as cellulose, chitosan, starch, polylactic acid, polyhydroxyalkanoates, etc. With the dimensional size
range between 0.1-100 nm, the polymeric nanocomposites have been heavily explored in cancer research,
immunomodulation, tissue engineering, stem cell therapy, cellular and molecular treatment. Besides these,
a series of modifications in the preparations of such nanocarriers have been tried [1]. In this regard, the
bio-inspired metallic nanoparticles have been proved useful in the delivery of drugs to the brain for the
treatment of seizure, epilepsy, Alzheimer’s and Parkinson’s diseases. Silica-based nanocomposites are
useful in tissue engineering, imaging, therapeutic and disease-related diagnostic applications [2]. Hydroxyapatite
nanocomposites and rosette nanotubes have been found useful as scaffolds in nucleic acid engineering
applications. Graphene-based nanocomposites are also useful in photodynamic therapy against
cancer treatment and tissue engineering applications. Recently, there are derivatized systems such as polymeric
nanocomposites loaded with nanoparticles were reported in the literature with innovative applications
in gene delivery [3]. Modified polymers composed of cartilages and muscles are useful in tissue engineering
applications to produce the mechanically stiff interpenetrating network to facilitate the growth
of bone mass. Moreover, the spatially controlled hydrogel nanocomposites have been designed for controlling
cellular microenvironments for mimicking tissue complexity. The microarrays of bioadhesive
nanocomposite microgels have been designed with tunable physical and chemical properties to obtain the
modular sizes and tailored adhesive biomolecule compositions [2].
Overall, these nano devices reported in the literature also have variegated applications as scaffolds with
additional advantage of drug delivery to the local tissues. These bio-inspired nanocarriers are capable of
carrying bioactive molecules to the target sites based on their ability to act in response to the environmental
stimuli available in living cells and/or human body. Besides, the bio-inspired nanosystems are constituted
of lipids, polymers, and biomaterials, thus utilize endogenous responsiveness sensors for targeted
drug delivery application. Moreover, external stimuli such as heat, light, magnetic or electric field and ultrasounds,
as well as endogenous ones, such as temperature change, pH variations, redox potential and
ionic strength differences can distress the responsiveness of a bio-inspired smart nano-system for drug delivery
[4]. The content of this thematic issue also highlights the key opportunities and challenges in the
development of bio-inspired smart nanocarriers for therapeutic management [5]. Beyond the literature reports,
the articles of this thematic issue has incorporated future prospects in the field useful to the readers.