Efficient Synthesis of Novel Thioureidobenzamido Alkyl Naphthols in Molten Tetrabutylammonium Bromide

Author(s): Arman Shokooh Saljooghi, Hojatollah Khabazzadeh*, Moj Khaleghi.

Journal Name: Letters in Organic Chemistry

Volume 16 , Issue 11 , 2019

Graphical Abstract:


Abstract:

A new series of benzamido alkyl naphthols were synthesized from the multi-component reaction of 4-(3′-methylthioureido)benzamide, aromatic aldehydes and 2-naphthol. Molten tetrabutyl ammonium bromide was used as a very efficient medium for this reaction while the use of common organic solvents gave no or poor yields. This method is an interesting instance of using molten salt as a medium in multicomponent reactions.

Keywords: Molten salt, 2-naphthol, thioureidobenzamide, 4-amino benzamide, tetrabutyl ammonium bromide, aronatic aldehydes.

[1]
Montgomery, J. Acc. Chem. Res., 2000, 33, 467-473.
[2]
Domling, A. Chem. Rev., 2006, 106, 17-89.
[3]
Müller, T.J.J. Beilstein J. Org. Chem., 2011, 7, 960-961.
[4]
Shaterian, H.R.; Yarahmadi, H.; Ghashang, M. Tetrahedron, 2008, 64, 1263-1269.
[5]
Soleimani, E.; Zainali, M. Synth. Commun., 2012, 42, 1885-1889.
[6]
Wang, M.; Song, Z.G.; Liang, Y. Synth. Commun., 2012, 42, 582-588.
[7]
Zare, A.; Yousofi, T.; Moosavi Zare, A.R. RSC Adv, 2012, 2, 7988-7991.
[8]
Khan, S.A.; Yusuf, M. Eur. J. Med. Chem., 2009, 44, 2597-2600.
[9]
Welch, W.M.; Kraska, A.R.; Sarges, R.; Koe, B.K. J. Med. Chem., 1984, 27, 1508-1515.
[10]
Davies, H.M.L.; Stafford, D.G.; Hansen, T. Org. Lett., 1999, 1, 233-236.
[11]
Shen, A.Y.; Tsai, C.T.; Chen, C.L. Eur. J. Med. Chem., 1999, 34, 877-882.
[12]
Zare, A.; Akbarzadeh, S.; Foroozani, E.; Kaveh, H. MoosaviZare, A.R.; Hasaninejad, A.R.; Mokhlesi, M.; Beyzavi, M.H.; Zolfigol, M.A. J. Sulfur Chem., 2012, 33, 259-272.
[13]
Eshghi, H.; Zohuri, G.H.; Damavandi, S. Synth. Commun., 2012, 42, 516-525.
[14]
Zhang, Z.P.; Wen, J.M.; Li, J.H.; Hu, W.X. J. Chem. Res., 2009, 2009, 162-164.
[15]
Srihari, G.; Nagaraju, M.; Murthy, M.M. Helv. Chim. Acta, 2007, 90, 1497-1504.
[16]
Amini, S.; Tikdari, A.M.; Khabazzadeh, H. J. Chem. Sci., 2015, 127, 1795-1800.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 11
Year: 2019
Page: [906 - 910]
Pages: 5
DOI: 10.2174/1570178616666190123120127
Price: $65

Article Metrics

PDF: 19
HTML: 4

Special-new-year-discount


Eggshell, a Promising Waste in Organic Reactions

Author(s): Ligia S. da Silveira Pinto, Marcus V.N. de Souza*.

Journal Name: Letters in Organic Chemistry

Volume 16 , Issue 11 , 2019

Graphical Abstract:


Abstract:

Today, the chicken egg is consumed worldwide with an annual production on the order of tons. However, in spite of its importance, problems include the generation of waste due to its shell, which is composed of calcium carbonate (CaCO3). The application of eggshell waste can be utilized in different fields, such as chemistry, due to its potential possibilities in different types of chemical reactions. In this context, the aim of this review is to demonstrate the versatility and applications of this waste over the last five years in different kinds of chemical reactions.

Keywords: Eggshell, waste, organic synthesis, methodologies, green chemistry, chicken egg.

[1]
Broman, G.I.; Robèrt, K-H. J. Clean. Prod., 2017, 140, 17-31.
[2]
Roberts, T.A.; Cordier, J.L.; Gram, L.; Tompkin, R.B.; Pitt, J.I.; Gorris, L.G.M.; Swanson, K.M. Roberts, T.A.; Cordier, J.-L.; Gram, L.; Tompkin, R.B.; Pitt, J.I.; Gorris, L.G.M; Swanson, K.M.J., Ed.; Springer: US, 2005, Vol. 6, pp. 597-642.
[3]
Pirvutoiu, I.; Popescu, A. Bulletin UASVM Horticulture, 2012, 69, 229-238.
[4]
Quina, M.J.; Soares, M.A.R. Quinta-Ferreira, R. Resour. Conserv. Recycl, 2017, 123, 176-186.
[5]
Ingole, V.H.; Hussein, K.H.; Kashale, A.A.; Ghule, K.; Vuherer, T.; Kokol, V.; Chang, J-Y.; Ling, Y-C.; Vinchurkar, A.; Dhakal, H.N.; Ghule, A.V. J. Biomed. Mater. Res. A, 2017, 105, 2935-2947.
[6]
Mottet, A.; Tempio, G. Worlds Poult. Sci. J., 2017, 73, 245-256.
[7]
Murakami, F.S.; Rodrigues, P.O.; de Campos, C.M.T.; Silva, M.A.S. Ciênc. Tecnol. Aliment., 2007, 27, 658-662.
[8]
Hincke, M.T.; Nys, Y.; Gautron, J.; Mann, K.; Rodriguez-Navarro, A.B.; McKee, M.D. Front. Biosci., 2012, 17, 1266-1280.
[9]
Oliveira, D.A.; Benelli, P.; Amante, E.R. J. Clean. Prod., 2013, 46, 42-47.
[10]
Cree, D.; Rutter, A. ACS Sustainable. Chem.& Eng., 2015, 3, 941-949.
[11]
Taleb, M.A.; Mamouni, R.; Benomar, M.A.; Bakka, A.; Mouna, A.; Taha, M.L.; Benlhachemi, A.; Bakiz, B.; Villain, S. J. Environ. Chem. Eng., 2017, 5, 1341-1348.
[12]
Konwar, M.; Ali, A.A.; Chetia, M.; Saikia, P.J.; Khupse, N.D.; Sarma, D. ChemistrySelect, 2016, 1, 6016-6019.
[13]
Borhade, A.V.; Uphade, B.K.; Gadhave, A.G. Res. Chem. Intermed., 2016, 42, 6301-6311.
[14]
Haboub, A.; Hamlich, M.; Harkati, S.; Riadi, Y.; Slimani, R.; Aadil, M.; Abdelkader, A.; Lazar, S.; Safi, M. AJEP, 2015, 4, 28-32.
[15]
Youseftabar-Miri, L.; Akbari, F.; Ghraghsahar, F. Iran. J. Catal., 2014, 4, 85-89.
[16]
Mosaddegh, E. Ultrason. Sonochem., 2013, 20, 1436-1441.
[17]
Mosaddegh, E.; Hassankhani, A.; Karimi-Maleh, H. Mater. Sci. Eng. C, 2015, 46, 264-269.
[18]
Mosaddegh, E.; Hassankhani, A.; Pourahmadi, S.; Ghazanfari, D. Int J Green Nanotechnol., 2013, 1, 1-5.
[19]
Mosaddegh, E.; Hassankhani, A. Catal. Commun., 2013, 33, 70-75.
[20]
Mosaddegh, E.; Hosseininasab, F.A.; Hassankhani, A. RSC Adv, 2015, 5, 106561-106567.
[21]
Li, Y.; Geng, X.; Leng, W.; Vikesland, P.J.; Grove, T.Z. New J. Chem., 2017, 41, 9406-9413.
[22]
Liang, M.; Su, R.; Qi, W.; Yu, Y.; Wang, L.; He, Z. J. Mater. Sci., 2014, 49, 1639-1647.
[23]
Mallampati, R.; Valiyaveettil, S. ACS Sustainable. Chem.& Eng., 2014, 2, 855-859.
[24]
Khazaei, M.; Khazaei, A.; Nasrollahzadeh, M.; Tahsili, M.R. Tetrahedron, 2017, 73, 5613-5623.
[25]
Khazaei, A.; Khazaei, M.; Nasrollahzadeh, M. Tetrahedron, 2017, 73, 5624-5633.
[26]
Khazaei, A.; Sarmasti, N.; Seyf, J.Y. Appl Organometal Chem., 2018, e4308, 1-11.
[27]
Bakherad, M.; Keivanloo, A.; Amin, A.H.; Doosti, R.; Hoseini, O. Iran. J. Catal, 2016, 6, 325-332.
[28]
Morbale, S.T.; Shinde, S.S.; Jadhav, S.D.; Deshmukh, M.B.; Patil, S.S. Der Pharm Lett., 2015, 7, 169-182.
[29]
Mardiana, L.; Bakri, R.; Septiarti, A.; Ardiansah, B. IOP Conf. Ser.: Mater. Sci. Eng, 2017, 188, pp. 1-8.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 11
Year: 2019
Page: [851 - 859]
Pages: 9
DOI: 10.2174/1570178616666190123115432
Price: $65

Article Metrics

PDF: 23
HTML: 2

Special-new-year-discount


Multigram-scale Synthesis of Building Block Nitro-imine Derivative by Using Classical Method and Ultrasound Irradiation and Conversion to Imino-alcohol Derivative, Using Camphor as Starting Material

Author(s): Emerson Teixeira da Silva, Adriele da Silva Araújo, Adriana Marques Moraes, Marcus Vinícius Nora de Souza*.

Journal Name: Letters in Organic Chemistry

Volume 17 , Issue 3 , 2020

Abstract:

This study describes a simple multigram-scale procedure for the preparation of (E)-N-(1,7,7- trimethylbicyclo[2.2.1]heptan-2-ylidene)nitramide, nitro-imine 2, by using both classical methods and ultrasound irradiation from 1 utilizing Camphor, a natural product, as starting material. This key intermediate 2, a good building block, is useful to prepare various substances such as terpenoids, reagents for large-scale hydroxylation and amination of organic substrates, and derivatives with anticonvulsant, hypoglycemic, anti-inflammatory, antimicrobial and antiviral activities. It can be transformed into a wide range of other derivatives which can then also be employed in inorganic chemistry. In this work, another useful derivative (E)-2-((1,7,7-trimethylbicyclo[2.2.1]heptan-2-ylidene)amino)ethanol 3 has been prepared from nitro-imine 2 on multigram-scale which also allows access to a variety of products of biological interest after suitable chemical transformations.

Keywords: Camphor, Multigram-scale synthesis, Ultrasound, Oxime, Nitro-imine, Building Block, structure-activity.

Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 17
ISSUE: 3
Year: 2020
Page: [165 - 169]
Pages: 5
DOI: 10.2174/1570178616666190123114922
Price: $95

Article Metrics

PDF: 2

Special-new-year-discount


Photo- and Sono-Dynamic Therapy: A Review of Mechanisms and Considerations for Pharmacological Agents Used in Therapy Incorporating Light and Sound

Author(s): Yanye Yang, Juan Tu*, Dongxin Yang, Jason L. Raymond*, Ronald A. Roy, Dong Zhang.

Journal Name: Current Pharmaceutical Design

Volume 25 , Issue 4 , 2019

Abstract:

As irreplaceable energy sources of minimally invasive treatment, light and sound have, separately, laid solid foundations in their clinic applications. Constrained by the relatively shallow penetration depth of light, photodynamic therapy (PDT) typically involves involves superficial targets such as shallow seated skin conditions, head and neck cancers, eye disorders, early-stage cancer of esophagus, etc. For ultrasound-driven sonodynamic therapy (SDT), however, to various organs is facilitated by the superior... transmission and focusing ability of ultrasound in biological tissues, enabling multiple therapeutic applications including treating glioma, breast cancer, hematologic tumor and opening blood-brain-barrier (BBB). Considering the emergence of theranostics and precision therapy, these two classic energy sources and corresponding sensitizers are worth reevaluating. In this review, three typical therapies using light and sound as a trigger, PDT, SDT, and combined PDT and SDT are introduced. The therapeutic dynamics and current designs of pharmacological sensitizers involved in these therapies are presented. By introducing both the history of the field and the most up-to-date design strategies, this review provides a systemic summary on the development of PDT and SDT and fosters inspiration for researchers working on ‘multi-modal’ therapies involving light and sound.

Keywords: Photodynamic therapy, sonodynamic therapy, sono-photodynamic therapy, perfluorocarbon, photosensitizer, sonosensitier, ultrasound contrast agents.

[1]
Kennedy J. High-intensity focused ultrasound in the treatment of solid tumours. Nat Rev Cancer 2005; 5(4): 321-7.
[2]
Nikfarjam M, Christophi C. Interstitial laser thermotherapy for liver tumours. Br J Surg 2003; 90(9): 1033-47.
[3]
Lismont M, Dreesen L, Wuttke S. Metal-organic framework nanoparticles in photodynamic therapy: current status and perspectives. Adv Funct Mater 2017; 27(14): 1606314.
[4]
Dolmans D, Fukumura D, Jain R. Photodynamic therapy for cancer. Nat Rev Cancer 2003; 3(5): 380-7.
[5]
Nesi-Reis V, Lera-Nonose D, Oyama J, et al. Contribution of photodynamic therapy in wound healing: a systematic review. Photodiagn Photodyn Ther 2018; 21: 294-305.
[6]
Wen X, Li Y, Hamblin MR. Photodynamic therapy in dermatology beyond non-melanoma cancer: An update. Photodiagn Photodyn Ther 2017; 19: 140-52.
[7]
Bashkatov AN, Genina EA, Kochubey VI, Tuchin VV. Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm. J Phys D Appl Phys 2005; 38(15): 2543-55.
[8]
Mironova KE, Proshkina GM, Ryabova AV, et al. Genetically Encoded Immunophotosensitizer 4D5scFv-miniSOG is a Highly Selective Agent for Targeted Photokilling of Tumor Cells in vitro. Theranostics 2013; 3(11): 831-40.
[9]
Grebenik EA, Kostyuk AB, Deyev SM. Upconversion nanoparticles and their hybrid assemblies for biomedical applications. Russ Chem Rev 2016; 85(12): 1277-96.
[10]
Yumita N, Nishigaki R, Umemura K, Umemura SI. Hematoporphyrin as a sensitizer of cell-damaging effect of ultrasound. Jpn J Cancer Res 1989; 80(3): 219-22.
[11]
Yumita NN, Nishigaki R, Umemura K, Umemura S. Synergistic Effect of Ultrasound and Hematoporphyrin on Sarcoma 180. Jpn J Cancer Res 1990; 81(3): 304-8.
[12]
Jin ZH, Miyoshi N, Ishiguro K, et al. Combination effect of photodynamic and sonodynamic therapy on experimental skin squamous cell carcinoma in C3H/HeN mice. J Dermatol 2000; 27(5): 294-306.
[13]
Tserkovsky DA, Alexandrova EN, Chalau VN, Istomin YP. Effects of combined sonodynamic and photodynamic therapies with photolon on a glioma C6 tumor model. Exp Oncol 2012; 34(4): 332-5.
[14]
Sirsi SR, Borden MA. Advances in ultrasound mediated gene therapy using microbubble contrast agents. Theranostics 2012; 2(12): 1208-22.
[15]
Wu Y, Lu CT, Li WF, et al. Preparation and antitumor activity of bFGF-mediated active targeting doxorubicin microbubbles. Drug Dev Ind Pharm 2013; 39(11): 1712-9.
[16]
Abrahamse H, Hamblin MR. New photosensitizers for photodynamic therapy. Biochem J 2016; 473(4): 347-64.
[17]
van Straten D, Mashayekhi V, de Bruijn H, et al. Oncologic photodynamic therapy: basic principles, current clinical status and future directions. Cancers (Basel) 2017; 9(2): 19.
[18]
Castano AP, Demidova TN, Hamblin MR. Mechanisms in photodynamic therapy: part one-photosensitizers, photochemistry and cellular localization. Photodiagn Photodyn Ther 2004; 1(4): 279-93.
[19]
Castano AP, Demidova TN, Hamblin MR. Mechanisms in photodynamic therapy: part two-cellular signaling, cell metabolism and modes of cell death. Photodiagn Photodyn Ther 2005; 2(1): 1-23.
[20]
Lafond M, Yoshizawa S, Umemura SI. Sonodynamic therapy: advances and challenges in clinical translation. J Ultrasound Med 2018; 1-14.
[21]
Pan X, Wang H, Wang S, et al. Sonodynamic therapy (SDT): a novel strategy for cancer nanotheranostics. Sci China Life Sci 2018; 61(4): 415-26.
[22]
Rengeng L, Qianyu Z, Yuehong L, et al. Sonodynamic therapy, a treatment developing from photodynamic therapy. Photodiagn Photodyn Ther 2017; 19: 159-66.
[23]
Wang X, Jia Y, Wang P, et al. Current status and future perspectives of sonodynamic therapy in glioma treatment. Ultrason Sonochem 2017; 37: 592-9.
[24]
Liu Y, Wang P, Liu Q, Wang X. Sinoporphyrin sodium triggered sono-photodynamic effects on breast cancer both in vitro and in vivo. Ultrason Sonochem 2016; 31: 437-48.
[25]
Saito M, Iida T, Nagayama D. Photodynamic therapy with verteporfin for age-related macular degeneration or polypoidal choroidal vasculopathy: comparison of the presence of serous retinal pigment epithelial detachment. Br J Ophthalmol 2008; 92(12): 1642-7.
[26]
Shavkuta BS, Gerasimov MY, Minaev NV, et al. Highly effective 525 nm femtosecond laser crosslinking of collagen and strengthening of a human donor cornea. Laser Phys Lett 2018; 15(1): 015602.
[27]
Robertson CA, Evans DH, Abrahamse H. Photodynamic therapy (PDT): a short review on cellular mechanisms and cancer research applications for PDT. J Photochem Photobiol B 2009; 96(1): 1-8.
[28]
Juzeniene A, Moan J. The history of PDT in Norway Part one: Identification of basic mechanisms of general PDT. Photodiagn Photodyn Ther 2007; 4(1): 3-11.
[29]
Agostinis PBE, Breyssens H. Regulatory pathways in photodynamic therapy induced apoptosis. In: 10th Congress of the European-Society-for-Photobiology. Vienna, Austria. Photochem Photobiol Sci 2004; 3(8): 721-9.
[30]
Li X, Kolemen S, Yoon J, Akkaya EU. Activatable photosensitizers: agents for selective photodynamic therapy. Adv Funct Mater 2017; 27(5): 1604053.
[31]
Fan W, Huang P, Chen X. Overcoming the Achilles’ heel of photodynamic therapy. Chem Soc Rev 2016; (45): 6488-519.
[32]
Tian J, Zhou J, Shen Z, Ding L, Yu J-S, Ju H. A pH-activatable and aniline-substituted photosensitizer for near-infrared cancer theranostics. Chem Sci 2015; (6): 5969-77.
[33]
Battogtokh GK, Ko YT. Active-targeted pH-responsive albumin-photosensitizer conjugate nanoparticles as theranostic agents. J Mater Chem B 2015; 3(48): 9349-59.
[34]
Cottrell WJ, Paquette AD, Keymel KR, et al. Irradiance-dependent photobleaching and pain in delta-aminolevulinic acid-photodynamic therapy of superficial basal cell carcinomas. Clin Cancer Res 2008; (14): 4475-83.
[35]
Foster TH, Murant RS, Bryant RG, Knox RS, Gibson SL, Hilf R. Oxygen consumption and diffusion effects in photodynamic therapy. Radiat Res 1991; 126(3): 296-303.
[36]
Wang W, Moriyama LT, Bagnato VS. Photodynamic therapy induced vascular damage: an overview of experimental PDT. Laser Phys Lett 2013; 10: 023001.
[37]
Sitnik TH. BW. The effect of fluence rate on tumor and normal tissue responses to photodynamic therapy. Photochem Photobiol 1998; 67: 462-6.
[38]
Sitnik TH, Hampton JA, Henderson BW. Reduction of tumour oxygenation during and after photodynamic therapy in vivo: effects of fluence rate. Br J Cancer 1998; 77: 1386-94.
[39]
Song. C. W. SA, Osborn J. L., & Iwata K. Tumour oxygenation is increased by hyperthermia at mild temperatures. Int J Hyperthermia 2009; 25: 91-5.
[40]
Bolfarini GC, Siqueira-Moura MP, Demets GJF, et al. In vitro evaluation of combined hyperthermia and photodynamic effects using magnetoliposomes loaded with cucurbituril zinc phthalocyanine complex on melanoma. J Photochem Photobiol B 2012; 115: 1-4.
[41]
Di Corato R, Béalle G, Kolosnjaj-Tabi J, et al. Combining magnetic hyperthermia and photodynamic therapy for tumor ablation with photoresponsive magnetic liposomes. ACS Nano 2015; 9: 2904-16.
[42]
Matzi V, Maier A, Sankin O, et al. Photodynamic therapy enhanced by hyperbaric oxygenation in palliation of malignant pleural mesothelioma: clinical experience. Photodiagn Photodyn Ther 2004; 1: 57-64.
[43]
Chen Q, Huang Z, Chen H, et al. Improvement of tumor response by manipulation of tumor oxygenation during photodynamic therapy. Photochem Photobiol 2002; 76: 197-203.
[44]
Day RA, Estabrook DA, Logan JK, Sletten EM. Fluorous photosensitizers enhance photodynamic therapy with perfluorocarbon nanoemulsions. Chem Commun (Camb) 2017; 53: 13043-6.
[45]
Cheng Y, Cheng H, Jiang C, et al. Perfluorocarbon nanoparticles enhance reactive oxygen levels and tumour growth inhibition in photodynamic therapy. Nat Commun 2015; 6: 8785.
[46]
Clark L, Gollan F. Survival of mammals breathing organic liquids equilibrated with oxygen at atmospheric pressure. Science 1966; 152(3730): 1755-6.
[47]
Castro CI, Briceno JC. Perfluorocarbon-based oxygen carriers: review of products and trials. Artif Organs 2010; 34(8): 622-34.
[48]
Jahr J, Walker V, Manoochehri K. Blood substitutes as pharmacotherapies in clinical practice. Curr Opin Anaesthesiol 2007; 20: 325-30.
[49]
Fingar VHMT, Henderson BW. Modification of photodynamic therapy-induced hypoxia by fluosol-DA (20%) and carbogen breathing in mice. Cancer Res 1988; 48: 3350-4.
[50]
Wang YG, Kim H, Mun S, et al. Indocyanine green-loaded perfluorocarbon nanoemulsions for bimodal (19)F-magnetic resonance/nearinfrared fluorescence imaging and subsequent phototherapy. Quant Imaging Med Surg 2013; 3: 132-40.
[51]
Ren H, Liu J, Su F, et al. Relighting photosensitizers by synergistic integration of albumin and perfluorocarbon for enhanced photodynamic therapy. ACS Appl Mater Interfaces 2017; 9: 3463-73.
[52]
Sheng D, Liu T, Deng L, et al. Perfluorooctyl bromide & indocyanine green co-loaded nanoliposomes for enhanced multimodal imaging-guided phototherapy. Biomaterials 2018; 165: 1-13.
[53]
Wang J, Liu L, You Q, et al. All-in-one theranostic nanoplatform based on hollow MoSx for photothermally-maneuvered oxygen self-enriched photodynamic therapy. Theranostics 2018; 8: 955-71.
[54]
Song X, Feng L, Liang C, et al. Ultrasound triggered tumor oxygenation with oxygen-shuttle nanoperfluorocarbon to overcome hypoxia-associated resistance in cancer therapies. Nano Lett 2016; 16: 6145-53.
[55]
Chen H, Zhou X, Gao Y, et al. Recent progress in development of new sonosensitizers for sonodynamic cancer therapy. Drug Discov Today 2014; 19: 502-9.
[56]
Tachibana K, Feril Jr L.B., Ikeda-Dantsuji Y. Sonodynamic therapy. Ultrasonics 2008; 48(4): 253-9.
[57]
Rosenthal I, Sostaric JZ, Riesz P. Sonodynamic therapy--a review of the synergistic effects of drugs and ultrasound. Ultrason Sonochem 2004; 11(6): 349-63.
[58]
Hirschberg H, Madsen S. Synergistic efficacy of ultrasound, sonosensitizers and chemotherapy: a review. Ther Deliv 2017; 8(5): 331-42.
[59]
Chen J, Luo H, Liu Y, et al. Oxygen-self-produced nanoplatform for relieving hypoxia and breaking resistance to sonodynamic treatment of pancreatic cancer. ACS Nano 2017; 11(12): 12849-62.
[60]
Ju D, Yamaguchi F, Zhan G, et al. Hyperthermotherapy enhances antitumor effect of 5-aminolevulinic acid-mediated sonodynamic therapy with activation of caspase-dependent apoptotic pathway in human glioma. Tumour Biol 2016; 37: 10415-26.
[61]
Umemura SYN, Nishigaki R, Umemura K. Mechanism of cell damage by ultrasound in combination with hematoporphyrin. Jpn J Cancer Res 1990; 81: 962-6.
[62]
Kessel DJR, Fowlkes JB, Cain C. Porphyrin-induced enhancement of ultrasound cytotoxicity. Int J Radiat Biol 1994; 66: 221-8.
[63]
Tang W, Liu Q, Zhang J, et al. In vitro activation of mitochondria-caspase signaling pathway in sonodynamic therapy-induced apoptosis in sarcoma 180 cells. Ultrasonics 2010; 50: 567-76.
[64]
Li JH, Song DY, Xu YG, et al. In vitro study of haematoporphyrin monomethyl ether-mediated sonodynamic effects on C6 glioma cells. Neurol Sci 2008; 29: 229-35.
[65]
Su X, Wang P, Wang X, et al. Apoptosis of U937 cells induced by hematoporphyrin monomethyl ether-mediated sonodynamic action. Cancer Biother Radiopharm 2013; 28: 207-17.
[66]
Feng Q, Zhang W, Yang X, et al. pH/Ultrasound dual-responsive gas generator for ultrasound imaging-guided therapeutic inertial cavitation and sonodynamic therapy. Adv Healthc Mater 2017; 7(5): Epub
[67]
Yan S, Lu M, Ding X, et al. HematoPorphyrin monomethyl ether polymer contrast agent for ultrasound/photoacoustic dual-modality imaging-guided synergistic high intensity focused ultrasound (HIFU) therapy. Sci Rep 2016; 6: 31833.
[68]
Su X, Wang X, Zhang K, et al. Sonodynamic therapy induces apoptosis of human leukemia HL-60 cells in the presence of protoporphyrin IX. Gen Physiol Biophys 2016; 35(2): 155-64.
[69]
Huang P, Qian X, Chen Y, et al. Metalloporphyrin-encapsulated biodegradable nanosystems for highly efficient magnetic resonance imaging-guided sonodynamic cancer therapy. J Am Chem Soc 2017; 139: 1275-84.
[70]
Umemura KY. N; Nishigaki, R; Umemura, Si. Sonodynamically induced antitumor effect of pheophorbide a. Cancer Lett 1996; 102: 151-7.
[71]
Xu ZY, Wang K, Li XQ, et al. The ABCG2 transporter is a key molecular determinant of the efficacy of sonodynamic therapy with Photofrin in glioma stem-like cells. Ultrasonics 2013; 53: 232-8.
[72]
Yumita NNR, Umemura S. Sonodynamically induced antitumor effect of Photofrin II on colon 26 carcinoma. J Cancer Res Clin Oncol 2000; 126: 601-6.
[73]
Tachibana K, Kimura N, Okumura M, Eguchi H, Tachibana S. Enhancement of cell killing of HL-60 cells by ultrasound in the presence of the photosensitizing drug Photofrin II. Cancer Lett 1993; 72(3): 195-9.
[74]
Yumita N, Okudaira K, Momose Y, Umemura S. Sonodynamically induced apoptosis and active oxygen generation by gallium-porphyrin complex, ATX-70. Cancer Chemother Pharmacol 2010; 66: 1071-8.
[75]
Umemura Si. Yumita NN, R. Enhancement of ultrasonically induced cell damage by a gallium-porphyrin complex, ATX-70. Jpn J Cancer Res 1993; 84: 582-8.
[76]
Abe HKM, Tachibana K. Targeted sonodynamic therapy of cancer using a photosensitizer conjugated with antibody against carcinoembryonic antigen. Anticancer Res 2002; (22): 1575-80.
[77]
Yumita NNR, Sakata I. Sonodynamically induced antitumor effect of 4-formyloximethylidene-3-hydroxy-2-vinyl-deuterio-porphynyl(IX)-6,7-diaspartic acid (ATX-S10). Jpn J Cancer Res 2000; 91: 255-60.
[78]
Yumita N, Sakata I, Nakajima S, Umemura S. Ultrasonically induced cell damage and active oxygen generation by 4-formyloximeetylidene-3-hydroxyl-2-vinyl-deuterio-porphynyl(IX)-6-7-diaspartic acid: on the mechanism of sonodynamic activation. Biochim Biophys Acta, Gen Subj 2003; 1620(1-3): 179-84.
[79]
Yumita N, Han QS, Kitazumi I, Umemura S. Sonodynamically-induced apoptosis, necrosis, and active oxygen generation by mono-l-aspartyl chlorin e6. Cancer Sci 2008; 99(1): 166-72.
[80]
Yumita N, Iwase Y, Nishi K, et al. Involvement of reactive oxygen species in sonodynamically induced apoptosis using a novel porphyrin derivative. Theranostics 2012; 2(9): 880-8.
[81]
Hachimine K, Shibaguchi H, Kuroki M, et al. Sonodynamic therapy of cancer using a novel porphyrin derivative, DCPH-P-Na(I), which is devoid of photosensitivity. Cancer Sci 2007; 98(6): 916-20.
[82]
Yumita NKK, Sasaki K. Sonodynamic effect of erythrosin B on sarcoma 180 cells in vitro. Ultrason Sonochem 2002; 9: 259-65.
[83]
Umemura SYN, Umemura K, Nishigaki R. Sonodynamically induced effect of rose bengal on isolated sarcoma 180 cells. Cancer Chemother Pharmacol 1999; 43: 389-93.
[84]
Nonaka M, Yamamoto M, Yoshino S, Umemura S, Sasaki K, Fukushima T. Sonodynamic therapy consisting of focused ultrasound and a photosensitizer causes a selective antitumor effect in a rat intracranial glioma model. Anticancer Res 2009; 29(3): 943-50.
[85]
Sugita N, Kawabata K, Sasaki K, Sakata I, Umemura S. Synthesis of amphiphilic derivatives of rose bengal and their tumor accumulation. Bioconjug Chem 2007; 18(3): 866-73.
[86]
Sugita N, Iwase Y, Yumita N, Ikeda T, Umemura S. Sonodynamically induced cell damage using rose bengal derivative. Anticancer Res 2010; 30(9): 3361-6.
[87]
Chen Z, Li J, Song X, Wang Z, Yue W. Use of a novel sonosensitizer in sonodynamic therapy of U251 glioma cells in vitro. Exp Ther Med 2012; (3): 273-8.
[88]
Sviridov AP, Andreev VG, Ivanova EM, Osminkina LA, Tamarov KP, Timoshenko VYu. Porous silicon nanoparticles as sensitizers for ultrasonic hyperthermia. Appl Phys Lett 2013; 103: 193110.
[89]
Yumita N, Watanabe T, Chen FS, Momose Y, Umemura S. Induction of apoptosis by functionalized fullerene-based sonodynamic therapy in HL-60 cells. Anticancer Res 2016; 36(6): 2665-74.
[90]
Qian J, Gao Q. Sonodynamic therapy mediated by emodin induces the oxidation of microtubules to facilitate the sonodynamic effect. Ultrasound Med Biol 2018; 44(4): 853-60.
[91]
Gao Q, Wang F, Guo S, et al. Sonodynamic effect of an anti-inflammatory agent--emodin on macrophages. Ultrasound Med Biol 2011; 37(9): 1478-85.
[92]
Qian X, Zheng Y, Chen Y. Micro/nanoparticle-augmented sonodynamic therapy (SDT): breaking the depth shallow of photoactivation. Adv Mater 2016; 28(37): 8097-129.
[93]
Harada Y, Ogawa K, Irie Y, et al. Ultrasound activation of TiO2 in melanoma tumors. J Control Release 2011; 149(2): 190-5.
[94]
Yamaguchi S, Kobayashi H, Narita T, et al. Sonodynamic therapy using water-dispersed TiO2-polyethylene glycol compound on glioma cells: comparison of cytotoxic mechanism with photodynamic therapy. Ultrason Sonochem 2011; 18(5): 1197-204.
[95]
Shen S, Wu L, Liu J, et al. Core-shell structured Fe3O4@TiO2-doxorubicin nanoparticles for targeted chemo-sonodynamic therapy of cancer. Int J Pharm 2015; 486(1-2): 380-8.
[96]
Shen S, Guo X, Wu L, et al. Dual-core@shell-structured Fe3O4–NaYF4@TiO2 nanocomposites as a magnetic targeting drug carrier for bioimaging and combined chemo-sonodynamic therapy. J Mater Chem B 2014; 2(35): 5775-84.
[97]
Lentacker I, De Cock I, Deckers R, et al. Understanding ultrasound induced sonoporation: definitions and underlying mechanisms. Adv Drug Deliv Rev 2014; 72: 49-64.
[98]
Ward M, Wu J, Chiu J-F. Ultrasound-induced cell lysis and sonoporation enhanced by contrast agents. J Acoust Soc Am 1999; 105(5): 2951-7.
[99]
Lakshmanan S, Gupta GK, Avci P, et al. Physical energy for drug delivery; poration, concentration and activation. Adv Drug Deliv Rev 2014; 71: 98-114.
[100]
Wu J, Nyborg WL. Ultrasound, cavitation bubbles and their interaction with cells. Adv Drug Deliv Rev 2008; 60(10): 1103-16.
[101]
Kooiman K, Foppen-Harteveld M, van der Steen AF, de Jong N. Sonoporation of endothelial cells by vibrating targeted microbubbles. J Control Release 2011; 154(1): 35-41.
[102]
Fan Z, Liu H, Mayer M, Deng CX. Spatiotemporally controlled single cell sonoporation. Proc Natl Acad Sci USA 2012; 109(41): 16486-91.
[103]
van Wamel A, Kooiman K, Harteveld M, et al. Vibrating microbubbles poking individual cells: drug transfer into cells via sonoporation. J Control Release 2006; 112(2): 149-55.
[104]
Fan P, Zhang Y, Guo X, et al. Cell-cycle-specific cellular responses to sonoporation. Theranostics 2017; 7(19): 4894-908.
[105]
Hu Y, Wan JM, Yu AC. Membrane perforation and recovery dynamics in microbubble-mediated sonoporation. Ultrasound Med Biol 2013; 39(12): 2393-405.
[106]
Spurny P, Oberst J, Heinlein D. Photographic observations of Neuschwanstein, a second meteorite from the orbit of the Pribram chondrite. Nature 2003; 423: 151-3.
[107]
Lauterborn W, Kurz T. Physics of bubble oscillations. Rep Prog Phys 2010; 73(10): 106501.
[108]
Allen J, Roy R, Church C. On the role of shear viscosity in mediating inertial cavitation from short-pulse, megahertz-frequency ultrasound. IEEE Trans Ultrason Ferroelectr Freq Control 1997; 44(4): 743-51.
[109]
Ohl CD, Arora M, Ikink R, et al. Sonoporation from jetting cavitation bubbles. Biophys J 2006; 91(11): 4285-95.
[110]
Prentice P, Cuschieri A, Dholakia K, et al. Membrane disruption by optically controlled microbubble cavitation. Nat Phys 2005; 1: 107-10.
[111]
Nishikawa M, Huang L. Nonviral vectors in the new millennium: delivery barriers in gene transfer. Hum Gene Ther 2001; 12(8): 861-70.
[112]
Lentacker I, De Geest B, Vandenbroucke R, et al. Ultrasound-responsive polymer-coated microbubbles that bind and protect DNA. Langmuir 2006; 22(17): 7273-8.
[113]
Frenkel P, Chen S, Thai T, Shohet RV, Grayburn PA. DNA-loaded albumin microbubbles enhance ultrasound-mediated transfection in vitro. Ultrasound Med Biol 2002; 28(6): 817-22.
[114]
Bekeredjian R, Chen S, Grayburn PA, Shohet RV. Augmentation of cardiac protein delivery using ultrasound targeted microbubble destruction. Ultrasound Med Biol 2005; 31(5): 687-91.
[115]
Wilson K, Homan K, Emelianov S. Biomedical photoacoustics beyond thermal expansion using triggered nanodroplet vaporization for contrast-enhanced imaging. Nat Commun 2012; 3: 618.
[116]
Teupe C, Richter S, Fisslthaler B, et al. Vascular gene transfer of phosphomimetic endothelial nitric oxide synthase (S1177D) using ultrasound-enhanced destruction of plasmid-loaded microbubbles improves vasoreactivity. Circulation 2002; 105(9): 1104-9.
[117]
Bekeredjian R, Chen S, Frenkel PA, Grayburn PA, Shohet RV. Ultrasound-targeted microbubble destruction can repeatedly direct highly specific plasmid expression to the heart. Circulation 2003; 108(8): 1022-6.
[118]
Haag P, Frauscher F, Gradl J, et al. Microbubble-enhanced ultrasound to deliver an antisense oligodeoxynucleotide targeting the human androgen receptor into prostate tumours. J Steroid Biochem Mol Biol 2006; 102(1-5): 103-13.
[119]
Christiansen JP, French BA, Klibanov AL, Kaul S, Lindner JR. Targeted tissue transfection with ultrasound destruction of plasmid-bearing cationic microbubbles. Ultrasound Med Biol 2003; 29(12): 1759-67.
[120]
Tinkov S, Coester C, Serba S, et al. New doxorubicin-loaded phospholipid microbubbles for targeted tumor therapy: in vivo characterization. J Control Release 2010; 148(3): 368-72.
[121]
Tinkov S, Winter G, Coester C, Bekeredjian R. New doxorubicin-loaded phospholipid microbubbles for targeted tumor therapy: Part I--Formulation development and in vitro characterization. J Control Release 2010; 143(1): 143-50.
[122]
De Cock I, Lajoinie G, Versluis M, De Smedt SC, Lentacker I. Sonoprinting and the importance of microbubble loading for the ultrasound mediated cellular delivery of nanoparticles. Biomaterials 2016; 83: 294-307.
[123]
Cosgrove D, Harvey C. Clinical uses of microbubbles in diagnosis and treatment. Med Biol Eng Comput 2009; 47(8): 813-26.
[124]
Weissleder R, Mahmood U. Molecular imaging. Radiology 2001; 219(2): 316-33.
[125]
Quaia E. Microbubble ultrasound contrast agents: an update. Eur Radiol 2007; 17(8): 1995-2008.
[126]
Bartolotta TV, Vernuccio F, Taibbi A, Lagalla R. Contrast-enhanced ultrasound in focal liver lesions: where do we stand? Semin Ultrasound CT MR 2016; 37(6): 573-86.
[127]
Wu Q, Wang Y, Li Y, Hu B, He ZY. Diagnostic value of contrast-enhanced ultrasound in solid thyroid nodules with and without enhancement. Endocrine 2016; 53(2): 480-8.
[128]
Mori N, Mugikura S, Takahashi S, et al. Quantitative analysis of contrast-enhanced ultrasound imaging in invasive breast cancer: a novel technique to obtain histopathologic information of microvessel density. Ultrasound Med Biol 2017; 43(3): 607-14.
[129]
Porter TR, Xie F. Myocardial perfusion imaging with contrast ultrasound. JACC Cardiovasc Imaging 2010; 3(2): 176-87.
[130]
Hoffmann R, Barletta G, von Bardeleben S, et al. Analysis of left ventricular volumes and function: a multicenter comparison of cardiac magnetic resonance imaging, cine ventriculography, and unenhanced and contrast-enhanced two-dimensional and three-dimensional echocardiography. J Am Soc Echocardiogr 2014; 27(3): 292-301.
[131]
Madani A, Beletsky V, Tamayo A, Munoz C, Spence JD. High-risk asymptomatic carotid stenosis Ulceration on 3D ultrasound vs. TCD microemboli. Neurology 2011; 77(8): 744-50.
[132]
Eisenbrey JR, Burstein OM, Kambhampati R, Forsberg F, Liu JB, Wheatley MA. Development and optimization of a doxorubicin loaded poly(lactic acid) contrast agent for ultrasound directed drug delivery. J Control Release 2010; 143(1): 38-44.
[133]
Cochran MC, Eisenbrey J, Ouma RO, Soulen M, Wheatley MA. Doxorubicin and paclitaxel loaded microbubbles for ultrasound triggered drug delivery. Int J Pharm 2011; 414(1-2): 161-70.
[134]
Holt RG, Roy RA. Measurements of bubble-enhanced heating from focused, mhz-frequency ultrasound in a tissue-mimicking material. Ultrasound Med Biol 2001; 27(10): 1399-412.
[135]
Watmough DJ, Lakshmi R, Ghezzi F, et al. The effect of gas bubbles on the production of ultrasound hyperthermia at 0.75 MHz: A phantom study. Ultrasound Med Biol 1993; 19(3): 231-41.
[136]
Li C, Zhang Y, Li Z, et al. Light-responsive biodegradable nanorattles for cancer theranostics. Adv Mater 2018; 30(8): 1-8.
[137]
Sheikov N, McDannold N, Vykhodtseva N, Jolesz F, Hynynen K. Cellular mechanisms of the blood-brain barrier opening induced by ultrasound in presence of microbubbles. Ultrasound Med Biol 2004; 30(7): 979-89.
[138]
Lammers T, Koczera P, Fokong S, et al. Theranostic USPIO-loaded microbubbles for mediating and monitoring blood-brain barrier permeation. Adv Funct Mater 2015; 25(1): 36-43.
[139]
Bleeker H, Shung K, Barnhart J. Ultrasonic characterization of Albunex©, a new contrast agent. J Acoust Soc Am 1990; 87(4): 1792-7.
[140]
Guvener N, Appold L, de Lorenzi F, et al. Recent advances in ultrasound-based diagnosis and therapy with micro- and nanometer-sized formulations. Methods 2017; 130: 4-13.
[141]
Li H, Yang Y, Zhang M, et al. Acoustic characterization and enhanced ultrasound imaging of long-circulating lipid-coated microbubbles. J Ultrasound Med 2018; 37(5): 1243-56.
[142]
Lindner JR. Microbubbles in medical imaging: current applications and future directions. Nat Rev Drug Discov 2004; 3(6): 527-32.
[143]
Hernot S, Klibanov AL. Microbubbles in ultrasound-triggered drug and gene delivery. Adv Drug Deliv Rev 2008; 60(10): 1153-66.
[144]
Wang S, Hossack JA, Klibanov AL. Targeting of microbubbles: contrast agents for ultrasound molecular imaging. J Drug Target 2018; 26(5-6): 420-34.
[145]
DeJong N, Hoff L, Skotland T, Bom N. Absorption and scatter of encapsulated gas filled microspheres: theoretical considerations and some measurements. Ultrasonics 1992; 30(2): 95-103.
[146]
Hoff L, Sontum PC, Hovem JM. Oscillations of polymeric microbubbles: Effect of the encapsulating shell. J Acoust Soc Am 2000; 107(4): 2272-80.
[147]
Qin S, Ferrara K. A model for the dynamics of ultrasound contrast agents in vivo. J Acoust Soc Am 2010; 128(3): 1511-21.
[148]
Church C. The effects of an elastic solid surface layer on the radial pulsations of gas bubbles. J Acoust Soc Am 1995; 97(3): 1510-21.
[149]
Guo X, Li Q, Zhang Z, Zhang D. Tu. Investigation on the inertial cavitation threshold and shell properties of commercialized ultrasound contrast agent microbubbles. J Acoust Soc Am 2013; 134(2): 1622-31.
[150]
Sheeran PS, Dayton PA. Improving the performance of phase-change perfluorocarbon droplets for medical ultrasonography: current progress, challenges, and prospects. Scientifica (Cairo) 2014; 2014: 579684.
[151]
Sheeran PS, Luois S, Dayton PA, Matsunaga TO. Formulation and acoustic studies of a new phase-shift agent for diagnostic and therapeutic ultrasound. Langmuir 2011; 27(17): 10412-20.
[152]
Sheeran PS, Luois SH, Mullin LB, Matsunaga TO, Dayton PA. Design of ultrasonically-activatable nanoparticles using low boiling point perfluorocarbons. Biomaterials 2012; 33(11): 3262-9.
[153]
Sheeran PS, Matsunaga TO, Dayton PA. Phase change events of volatile liquid perfluorocarbon contrast agents produce unique acoustic signatures. Phys Med Biol 2014; 59(2): 379-401.
[154]
Kripfgans OD, Fowlkes JB, Woydt M, Eldevik OP, Carson PL. In vivo droplet vaporization for occlusion therapy and phase aberration correction. IEEE Trans Ultrason Ferroelectr Freq Control 2002; 49(6): 726-38.
[155]
Zhang M, Fabiilli ML, Haworth KJ, et al. Initial investigation of acoustic droplet vaporization for occlusion in canine kidney. Ultrasound Med Biol 2010; 36(10): 1691-703.
[156]
Haworth K, Fowlkes J, Carson P, Kripfgans O. Towards aberration correction of transcranial ultrasound using acoustic droplet vaporization. Ultrasound Med Biol 2008; 34(3): 435-45.
[157]
Huang J, Xu JS, Xu RX. Heat-sensitive microbubbles for intraoperative assessment of cancer ablation margins. Biomaterials 2010; 31(6): 1278-86.
[158]
Kang ST, Lin YC, Yeh CK. Mechanical bioeffects of acoustic droplet vaporization in vessel-mimicking phantoms. Ultrason Sonochem 2014; 21(5): 1866-74.
[159]
Miyoshi N, Kundu SK, Tuziuti T, Yasui K, Shimada I, Ito Y. Combination of Sonodynamic and Photodynamic Therapy against Cancer Would Be Effective through Using a Regulated Size of Nanoparticles. Nanosci Nanoeng 2016; 4(1): 1-11.
[160]
Abd El-Kaream SA, Abd Elsamie GH, Abd-Alkareem AS. Sono-photodynamic modality for cancer treatment using bio-degradable bio-conjugated sonnelux nanocomposite in tumor-bearing mice: Activated cancer therapy using light and ultrasound. Biochem Biophys Res Commun 2018; 503(2): 1075-86.
[161]
Wang P, Li C, Wang X, et al. Anti-metastatic and pro-apoptotic effects elicited by combination photodynamic therapy with sonodynamic therapy on breast cancer both in vitro and in vivo. Ultrason Sonochem 2015; 23: 116-27.
[162]
Wang H, Wang P, Zhang K, Wang X, Liu Q. Changes in cell migration due to the combined effects of sonodynamic therapy and photodynamic therapy on MDA-MB-231 cells. Laser Phys Lett 2015; 12(3): 035603.
[163]
Li Q, Wang X, Wang P, et al. Efficacy of chlorin e6-mediated sono-photodynamic therapy on 4T1 cells. Cancer Biother Radiopharm 2014; 29(1): 42-52.
[164]
Chen HJ, Zhou XB, Wang AL, Zheng BY, Yeh CK, Huang JD. Synthesis and biological characterization of novel rose bengal derivatives with improved amphiphilicity for sono-photodynamic therapy. Eur J Med Chem 2018; 145: 86-95.
[165]
Nomikou N, Curtis K, McEwan C, et al. A versatile, stimulus-responsive nanoparticle-based platform for use in both sonodynamic and photodynamic cancer therapy. Acta Biomater 2017; 49: 414-21.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 25
ISSUE: 4
Year: 2019
Page: [401 - 412]
Pages: 12
DOI: 10.2174/1381612825666190123114107
Price: $58

Article Metrics

PDF: 54
HTML: 12

Special-new-year-discount



Novel Strategies and Pharmaceutical Agents for the Treatment of Leishmaniasis: A Review

(E-pub Ahead of Print)

Author(s): Mohammad Ali Nilforoushzadeh, Maryam Heidari-Kharaji*, Mehrak Zare, Elham Torkamaniha, Sima Rafati.

Journal Name: Anti-Infective Agents
Anti-Infective Agents in Medicinal Chemistry

Abstract:

Leishmaniasis is a major tropical disease. There is no effective vaccine against leishmaniasis and chemotherapy is still the most effective treatment for the disease. However, most of the common drugs have many disadvantages such as toxicity and high cost. Most important of all is the development of resistance against these drugs. Many studies have tried to provide new pharmaceutical agents and formulations in various ways to overcome these problems. In recent years, medical plants have been widely considered for leishmaniasis treatment. Besides, various drug delivery strategies have been studied for the treatment of leishmaniasis in order to increase activity and reduce the side effects of the drugs. Accordingly, nanotechnology will play an important role in the preparation of new pharmaceutical formulations. In this review, we focused on various therapeutic approaches for leishmaniasis.

Keywords: Leishmaniasis, Herbal drugs, Liposomes, Solid Lipid Nanoparticles (SLNs), Carbon Nanotubes (CNTs), Nanomedicine

Rights & PermissionsPrintExport Cite as

Article Details

(E-pub Ahead of Print)
DOI: 10.2174/2211352517666190123113843

Article Metrics

PDF: 4

Special-new-year-discount


The Role of Antioxidants in Cancer, Friends or Foes?

Author(s): B. Poljsak, I. Milisav*.

Journal Name: Current Pharmaceutical Design

Volume 24 , Issue 44 , 2018

Abstract:

Consumption of dietary supplements by millions of people is increasing [1]. Between 64 to 81% of cancer patients and survivors use multivitamin supplements after the cancer diagnosis [2]. The use of antioxidants during cancer therapy has been a hot topic in medical science for the last 20 years without clear answers and recommendations. It seems that antioxidants are able to I) decrease the cancer formation risk by quenching ROS that are involved in cancer initiation and progression and II) assist in survival of cancer/precancer cells once the malignant transformation already occurred. Antioxidants were shown to assist cancer initiation, interfere with cancer treatment by reducing its efficacy and patient survival, and vice versa, there are reports of beneficial antioxidant effect during the cancer treatment.

Keywords: Antioxidants, cancer, beta carotene, vitamin E, selenium, vitamin C.

[1]
Centers for Disease Control and Prevention. National Center for Health Statistics. Dietary Supplement Use Among U.S. Adults has Increased Since NHANES III (1988-1994). NCHS Data Brief No 61 2011. April ; [Retrieved on June 27, 2018];
[2]
Velicer CM, Ulrich CM. Vitamin and mineral supplement use among US adults after cancer diagnosis: A systematic review. J Clin Oncol 2008; 26(4): 665-73.
[3]
Steinmetz KA, Potter JD. Vegetables, fruit, and cancer prevention: A review. J Am Diet Assoc 1996; 96(10): 1027-39.
[4]
Borek C. Antioxidants and cancer. Sci Med (Phila) 1997; 4: 51-62.
[5]
Borek C. Antioxidants and radiation therapy. J Nutr 2004; 134(11): 3207S-9S.
[6]
Borek C. Dietary antioxidants and human cancer. Integr Cancer Ther 2004; 3(4): 333-41.
[7]
Willett WC. Fruits, vegetables, and cancer prevention: turmoil in the produce section. J Natl Cancer Inst 2010; 102(8): 510-1.
[8]
George SM, Park Y, Leitzmann MF, et al. Fruit and vegetable intake and risk of cancer: A prospective cohort study. Am J Clin Nutr 2009; 89(1): 347-53.
[9]
Tanaka T, Sugie S. Inhibition of colon carcinogenesis by dietary non-nutritive compounds. J Toxicol Pathol 2007; 20: 215-35.
[10]
Poljšak B, Fink R. The protective role of antioxidants in the defence against ROS/RNS-mediated environmental pollution. Oxid Med Cell Longev 2014; 2014: 671539.
[11]
Bravo L. Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutr Rev 1998; 56(11): 317-33.
[12]
Cherubini A, Vigna GB, Zuliani G, Ruggiero C, Senin U, Fellin R. Role of antioxidants in atherosclerosis: epidemiological and clinical update. Curr Pharm Des 2005; 11(16): 2017-32.
[13]
Lotito SB, Frei B. Consumption of flavonoid-rich foods and increased plasma antioxidant capacity in humans: cause, consequence, or epiphenomenon? Free Radic Biol Med 2006; 41(12): 1727-46.
[14]
Milligan SA, Burke P, Coleman DT, et al. The green tea polyphenol EGCG potentiates the antiproliferative activity of c-Met and epidermal growth factor receptor inhibitors in non-small cell lung cancer cells. Clin Cancer Res 2009; 15(15): 4885-94.
[15]
Lee JS, Surh YJ. Nrf2 as a novel molecular target for chemoprevention. Cancer Lett 2005; 224(2): 171-84.
[16]
Abbas A, Patterson W III, Georgel PT. The epigenetic potentials of dietary polyphenols in prostate cancer management. Biochem Cell Biol 2013; 91(6): 361-8.
[17]
Bautista DM, Movahed P, Hinman A, et al. Pungent products from garlic activate the sensory ion channel TRPA1. Proc Natl Acad Sci USA 2005; 102(34): 12248-52.
[18]
Frescas D, Valenti L, Accili D. Nuclear trapping of the forkhead transcription factor FoxO1 via Sirt-dependent deacetylation promotes expression of glucogenetic genes. J Biol Chem 2005; 280(21): 20589-95.
[19]
Borek C, Ong A, Mason H, Donahue L, Biaglow JE. Selenium and vitamin E inhibit radiogenic and chemically induced transformation in vitro via different mechanisms. Proc Natl Acad Sci USA 1986; 83(5): 1490-4.
[20]
Kågerud A, Peterson HI. Tocopherol in irradiation of experimental neoplasms. Influence of dose and administration. Acta Radiol Oncol 1981; 20(2): 97-100.
[21]
Gao P, Zhang H, Dinavahi R, et al. HIF-dependent antitumorigenic effect of antioxidants in vivo. Cancer Cell 2007; 12(3): 230-8.
[22]
Bonner MY, Arbiser JL. The antioxidant paradox: what are antioxidants and how should they be used in a therapeutic context for cancer. Future Med Chem 2014; 6(12): 1413-22.
[23]
Bonner MY, Arbiser JL. The antioxidant paradox: what are antioxidants and how should they be used in a therapeutic context for cancer. Future Med Chem 2014; 6(12): 1413-22.
[24]
Blot WJ, Li JY, Taylor PR, et al. Nutrition intervention trials in Linxian, China: supplementation with specific vitamin/mineral combinations, cancer incidence, and disease-specific mortality in the general population. J Natl Cancer Inst 1993; 85(18): 1483-92.
[25]
Virtamo J, Pietinen P, Huttunen JK, et al. Incidence of cancer and mortality following alpha-tocopherol and beta-carotene supplementation: A postintervention follow-up. JAMA 2003; 290(4): 476-85.
[26]
Helzlsouer KJ, Huang HY, Alberg AJ, et al. Association between alpha-tocopherol, gamma-tocopherol, selenium, and subsequent prostate cancer. J Natl Cancer Inst 2000; 92(24): 2018-23.
[27]
Weinstein SJ, Wright ME, Pietinen P, et al. Serum alpha-tocopherol and gamma-tocopherol in relation to prostate cancer risk in a prospective study. J Natl Cancer Inst 2005; 97(5): 396-9.
[28]
Li H, Stampfer MJ, Giovannucci EL, et al. A prospective study of plasma selenium levels and prostate cancer risk. J Natl Cancer Inst 2004; 96(9): 696-703.
[29]
Zhuo H, Smith AH, Steinmaus C. Selenium and lung cancer: A quantitative analysis of heterogeneity in the current epidemiological literature. Cancer Epidemiol Biomarkers Prev 2004; 13(5): 771-8.
[30]
Hurst R, Hooper L, Norat T, et al. Selenium and prostate cancer: systematic review and meta-analysis. Am J Clin Nutr 2012; 96(1): 111-22.
[31]
Sato R, Helzlsouer KJ, Alberg AJ, Hoffman SC, Norkus EP, Comstock GW. Prospective study of carotenoids, tocopherols, and retinoid concentrations and the risk of breast cancer. Cancer Epidemiol Biomarkers Prev 2002; 11(5): 451-7.
[32]
Heinonen OP, Huttunen JK, Albanes D, et al. The effect of vitamin E and beta carotene on the incidence of lung cancer and other cancers in male smokers. N Engl J Med 1994; 330(15): 1029-35.
[33]
Omenn GS, Goodman GE, Thornquist MD, et al. Effects of a combination of beta carotene and vitamin A on lung cancer and cardiovascular disease. N Engl J Med 1996; 334(18): 1150-5.
[34]
Bjelakovic G, Nikolova D, Gluud LL, Simonetti RG, Gluud C. Antioxidant supplements for prevention of mortality in healthy participants and patients with various diseases. Cochrane Database Syst Rev 2012; (3): CD007176.
[35]
Klein EA, Thompson IM Jr, Tangen CM, et al. Vitamin E and the risk of prostate cancer: the Selenium and Vitamin E Cancer Prevention Trial (SELECT). JAMA 2011; 306(14): 1549-56.
[36]
Lee IM, Cook NR, Gaziano JM, et al. Vitamin E in the primary prevention of cardiovascular disease and cancer: the Women’s Health Study: A randomized controlled trial. JAMA 2005; 294(1): 56-65.
[37]
Lee IM, Cook NR, Manson JE, Buring JE, Hennekens CH. Beta-carotene supplementation and incidence of cancer and cardiovascular disease: the Women’s Health Study. J Natl Cancer Inst 1999; 91(24): 2102-6.
[38]
Hercberg S, Galan P, Preziosi P, et al. The SU.VI.MAX Study: A randomized, placebo-controlled trial of the health effects of antioxidant vitamins and minerals. Arch Intern Med 2004; 164(21): 2335-42.
[39]
Harvie M. Nutritional supplements and cancer: potential benefits and proven harms. Am Soc Clin Oncol Educ Book 2014; •••: e478-86.
[40]
Wang L, Sesso HD, Glynn RJ, et al. Vitamin E and C supplementation and risk of cancer in men: posttrial follow-up in the Physicians’ Health Study II randomized trial. Am J Clin Nutr 2014; 100(3): 915-23.
[41]
Zhang LR, Sawka AM, Adams L, Hatfield N, Hung RJ. Vitamin and mineral supplements and thyroid cancer: A systematic review. Eur J Cancer Prev 2013; 22(2): 158-68.
[42]
Pais R, Dumitraşcu DL. Do antioxidants prevent colorectal cancer? A meta-analysis. Rom J Intern Med 2013; 51(3-4): 152-63.
[43]
Drisko JA, Chapman J, Hunter VJ. The use of antioxidant therapies during chemotherapy. Gynecol Oncol 2003; 88(3): 434-9.
[44]
Noda N, Wakasugi H. Cancer and Oxidative Stress. JMAJ 2001; 44(12): 535-9.
[45]
Khanzode SS, Muddeshwar MG, Khanzode SD, Dakhale GN. Antioxidant enzymes and lipid peroxidation in different stages of breast cancer. Free Radic Res 2004; 38(1): 81-5.
[46]
Sangeetha P, Das UN, Koratkar R, Suryaprabha P. Increase in free radical generation and lipid peroxidation following chemotherapy in patients with cancer. Free Radic Biol Med 1990; 8(1): 15-9.
[47]
Weijl NI, Hopman GD, Wipkink-Bakker A, et al. Cisplatin combination chemotherapy induces a fall in plasma antioxidants of cancer patients. Ann Oncol 1998; 9(12): 1331-7.
[48]
D’Andrea GM. Use of antioxidants during chemotherapy and radiotherapy should be avoided. CA Cancer J Clin 2005; 55(5): 319-21.
[49]
Albanes D, Heinonen OP, Taylor PR, et al. α-Tocopherol and β-carotene supplements and lung cancer incidence in the α-tocopherol, β-carotene cancer prevention study: effects of base-line characteristics and study compliance. J Natl Cancer Inst 1996; 88(21): 1560-70.
[50]
Conklin KA. Chemotherapy-associated oxidative stress: impact on chemotherapeutic effectiveness. Integr Cancer Ther 2004; 3(4): 294-300.
[51]
Poljsak B, Milisav I. The neglected significance of “antioxidative stress”. Oxid Med Cell Longev 2012; 2012: 480895.
[52]
Schafer ZT, Grassian AR, Song L, et al. Antioxidant and oncogene rescue of metabolic defects caused by loss of matrix attachment. Nature 2009; 461(7260): 109-13.
[53]
Borek C, Pardo F. Vitamin E and apoptosis: A dual role. In: Pasquier C, Ed Biennial Meeting of the Society for Free Radicals Research International Paris, France 2002; pp July 16–20, 2002; Bologna,Italy . 2002-327-1.
[54]
Sigounas G, Anagnostou A, Steiner M. dl-alpha-tocopherol induces apoptosis in erythroleukemia, prostate, and breast cancer cells. Nutr Cancer 1997; 28(1): 30-5.
[55]
Lawenda BD, Kelly KM, Ladas EJ, Sagar SM, Vickers A, Blumberg JB. Should supplemental antioxidant administration be avoided during chemotherapy and radiation therapy? J Natl Cancer Inst 2008; 100(11): 773-83.
[56]
Bairati I, Meyer F, Jobin E, et al. Antioxidant vitamins supplementation and mortality: A randomized trial in head and neck cancer patients. Int J Cancer 2006; 119(9): 2221-4.
[57]
Ma Y, Chapman J, Levine M, Polireddy K, Drisko J, Chen Q. High-dose parenteral ascorbate enhanced chemosensitivity of ovarian cancer and reduced toxicity of chemotherapy. Sci Transl Med 2014; 6(222): 222ra18.
[58]
Bairati I, Meyer F, Gélinas M, et al. Randomized trial of antioxidant vitamins to prevent acute adverse effects of radiation therapy in head and neck cancer patients. J Clin Oncol 2005; 23(24): 5805-13.
[59]
Block KI, Koch AC, Mead MN, Tothy PK, Newman RA, Gyllenhaal C. Impact of antioxidant supplementation on chemotherapeutic efficacy: A systematic review of the evidence from randomized controlled trials. Cancer Treat Rev 2007; 33(5): 407-18.
[60]
Bairati I, Meyer F, Gélinas M, et al. A randomized trial of antioxidant vitamins to prevent second primary cancers in head and neck cancer patients. J Natl Cancer Inst 2005; 97(7): 481-8.
[61]
Sayin VI, Ibrahim MX, Larsson E, Nilsson JA, Lindahl P, Bergo MO. Antioxidants accelerate lung cancer progression in mice. Sci Transl Med 2014; 6(221): 221ra15.
[62]
Le Gal K, Ibrahim MX, Wiel C, et al. Antioxidants can increase melanoma metastasis in mice. Sci Transl Med 2015; 7(308): 308re8.
[63]
Piskounova E, Agathocleous M, Murphy MM, et al. Oxidative stress inhibits distant metastasis by human melanoma cells. Nature 2015; 527(7577): 186-91.
[64]
The effect of vitamin E and beta carotene on the incidence of lung cancer and other cancers in male smokers. N Engl J Med 1994; 330(15): 1029-35.
[65]
Lesperance ML, Olivotto IA, Forde N, et al. Mega-dose vitamins and minerals in the treatment of non-metastatic breast cancer: An historical cohort study. Breast Cancer Res Treat 2002; 76(2): 137-43.
[66]
Seixas-Silva JA Jr, Richards T, Khuri FR, et al. Phase 2 bioadjuvant study of interferon alfa-2a, isotretinoin, and vitamin E in locally advanced squamous cell carcinoma of the head and neck: long-term follow-up. Arch Otolaryngol Head Neck Surg 2005; 131(4): 304-7.
[67]
Prasad KN, Kumar B, Yan XD, Hanson AJ, Cole WC. Alpha-tocopheryl succinate, the most effective form of vitamin E for adjuvant cancer treatment: A review. J Am Coll Nutr 2003; 22(2): 108-17.
[68]
Yu W, Jia L, Wang P, et al. In vitro and in vivo evaluation of anticancer actions of natural and synthetic vitamin E forms. Mol Nutr Food Res 2008; 52(4): 447-56.
[69]
Jaakkola K, Lähteenmäki P, Laakso J, Harju E, Tykkä H, Mahlberg K. Treatment with antioxidant and other nutrients in combination with chemotherapy and irradiation in patients with small-cell lung cancer. Anticancer Res 1992; 12(3): 599-606.
[70]
Simone CB II, Simone NL, Simone V, Simone CB. Antioxidants and other nutrients do not interfere with chemotherapy or radiation therapy and can increase kill and increase survival, Part 2. Altern Ther Health Med 2007; 13(2): 40-7.
[71]
Borek C, Ong A, Mason H. Distinctive transforming genes in x-ray-transformed mammalian cells. Proc Natl Acad Sci USA 1987; 84(3): 794-8.
[72]
Kennedy M, Bruninga K, Mutlu EA, Losurdo J, Choudhary S, Keshavarzian A. Successful and sustained treatment of chronic radiation proctitis with antioxidant vitamins E and C. Am J Gastroenterol 2001; 96(4): 1080-4.
[73]
Zirpoli GR, McCann SE, Sucheston-Campbell LE, et al. Supplement use and chemotherapy‐induced peripheral neuropathy in a cooperative group trial (S0221): The DELCaP Study. J Natl Cancer Inst 2017; 109(12): djx098.
[74]
Greenlee H, Hershman DL, Shi Z, et al. BMI, lifestyle factors and taxane-induced neuropathy in breast cancer patients: The Pathways Study. J Natl Cancer Inst 2016; 109(2): 1-8.
[75]
Ligibel JA. Editorial: Supplements and Chemotherapy-Induced Peripheral Neuropathy: Hope or Hype? J Natl Cancer Inst 2017; 109(12)
[76]
Pathak AK, Bhutani M, Guleria R, et al. Chemotherapy alone vs. chemotherapy plus high dose multiple antioxidants in patients with advanced non small cell lung cancer. J Am Coll Nutr 2005; 24(1): 16-21.
[77]
Moss RW. Do antioxidants interfere with radiation therapy for cancer? Integr Cancer Ther 2007; 6(3): 281-92.
[78]
Simone CB II, Simone NL, Simone V, Simone CB. Antioxidants and other nutrients do not interfere with chemotherapy or radiation therapy and can increase kill and increase survival, part 1. Altern Ther Health Med 2007; 13(1): 22-8.
[79]
Block KI, Koch AC, Mead MN, Tothy PK, Newman RA, Gyllenhaal C. Impact of antioxidant supplementation on chemotherapeutic toxicity: A systematic review of the evidence from randomized controlled trials. Int J Cancer 2008; 123(6): 1227-39.
[80]
Lissoni P, Chilelli M, Villa S, Cerizza L, Tancini G. Five years survival in metastatic non-small cell lung cancer patients treated with chemotherapy alone or chemotherapy and melatonin: A randomized trial. J Pineal Res 2003; 35(1): 12-5.
[81]
Lissoni P, Barni S, Mandalà M, et al. Decreased toxicity and increased efficacy of cancer chemotherapy using the pineal hormone melatonin in metastatic solid tumour patients with poor clinical status. Eur J Cancer 1999; 35(12): 1688-92.
[82]
Gomez-Cabrera MC, Domenech E, Romagnoli M, et al. Oral administration of vitamin C decreases muscle mitochondrial biogenesis and hampers training-induced adaptations in endurance performance. Am J Clin Nutr 2008; 87(1): 142-9.
[83]
Gliemann L, Schmidt JF, Olesen J, et al. Resveratrol blunts the positive effects of exercise training on cardiovascular health in aged men. J Physiol 2013; 591(20): 5047-59.
[84]
Donato AJ, Uberoi A, Bailey DM, Wray DW, Richardson RS. Exercise-induced brachial artery vasodilation: effects of antioxidants and exercise training in elderly men. Am J Physiol Heart Circ Physiol 2010; 298(2): H671-8.
[85]
Strobel NA, Peake JM, Matsumoto A, Marsh SA, Coombes JS, Wadley GD. Antioxidant supplementation reduces skeletal muscle mitochondrial biogenesis. Med Sci Sports Exerc 2011; 43(6): 1017-24.
[86]
Ristow M, Zarse K, Oberbach A, et al. Antioxidants prevent health-promoting effects of physical exercise in humans. Proc Natl Acad Sci USA 2009; 106(21): 8665-70.
[87]
Richardson RS, Donato AJ, Uberoi A, et al. Exercise-induced brachial artery vasodilation: role of free radicals. Am J Physiol Heart Circ Physiol 2007; 292(3): H1516-22.
[88]
Rhee SG. Redox signaling: hydrogen peroxide as intracellular messenger. Exp Mol Med 1999; 31(2): 53-9.
[89]
Redza-Dutordoir M, Averill-Bates DA. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim Biophys Acta 2016; 1863(12): 2977-92.
[90]
Espinosa-Diez C, Miguel V, Mennerich D, et al. Antioxidant responses and cellular adjustments to oxidative stress. Redox Biol 2015; 6: 183-97.
[91]
Poljsak B. Strategies for reducing or preventing the generation of oxidative stress. Oxid Med Cell Longev 2011; 2011: 194586.
[92]
Rotblat B, Melino G, Knight RA. NRF2 and p53: Januses in cancer? Oncotarget 2012; 3(11): 1272-83.
[93]
Sporn MB, Liby KT. NRF2 and cancer: the good, the bad and the importance of context. Nat Rev Cancer 2012; 12(8): 564-71.
[94]
Salganik RI. The benefits and hazards of antioxidants: controlling apoptosis and other protective mechanisms in cancer patients and the human population. J Am Coll Nutr 2001; 20(5)(Suppl.): 464S-72S.
[95]
Poljsak B, Raspor P. The antioxidant and pro-oxidant activity of vitamin C and trolox in vitro: A comparative study. J Appl Toxicol 2008; 28(2): 183-8.
[96]
Poljšak B, Gazdag Z, Pesti M, et al. Pro-oxidative versus antioxidative reactions between Trolox and Cr(VI): The role of H(2)O(2). Environ Toxicol Pharmacol 2006; 22(1): 15-9.
[97]
Mursu J, Robien K, Harnack LJ, Park K, Jacobs DR Jr. Dietary supplements and mortality rate in older women: the Iowa Women’s Health Study. Arch Intern Med 2011; 171(18): 1625-33.
[98]
Halliwell B, Gutteridge JMC. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J 1984; 219(1): 1-14.
[99]
Pryor W. Free radicals and lipid peroxidation: What they are and how they got that way.Natural antioxidants in human health and disease 1994; 1-19.
[100]
Cheeseman KH, Slater TF. An introduction to free radical biochemistry. Br Med Bull 49:481-493. Chem Biol Interact 1993; 160(1): 1-40.
[101]
Lodish H, Berk A, Matsudaira P, Kaiser CA, Krieger M, Scott MP, et al. Molecular Biology of the Cell. 5th ed. 2004.
[102]
Lutzky J, Astor MB, Taub RN, et al. Role of glutathione and dependent enzymes in anthracycline-resistant HL60/AR cells. Cancer Res 1989; 49(15): 4120-5.
[103]
Cossarizza A, Franceschi C, Monti D, et al. Protective effect of N-acetylcysteine in tumor necrosis factor-alpha-induced apoptosis in U937 cells: the role of mitochondria. Exp Cell Res 1995; 220(1): 232-40.
[104]
Heaney ML, Gardner JR, Karasavvas N, et al. Vitamin C antagonizes the cytotoxic effects of antineoplastic drugs. Cancer Res 2008; 68(19): 8031-8.
[105]
Fukumura H, Sato M, Kezuka K, et al. Effect of ascorbic acid on reactive oxygen species production in chemotherapy and hyperthermia in prostate cancer cells. J Physiol Sci 2012; 62(3): 251-7.
[106]
Li N, Sun C, Zhou B, et al. Low concentration of quercetin antagonizes the cytotoxic effects of anti-neoplastic drugs in ovarian cancer. PLoS One 2014; 9(7): e100314.
[107]
Davison CA, Durbin SM, Thau MR, et al. Antioxidant enzymes mediate survival of breast cancer cells deprived of extracellular matrix. Cancer Res 2013; 73(12): 3704-15.
[108]
Sayin VI, Ibrahim MX, Larsson E, Nilsson JA, Lindahl P, Bergo MO. Antioxidants accelerate lung cancer progression in mice. Sci Transl Med 2014; 6(221): 221ra15.
[109]
Kapinova A, Stefanicka P, Kubatka P, et al. Are plant-based functional foods better choice against cancer than single phytochemicals? A critical review of current breast cancer research. Biomed Pharmacother 2017; 96: 1465-77.
[110]
Wu AH, Yu MC, Tseng CC, Hankin J, Pike MC. Green tea and risk of breast cancer in Asian Americans. Int J Cancer 2003; 106(4): 574-9.
[111]
Zhang M, Binns CW, Lee AH. Tea consumption and ovarian cancer risk: A case-control study in China. Cancer Epidemiol Biomarkers Prev 2002; 11(8): 713-8.
[112]
Wu AH, Yu MC, Tseng CC, Pike MC. Epidemiology of soy exposures and breast cancer risk. Br J Cancer 2008; 98(1): 9-14.
[113]
Weiss JF, Landauer MR. Protection against ionizing radiation by antioxidant nutrients and phytochemicals. Toxicology 2003; 189(1-2): 1-20.
[114]
Weiss JF, Landauer MR. Radioprotection by antioxidants. Ann N Y Acad Sci. 2000;899:44-60; Borek C1. Antioxidant health effects of aged garlic extract. J Nutr 2001; 131(3s): 1010S-5S.
[115]
Pinto JT, Rivlin RS. Antiproliferative effects of allium derivatives from garlic. J Nutr 2001; 131(3s): 1058S-60S.
[116]
Xiao D, Pinto JT, Soh JW, et al. Induction of apoptosis by the garlic-derived compound S-allylmercaptocysteine (SAMC) is associated with microtubule depolymerization and c-Jun NH(2)-terminal kinase 1 activation. Cancer Res 2003; 63(20): 6825-37.
[117]
Cao HX, Zhu KX, Fan JG, Qiao L. Garlic-derived allyl sulfides in cancer therapy. Anticancer Agents Med Chem 2014; 14(6): 793-9.
[118]
Mira L, Fernandez MT, Santos M, Rocha R, Florêncio MH, Jennings KR. Interactions of flavonoids with iron and copper ions: A mechanism for their antioxidant activity. Free Radic Res 2002; 36(11): 1199-208.
[119]
Cherrak SA, Mokhtari-Soulimane N, Berroukeche F, et al. In Vitro Antioxidant versus Metal Ion Chelating Properties of Flavonoids: A Structure-Activity Investigation. PLoS One 2016; 11(10): e0165575.
[120]
Imlay JA. Pathways of oxidative damage. Annu Rev Microbiol 2003; 57: 395-418.
[121]
Devassy JG, Nwachukwu ID, Jones PJ. Curcumin and cancer: barriers to obtaining a health claim. Nutr Rev 2015; 73(3): 155-65.
[122]
Karunagaran D, Rashmi R, Kumar TR. Induction of apoptosis by curcumin and its implications for cancer therapy. Curr Cancer Drug Targets 2005; 5(2): 117-29.
[123]
Basnet P, Skalko-Basnet N. Curcumin: An anti-inflammatory molecule from a curry spice on the path to cancer treatment. Molecules 2011; 16(6): 4567-98.
[124]
Deguchi A. Curcumin targets in inflammation and cancer. Endocr Metab Immune Disord Drug Targets 2015; 15(2): 88-96.
[125]
Zang S, Liu T, Shi J, Qiao L. Curcumin: A promising agent targeting cancer stem cells. Anticancer Agents Med Chem 2014; 14(6): 787-92.
[126]
Aggarwal BB, Bhardwaj A, Aggarwal RS, Seeram NP, Shishodia S, Takada Y. Role of resveratrol in prevention and therapy of cancer: preclinical and clinical studies. Anticancer Res 2004; 24(5A): 2783-840.
[127]
Siddiqui IA, Sanna V, Ahmad N, Sechi M, Mukhtar H. Resveratrol nanoformulation for cancer prevention and therapy. Ann N Y Acad Sci 2015; 1348(1): 20-31.
[128]
Wang H, Zhang H, Tang L, et al. Resveratrol inhibits TGF-β1-induced epithelial-to-mesenchymal transition and suppresses lung cancer invasion and metastasis. Toxicology 2013; 303: 139-46.
[129]
Carter LG, D’Orazio JA, Pearson KJ. Resveratrol and cancer: focus on in vivo evidence. Endocr Relat Cancer 2014; 21(3): R209-25.
[130]
Singh CK, Ndiaye MA, Ahmad N. Resveratrol and cancer: Challenges for clinical translation. Biochim Biophys Acta 2015; 1852(6): 1178-85.
[131]
DeBerardinis RJ, Chandel NS. Fundamentals of cancer metabolism. Sci Adv 2016; 2(5): e1600200.
[132]
Yun J, Mullarky E, Lu C, et al. Vitamin C selectively kills KRAS and BRAF mutant colorectal cancer cells by targeting GAPDH. Science 2015; 350(6266): 1391-6.
[133]
Chen Q, Espey MG, Sun AY, et al. Pharmacologic doses of ascorbate act as a prooxidant and decrease growth of aggressive tumor xenografts in mice. Proc Natl Acad Sci USA 2008; 105(32): 11105-9.
[134]
Fritz H, Flower G, Weeks L, et al. Intravenous Vitamin C and Cancer: A Systematic Review. Integr Cancer Ther 2014; 13(4): 280-300.
[135]
Jacobs C, Hutton B, Ng T, Shorr R, Clemons M. Is there a role for oral or intravenous ascorbate (vitamin C) in treating patients with cancer? A systematic review. Oncologist 2015; 20(2): 210-23.
[136]
Wang H, Khor TO, Shu L, et al. Plants vs. cancer: A review on natural phytochemicals in preventing and treating cancers and their druggability. Anticancer Agents Med Chem 2012; 12(10): 1281-305.
[137]
Seto NO, Hayashi S, Tener GM. Overexpression of Cu-Zn superoxide dismutase in Drosophila does not affect life-span. Proc Natl Acad Sci USA 1990; 87(11): 4270-4.
[138]
Orr WC, Sohal RS. Effects of Cu-Zn superoxide dismutase overexpression of life span and resistance to oxidative stress in transgenic Drosophila melanogaster. Arch Biochem Biophys 1993; 301(1): 34-40.
[139]
Mockett RJ, Orr WC, Rahmandar JJ, et al. Overexpression of Mn-containing superoxide dismutase in transgenic Drosophila melanogaster. Arch Biochem Biophys 1999; 371(2): 260-9.
[140]
Fraga CG, Shigenaga MK, Park JW, Degan P, Ames BN. Oxidative damage to DNA during aging: 8-hydroxy-2′-deoxyguanosine in rat organ DNA and urine. Proc Natl Acad Sci USA 1990; 87(12): 4533-7.
[141]
Oliver CN, Ahn BW, Moerman EJ, Goldstein S, Stadtman ER. Age-related changes in oxidized proteins. J Biol Chem 1987; 262(12): 5488-91.
[142]
Hamilton ML, Van Remmen H, Drake JA, et al. Does oxidative damage to DNA increase with age? Proc Natl Acad Sci USA 2001; 98(18): 10469-74.
[143]
Ralser M, Benjamin IJ. Reductive stress on life span extension in C. elegans. BMC Res Notes 2008; 1: 19.
[144]
Poljsak B, Milisav I. What Doesn’t Kill Us, Makes Us Stronger: Reducing Oxidative Stress and Damage Through Adaptive Stress Responses. Human Anatomy and Physiology 2014.
[145]
Poljsak B. Seyfried et al, Reduction of Sporadic Malignancies by Stimulation of Cellular Repair Systems and by Targeting Cellular Energy Metabolism. Cancer Etiology, Diagnosis and Treatments 2017.
[146]
Bjelakovic G, Nikolova D, Simonetti RG, Gluud C. Antioxidant supplements for prevention of gastrointestinal cancers: A systematic review and meta-analysis. Lancet 2004; 364(9441): 1219-28.
[147]
Bjelakovic G, Nikolova D, Gluud LL, et al. Antioxidant supplements for prevention of mortality in healthy participants and patients with various diseases Cochrane review 2012; 14(3) CD007176.
[148]
Miller ER III, Pastor-Barriuso R, Dalal D, Riemersma RA, Appel LJ, Guallar E. Meta-analysis: high-dosage vitamin E supplementation may increase all-cause mortality. Ann Intern Med 2005; 142(1): 37-46.
[149]
Vivekananthan DP, Penn MS, Sapp SK, Hsu A, Topol EJ. Use of antioxidant vitamins for the prevention of cardiovascular disease: meta-analysis of randomised trials. Lancet 2003; 361(9374): 2017-23.
[150]
Caraballoso M, Sacristan M, Serra C, Bonfill X. Drugs for preventing lung cancer in healthy people. Cochrane Database Syst Rev 2003; (2): CD002141.
[151]
Argüelles S, Gómez A, Machado A, Ayala A. A preliminary analysis of within-subject variation in human serum oxidative stress parameters as a function of time. Rejuvenation Res 2007; 10(4): 621-36.
[152]
[153]
Albanes D. Beta-carotene and lung cancer: A case study. Am J Clin Nutr 1999; 69(6): 1345S-50S.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 24
ISSUE: 44
Year: 2018
Page: [5234 - 5244]
Pages: 11
DOI: 10.2174/1381612825666190123112647
Price: $58

Article Metrics

PDF: 31
HTML: 5
EPUB: 3
PRC: 3

Special-new-year-discount



Current Advances in Computational Approaches for Drug Discovery- Part II

Author(s): Amit K. Gupta.

Journal Name: Current Topics in Medicinal Chemistry

Volume 18 , Issue 27 , 2018

Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 18
ISSUE: 27
Year: 2018
Page: [2267 - 2267]
Pages: 1
DOI: 10.2174/156802661827190123105909

Article Metrics

PDF: 18
HTML: 1

Special-new-year-discount


Current Topics in Medicinal Chemistry

Editor-in-Chief:

Allen B. Reitz
Fox Chase Chemical Diversity Center, Inc.
Doylestown, PA
USA

Back


Ni-based Non-sulfided Inexpensive Catalysts for Hydrocracking/ Hydrotreating of Jatropha Oil

Author(s): Jing Liu*, Yucheng Li, Jing He, Luying Wang, Jiandu Lei*, Long Rong.

Journal Name: Mini-Reviews in Organic Chemistry

Volume 17 , Issue 2 , 2020

Abstract:

Conventional hydrocracking catalysts generally to retain their active form. However, sulfuration may cause sulfur dioxide emissions, corrosion, and sulfur residue in products, as plant oils become freed of sulfur compounds. The high price of this noble metal also limits industrial applications. Therefore, non-sulfided catalysts can eliminate the presulfurization step and mitigate sulfiderelated threats on both the environment and human health. The purpose of this paper is to review current developments in the species and application of inexpensive non-sulfided catalysts for the hydrocracking of non-edible Jatropha curcas L. oil. This mini-review predominantly concerns Nibased catalysts supported by rare-earth metals or heteropoly acid. These catalysts were used in the hydrotreating or hydrocracking of Jatropha oil to produce green diesel.

Keywords: Biodiesel, hydrocracking process, non-noble metal catalysts, non-sulfided, biofuels, plant oil.

Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 17
ISSUE: 2
Year: 2020
Page: [141 - 147]
Pages: 7
DOI: 10.2174/1570193X16666190122164046
Price: $95

Article Metrics

PDF: 2

Special-new-year-discount


Emerging Therapeutic Targets in Oncologic Photodynamic Therapy

Author(s): Gina Manda*, Mihail E. Hinescu, Ionela V. Neagoe, Luis F.V. Ferreira, Rica Boscencu, Paul Vasos, Selma H. Basaga, Antonio Cuadrado.

Journal Name: Current Pharmaceutical Design

Volume 24 , Issue 44 , 2018

Abstract:

Background: Reactive oxygen species sustain tumorigenesis and cancer progression through deregulated redox signalling which also sensitizes cancer cells to therapy. Photodynamic therapy (PDT) is a promising anti-cancer therapy based on a provoked singlet oxygen burst, exhibiting a better toxicological profile than chemo- and radiotherapy. Important gaps in the knowledge on underlining molecular mechanisms impede on its translation towards clinical applications.

Aims and Methods: The main objective of this review is to critically analyse the knowledge lately gained on therapeutic targets related to redox and inflammatory networks underlining PDT and its outcome in terms of cell death and resistance to therapy. Emerging therapeutic targets and pharmaceutical tools will be documented based on the identified molecular background of PDT.

Results: Cellular responses and molecular networks in cancer cells exposed to the PDT-triggered singlet oxygen burst and the associated stresses are analysed using a systems medicine approach, addressing both cell death and repair mechanisms. In the context of immunogenic cell death, therapeutic tools for boosting anti-tumor immunity will be outlined. Finally, the transcription factor NRF2, which is a major coordinator of cytoprotective responses, is presented as a promising pharmacologic target for developing co-therapies designed to increase PDT efficacy.

Conclusion: There is an urgent need to perform in-depth molecular investigations in the field of PDT and to correlate them with clinical data through a systems medicine approach for highlighting the complex biological signature of PDT. This will definitely guide translation of PDT to clinic and the development of new therapeutic strategies aimed at improving PDT.

Keywords: Cancer, photodynamic therapy, reactive oxygen species, oxidative stress, redox signalling, transcription factor NRF2, inflammation.

[1]
Egea J, Fabregat I, Frapart YM, et al. European contribution to the study of ROS: A summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS). Redox Biol 2017; 13: 94-162.
[2]
Cuadrado A, Manda G, Hassan A, et al. Transcription Factor NRF2 as a Therapeutic Target for Chronic Diseases: A Systems Medicine Approach. Pharmacol Rev 2018; 70(2): 348-83.
[3]
Leone A, Roca MS, Ciardiello C, Costantini S, Budillon A. Oxidative Stress Gene Expression Profile Correlates with Cancer Patient Poor Prognosis: Identification of Crucial Pathways Might Select Novel Therapeutic Approaches. Oxid Med Cell Longev 2017; 2017: 2597581.
[4]
Ogrunc M, Di Micco R, Liontos M, et al. Oncogene-induced reactive oxygen species fuel hyperproliferation and DNA damage response activation. Cell Death Differ 2014; 21(6): 998-1012.
[5]
Liou GY, Storz P. Reactive oxygen species in cancer. Free Radic Res 2010; 44(5): 479-96.
[6]
Fiaschi T, Chiarugi P. Oxidative stress, tumor microenvironment, and metabolic reprogramming: A diabolic liaison. Int J Cell Biol 2012; 2012: 762825.
[7]
Burns JS, Manda G. Metabolic Pathways of the Warburg Effect in Health and Disease: Perspectives of Choice, Chain or Chance. Int J Mol Sci 2017; 18(12): E2755.
[8]
Lee M, Yoon JH. Metabolic interplay between glycolysis and mitochondrial oxidation: The reverse Warburg effect and its therapeutic implication. World J Biol Chem 2015; 6(3): 148-61.
[9]
Manda G, Isvoranu G, Comanescu MV, Manea A, Debelec Butuner B, Korkmaz KS. The redox biology network in cancer pathophysiology and therapeutics. Redox Biol 2015; 5: 347-57.
[10]
Redza-Dutordoir M, Averill-Bates DA. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim Biophys Acta 2016; 1863(12): 2977-92.
[11]
Panieri E, Gogvadze V, Norberg E, Venkatesh R, Orrenius S, Zhivotovsky B. Reactive oxygen species generated in different compartments induce cell death, survival, or senescence. Free Radic Biol Med 2013; 57: 176-87.
[12]
Schieber M, Chandel NS. ROS function in redox signaling and oxidative stress. Curr Biol 2014; 24(10): R453-62.
[13]
Sies H. Oxidative stress: A concept in redox biology and medicine. Redox Biol 2015; 4: 180-3.
[14]
Sosa V, Molin A(c)T, Somoza R, Paciucci R, Kondoh H. LLeonart ME. Oxidative stress and cancer: An overview. Ageing Res Rev 2013; 12(1): 376-90.
[15]
Azzam EI, Jay-Gerin JP, Pain D. Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury. Cancer Lett 2012; 327(1-2): 48-60.
[16]
Siva S, MacManus MP, Martin RF, Martin OA. Abscopal effects of radiation therapy: A clinical review for the radiobiologist. Cancer Lett 2015; 356(1): 82-90.
[17]
Mohammad RM, Muqbil I, Lowe L, et al. Broad targeting of resistance to apoptosis in cancer. Semin Cancer Biol 2015; 35(Suppl.): S78-S103.
[18]
Cree IA, Charlton P. Molecular chess? Hallmarks of anti-cancer drug resistance. BMC Cancer 2017; 17(1): 10.
[19]
Agostinis P, Berg K, Cengel KA, et al. Photodynamic therapy of cancer: An update. CA Cancer J Clin 2011; 61(4): 250-81.
[20]
TriantaphylidA"s C, Havaux M. Singlet oxygen in plants: production, detoxification and signaling. Trends Plant Sci 2009; 14(4): 219-28.
[21]
Onyango AN. Endogenous Generation of Singlet Oxygen and Ozone in Human and Animal Tissues: Mechanisms, Biological Significance, and Influence of Dietary Components. Oxid Med Cell Longev 2016; 2016: 2398573.
[22]
van Straten D, Mashayekhi V, de Bruijn HS, Oliveira S, Robinson DJ. Oncologic Photodynamic Therapy: Basic Principles, Current Clinical Status and Future Directions. Cancers (Basel) 2017; 9(2): E19.
[23]
Borgia F, Giuffrida R, Caradonna E, Vaccaro M, Guarneri F, CannavA SP. Early and Late Onset Side Effects of Photodynamic Therapy. Biomedicines 2018; 6(1): E12.
[24]
Foote CS. Definition of type I and type II photosensitized oxidation. Photochem Photobiol 1991; 54(5): 659.
[25]
Kessel D. The role of low-density lipoprotein in the biodistribution of photosensitizing agents. J Photochem Photobiol B 1992; 14(3): 261-2.
[26]
Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci USA 2008; 105(38): 14265-70.
[27]
Kessel D. Correlation between subcellular localization and photodynamic efficacy. J Porphyr Phthalocyanines 2004; 8(08): 1009-14.
[28]
Yeh SC, Diamond KR, Patterson MS, Nie Z, Hayward JE, Fang Q. Monitoring photosensitizer uptake using two photon fluorescence lifetime imaging microscopy. Theranostics 2012; 2(9): 817-26.
[29]
Kou J, Dou D, Yang L. Porphyrin photosensitizers in photodynamic therapy and its applications. Oncotarget 2017; 8(46): 81591-603.
[30]
Maiolino S, Moret F, Conte C, et al. Hyaluronan-decorated polymer nanoparticles targeting the CD44 receptor for the combined photo/chemo-therapy of cancer. Nanoscale 2015; 7(13): 5643-53.
[31]
Huang H, Mallidi S, Obaid G, Sears B, Tangutoori S, Hasan T. Advancing photodynamic therapy with biochemically tuned liposomal nanotechnologies Applications of Nanoscience in Photomedicine 2015; 487-510.
[32]
Buytaert E, Dewaele M, Agostinis P. Molecular effectors of multiple cell death pathways initiated by photodynamic therapy. Biochim Biophys Acta 2007; 1776(1): 86-107.
[33]
Konan YN, Gurny R, All mann E. State of the art in the delivery of photosensitizers for photodynamic therapy. J Photochem Photobiol B 2002; 66(2): 89-106.
[34]
Jeelani S, Reddy RC, Maheswaran T, Asokan GS, Dany A, Anand B. Theranostics: A treasured tailor for tomorrow. J Pharm Bioallied Sci 2014; 6(Suppl. 1): S6-8.
[35]
Wang H, Lv B, Tang Z, et al. Scintillator-Based Nanohybrids with Sacrificial Electron Prodrug for Enhanced X-ray-Induced Photodynamic Therapy. Nano Lett 2018.
[36]
Shen S, Zhu C, Huo D, Yang M, Xue J, Xia Y. A Hybrid Nanomaterial for the Controlled Generation of Free Radicals and Oxidative Destruction of Hypoxic Cancer Cells. Angew Chem Int Ed Engl 2017; 56(30): 8801-4.
[37]
Foote CS. Mechanisms of photosensitized oxidation. There are several different types of photosensitized oxidation which may be important in biological systems. Science 1968; 162(3857): 963-70.
[38]
Dai T, Fuchs BB, Coleman JJ, et al. Concepts and principles of photodynamic therapy as an alternative antifungal discovery platform. Front Microbiol 2012; 3: 120.
[39]
Bacellar IO, Tsubone TM, Pavani C, Baptista MS. Photodynamic Efficiency: From Molecular Photochemistry to Cell Death. Int J Mol Sci 2015; 16(9): 20523-59.
[40]
Magi B, Ettorre A, Liberatori S, et al. Selectivity of protein carbonylation in the apoptotic response to oxidative stress associated with photodynamic therapy: A cell biochemical and proteomic investigation. Cell Death Differ 2004; 11(8): 842-52.
[41]
Roede JR, Jones DP. Reactive species and mitochondrial dysfunction: mechanistic significance of 4-hydroxynonenal. Environ Mol Mutagen 2010; 51(5): 380-90.
[42]
Singh KK, Russell J, Sigala B, Zhang Y, Williams J, Keshav KF. Mitochondrial DNA determines the cellular response to cancer therapeutic agents. Oncogene 1999; 18(48): 6641-6.
[43]
Bauer G. The Antitumor Effect of Singlet Oxygen. Anticancer Res 2016; 36(11): 5649-63.
[44]
Brunelli L, Yermilov V, Beckman JS. Modulation of catalase peroxidatic and catalatic activity by nitric oxide. Free Radic Biol Med 2001; 30(7): 709-14.
[45]
Thiagarajah JR, Chang J, Goettel JA, Verkman AS, Lencer WI. Aquaporin-3 mediates hydrogen peroxide-dependent responses to environmental stress in colonic epithelia. Proc Natl Acad Sci USA 2017; 114(3): 568-73.
[46]
Sies H. Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: Oxidative eustress. Redox Biol 2017; 11: 613-9.
[47]
Juhasz A, Markel S, Gaur S, et al. NADPH oxidase 1 supports proliferation of colon cancer cells by modulating reactive oxygen species-dependent signal transduction. J Biol Chem 2017; 292(19): 7866-87.
[48]
RiethmA1/4ller M, Burger N, Bauer G. Singlet oxygen treatment of tumor cells triggers extracellular singlet oxygen generation, catalase inactivation and reactivation of intercellular apoptosis-inducing signaling. Redox Biol 2015; 6: 157-68.
[49]
Jung HS, Han J, Shi H, et al. Overcoming the Limits of Hypoxia in Photodynamic Therapy: A Carbonic Anhydrase IX-Targeted Approach. J Am Chem Soc 2017; 139(22): 7595-602.
[50]
Papandreou I, Krishna C, Kaper F, Cai D, Giaccia AJ, Denko NC. Anoxia is necessary for tumor cell toxicity caused by a low-oxygen environment. Cancer Res 2005; 65(8): 3171-8.
[51]
Li C, Jackson RM. Reactive species mechanisms of cellular hypoxia-reoxygenation injury. Am J Physiol Cell Physiol 2002; 282(2): C227-41.
[52]
Stuker F, Ripoll J, Rudin M. Fluorescence molecular tomography: principles and potential for pharmaceutical research. Pharmaceutics 2011; 3(2): 229-74.
[53]
Kim MM, Penjweini R, Gemmell NR, et al. A Comparison of Singlet Oxygen Explicit Dosimetry (SOED) and Singlet Oxygen Luminescence Dosimetry (SOLD) for Photofrin-Mediated Photodynamic Therapy. Cancers (Basel) 2016; 8(12): E109.
[54]
ArdenkjAr-Larsen JH, Fridlund B, Gram A, Hansson G, Hansson L, Lerche MH, et al. Increase in signal-to-noise ratio of > 10,000 times in liquid-state NMR. 2003; 100(18): 10158-63.
[55]
Vasos PR, Comment A, Sarkar R, et al. Long-lived states to sustain hyperpolarized magnetization. Proc Natl Acad Sci USA 2009; 106(44): 18469-73.
[56]
Sandulache VC, Chen Y, Lee J, Rubinstein A, Ramirez MS, Skinner HD, et al. Evaluation of hyperpolarized [1-(1)(3)C]-pyruvate by magnetic resonance to detect ionizing radiation effects in real time. PLoS One 2014; 9(1): e87031.
[57]
Mroz P, Yaroslavsky A, Kharkwal GB, Hamblin MR. Cell death pathways in photodynamic therapy of cancer. Cancers (Basel) 2011; 3(2): 2516-39.
[58]
Galluzzi L, Kepp O, Kroemer G. Enlightening the impact of immunogenic cell death in photodynamic cancer therapy. EMBO J 2012; 31(5): 1055-7.
[59]
Elmore S. Apoptosis: A review of programmed cell death. Toxicol Pathol 2007; 35(4): 495-516.
[60]
Coussens LM, Werb Z. Inflammation and cancer. Nature 2002; 420(6917): 860-7.
[61]
Xue LY, Chiu SM, Oleinick NL. Photochemical destruction of the Bcl-2 oncoprotein during photodynamic therapy with the phthalocyanine photosensitizer Pc 4. Oncogene 2001; 20(26): 3420-7.
[62]
Srivastava M, Ahmad N, Gupta S, Mukhtar H. Involvement of Bcl-2 and Bax in photodynamic therapy-mediated apoptosis. Antisense Bcl-2 oligonucleotide sensitizes RIF 1 cells to photodynamic therapy apoptosis. J Biol Chem 2001; 276(18): 15481-8.
[63]
Guo Q, Dong B, Nan F, Guan D, Zhang Y. 5-Aminolevulinic acid photodynamic therapy in human cervical cancer via the activation of microRNA-143 and suppression of the Bcl-2/Bax signaling pathway. Mol Med Rep 2016; 14(1): 544-50.
[64]
Almeida RD, Manadas BJ, Carvalho AP, Duarte CB. Intracellular signaling mechanisms in photodynamic therapy. Biochim Biophys Acta 2004; 1704(2): 59-86.
[65]
Newton K. RIPK1 and RIPK3: critical regulators of inflammation and cell death. Trends Cell Biol 2015; 25(6): 347-53.
[66]
Zheng L, Bidere N, Staudt D, et al. Competitive control of independent programs of tumor necrosis factor receptor-induced cell death by TRADD and RIP1. Mol Cell Biol 2006; 26(9): 3505-13.
[67]
Fukuyama T, Ichiki Y, Yamada S, et al. Cytokine production of lung cancer cell lines: Correlation between their production and the inflammatory/immunological responses both in vivo and in vitro. Cancer Sci 2007; 98(7): 1048-54.
[68]
Ouyang L, Shi Z, Zhao S, et al. Programmed cell death pathways in cancer: A review of apoptosis, autophagy and programmed necrosis. Cell Prolif 2012; 45(6): 487-98.
[69]
Miki Y, Akimoto J, Moritake K, Hironaka C, Fujiwara Y. Photodynamic therapy using talaporfin sodium induces concentration-dependent programmed necroptosis in human glioblastoma T98G cells. Lasers Med Sci 2015; 30(6): 1739-45.
[70]
Balkwill F. Tumour necrosis factor and cancer. Nat Rev Cancer 2009; 9(5): 361-71.
[71]
Nakajima S, Kitamura M. Bidirectional regulation of NF-IB by reactive oxygen species: A role of unfolded protein response. Free Radic Biol Med 2013; 65: 162-74.
[72]
Broekgaarden M, Weijer R, van Gulik TM, Hamblin MR, Heger M. Tumor cell survival pathways activated by photodynamic therapy: A molecular basis for pharmacological inhibition strategies. Cancer Metastasis Rev 2015; 34(4): 643-90.
[73]
Piette J. Signalling pathway activation by photodynamic therapy: NF-IB at the crossroad between oncology and immunology. Photochem Photobiol Sci 2015; 14(8): 1510-7.
[74]
Wang CY, Mayo MW, Baldwin AS Jr. TNF- and cancer therapy-induced apoptosis: potentiation by inhibition of NF-kappaB. Science 1996; 274(5288): 784-7.
[75]
Coupienne I, Bontems S, Dewaele M, et al. NF-kappaB inhibition improves the sensitivity of human glioblastoma cells to 5-aminolevulinic acid-based photodynamic therapy. Biochem Pharmacol 2011; 81(5): 606-16.
[76]
Kearney CJ, Martin SJ. An Inflammatory Perspective on Necroptosis. Mol Cell 2017; 65(6): 965-73.
[77]
Tsubone TM, Martins WK, Pavani C, Junqueira HC, Itri R, Baptista MS. Enhanced efficiency of cell death by lysosome-specific photodamage. Sci Rep 2017; 7(1): 6734.
[78]
Aits S, JA M. Lysosomal cell death at a glance. J Cell Sci 2013; 126(Pt 9): 1905-12.
[79]
Repnik U, Stoka V, Turk V, Turk B. Lysosomes and lysosomal cathepsins in cell death. Biochim Biophys Acta 2012; 1824(1): 22-33.
[80]
Kessel D, Luo Y, Mathieu P, Reiners JJ Jr. Determinants of the apoptotic response to lysosomal photodamage. Photochem Photobiol 2000; 71(2): 196-200.
[81]
Wang F, Salvati A, Boya P. Lysosome-dependent cell death and deregulated autophagy induced by amine-modified polystyrene nanoparticles. Open Biol 2018; 8(4): 170271.
[82]
Kav? N, Pegan K, Turk B. Lysosomes in programmed cell death pathways: from initiators to amplifiers. Biol Chem 2016; 398(3): 289-301.
[83]
Berg K, Moan J. Lysosomes as photochemical targets. Int J Cancer 1994; 59(6): 814-22.
[84]
Reiners JJ Jr, Caruso JA, Mathieu P, Chelladurai B, Yin XM, Kessel D. Release of cytochrome c and activation of pro-caspase-9 following lysosomal photodamage involves Bid cleavage. Cell Death Differ 2002; 9(9): 934-44.
[85]
Papadopoulos C, Meyer H. Detection and Clearance of Damaged Lysosomes by the Endo-Lysosomal Damage Response and Lysophagy. Curr Biol 2017; 27(24): R1330-41.
[86]
BAegyi G, Baumeister P, Benedetti A, et al. Endoplasmic reticulum stress. Ann N Y Acad Sci 2007; 1113: 58-71.
[87]
Ron D, Walter P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 2007; 8(7): 519-29.
[88]
Moserova I, Kralova J. Role of ER stress response in photodynamic therapy: ROS generated in different subcellular compartments trigger diverse cell death pathways. PLoS One 2012; 7(3): e32972.
[89]
Szegezdi E, Logue SE, Gorman AM, Samali A. Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep 2006; 7(9): 880-5.
[90]
Dandekar A, Mendez R, Zhang K. Cross talk between ER stress, oxidative stress, and inflammation in health and disease. Methods Mol Biol 2015; 1292: 205-14.
[91]
Wang M, Kaufman RJ. The impact of the endoplasmic reticulum protein-folding environment on cancer development. Nat Rev Cancer 2014; 14(9): 581-97.
[92]
Verfaillie T, Rubio N, Garg AD, et al. PERK is required at the ER-mitochondrial contact sites to convey apoptosis after ROS-based ER stress. Cell Death Differ 2012; 19(11): 1880-91.
[93]
Li G, Scull C, Ozcan L, Tabas I. NADPH oxidase links endoplasmic reticulum stress, oxidative stress, and PKR activation to induce apoptosis. J Cell Biol 2010; 191(6): 1113-25.
[94]
Rao RV, Ellerby HM, Bredesen DE. Coupling endoplasmic reticulum stress to the cell death program. Cell Death Differ 2004; 11(4): 372-80.
[95]
PArn-Ares MI, Samali A, Orrenius S. Cleavage of the calpain inhibitor, calpastatin, during apoptosis. Cell Death Differ 1998; 5(12): 1028-33.
[96]
SchrAder M. Endoplasmic reticulum stress responses. Cell Mol Life Sci 2008; 65(6): 862-94.
[97]
Grimm S. The ER-mitochondria interface: the social network of cell death. Biochim Biophys Acta 2012; 1823(2): 327-34.
[98]
Ghibelli L, Grzanka A. Organelle cross-talk in apoptotic and survival pathways. Int J Cell Biol 2012; 2012: 968586.
[99]
Dikic I, Elazar Z. Mechanism and medical implications of mammalian autophagy. Nat Rev Mol Cell Biol 2018; 19(6): 349-64.
[100]
Kessel D, Arroyo AS. Apoptotic and autophagic responses to Bcl-2 inhibition and photodamage. Photochem Photobiol Sci 2007; 6(12): 1290-5.
[101]
Reiners JJ Jr, Agostinis P, Berg K, Oleinick NL, Kessel D. Assessing autophagy in the context of photodynamic therapy. Autophagy 2010; 6(1): 7-18.
[102]
Buytaert E, Callewaert G, Hendrickx N, et al. Role of endoplasmic reticulum depletion and multidomain proapoptotic BAX and BAK proteins in shaping cell death after hypericin-mediated photodynamic therapy. FASEB J 2006; 20(6): 756-8.
[103]
Kessel D, Reiners JJ Jr. Promotion of Proapoptotic Signals by Lysosomal Photodamage. Photochem Photobiol 2015; 91(4): 931-6.
[104]
Acedo P, Stockert JC, CaAete M, Villanueva A. Two combined photosensitizers: A goal for more effective photodynamic therapy of cancer. Cell Death Dis 2014; 5: e1122.
[105]
Villanueva A, Stockert JC, CaAte M, Acedo P. A new protocol in photodynamic therapy: enhanced tumour cell death by combining two different photosensitizers. Photochem Photobiol Sci 2010; 9(3): 295-7.
[106]
Liu J, Wang Z. Increased Oxidative Stress as a Selective Anticancer Therapy. Oxid Med Cell Longev 2015; 2015: 294303.
[107]
Wang GD, Nguyen HT, Chen H, et al. X-Ray Induced Photodynamic Therapy: A Combination of Radiotherapy and Photodynamic Therapy. Theranostics 2016; 6(13): 2295-305.
[108]
Moan J, Berg K. The photodegradation of porphyrins in cells can be used to estimate the lifetime of singlet oxygen. Photochem Photobiol 1991; 53(4): 549-53.
[109]
Finkel T. Signal transduction by reactive oxygen species. J Cell Biol 2011; 194(1): 7-15.
[110]
Dahle J, Bagdonas S, Kaalhus O, Olsen G, Steen HB, Moan J. The bystander effect in photodynamic inactivation of cells. Biochim Biophys Acta 2000; 1475(3): 273-80.
[111]
Azzam EI, Little JB. The radiation-induced bystander effect: evidence and significance. Hum Exp Toxicol 2004; 23(2): 61-5.
[112]
Mothersill C, Seymour CB. Radiation-induced bystander effects--implications for cancer. Nat Rev Cancer 2004; 4(2): 158-64.
[113]
de la Torre Gomez C, Goreham RV, Bech Serra JJ, Nann T, Kussmann M. “Exosomics”-A Review of Biophysics, Biology and Biochemistry of Exosomes With a Focus on Human Breast Milk. Front Genet 2018; 9: 92.
[114]
Sun W, Luo JD, Jiang H, Duan DD. Tumor exosomes: A double-edged sword in cancer therapy. Acta Pharmacol Sin 2018; 39(4): 534-41.
[115]
Aubertin K, Silva AK, Luciani N, et al. Massive release of extracellular vesicles from cancer cells after photodynamic treatment or chemotherapy. Sci Rep 2016; 6: 35376.
[116]
Theodoraki MN, Yerneni SS, Brunner C, Theodorakis J, Hoffmann TK, Whiteside TL. Plasma-derived Exosomes Reverse Epithelial-to-Mesenchymal Transition after Photodynamic Therapy of Patients with Head and Neck Cancer. Oncoscience 2018; 5(3-4): 75-87.
[117]
Tschopp J, Schroder K. NLRP3 inflammasome activation: The convergence of multiple signalling pathways on ROS production? Nat Rev Immunol 2010; 10(3): 210-5.
[118]
Matzinger P. The danger model: A renewed sense of self. Science 2002; 296(5566): 301-5.
[119]
Garg AD, Agostinis P. Cell death and immunity in cancer: From danger signals to mimicry of pathogen defense responses. Immunol Rev 2017; 280(1): 126-48.
[120]
Zhang Q, Zhu B, Li Y. Resolution of Cancer-Promoting Inflammation: A New Approach for Anticancer Therapy. Front Immunol 2017; 8: 71.
[121]
Duo CC, Gong FY, He XY, et al. Soluble calreticulin induces tumor necrosis factor-α (TNF-α) and interleukin (IL)-6 production by macrophages through mitogen-activated protein kinase (MAPK) and NFI signaling pathways. Int J Mol Sci 2014; 15(2): 2916-28.
[122]
Golden EB, Formenti SC. Radiation therapy and immunotherapy: growing pains. Int J Radiat Oncol Biol Phys 2015; 91(2): 252-4.
[123]
Golden EB, Chhabra A, Chachoua A, et al. Local radiotherapy and granulocyte-macrophage colony-stimulating factor to generate abscopal responses in patients with metastatic solid tumours: A proof-of-principle trial. Lancet Oncol 2015; 16(7): 795-803.
[124]
Ng J, Dai T. Radiation therapy and the abscopal effect: A concept comes of age. Ann Transl Med 2016; 4(6): 118.
[125]
Tang C, Wang X, Soh H, et al. Combining radiation and immunotherapy: A new systemic therapy for solid tumors? Cancer Immunol Res 2014; 2(9): 831-8.
[126]
Garg AD, Dudek-Peric AM, Romano E, Agostinis P. Immunogenic cell death. Int J Dev Biol 2015; 59(1-3): 131-40.
[127]
Panzarini E, Inguscio V, Dini L. Immunogenic cell death: can it be exploited in PhotoDynamic Therapy for cancer? BioMed Res Int 2013; 2013: 482160.
[128]
Korbelik M, Sun J, Cecic I. Photodynamic therapy-induced cell surface expression and release of heat shock proteins: relevance for tumor response. Cancer Res 2005; 65(3): 1018-26.
[129]
Etminan N, Peters C, Lakbir D, et al. Heat-shock protein 70-dependent dendritic cell activation by 5-aminolevulinic acid-mediated photodynamic treatment of human glioblastoma spheroids in vitro. Br J Cancer 2011; 105(7): 961-9.
[130]
Korbelik M, Sun J. Photodynamic therapy-generated vaccine for cancer therapy. Cancer Immunol Immunother 2006; 55(8): 900-9.
[131]
Chen GY, NuAez G. Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol 2010; 10(12): 826-37.
[132]
Korbelik M. Cancer vaccines generated by photodynamic therapy. Photochem Photobiol Sci 2011; 10(5): 664-9.
[133]
Sims GP, Rowe DC, Rietdijk ST, Herbst R, Coyle AJ. HMGB1 and RAGE in inflammation and cancer. Annu Rev Immunol 2010; 28: 367-88.
[134]
Scaffidi P, Misteli T, Bianchi ME. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 2002; 418(6894): 191-5.
[135]
He S, Cheng J, Sun L, et al. HMGB1 released by irradiated tumor cells promotes living tumor cell proliferation via paracrine effect. Cell Death Dis 2018; 9(6): 648.
[136]
Kazama H, Ricci JE, Herndon JM, Hoppe G, Green DR, Ferguson TA. Induction of immunological tolerance by apoptotic cells requires caspase-dependent oxidation of high-mobility group box-1 protein. Immunity 2008; 29(1): 21-32.
[137]
Tang D, Kang R, Cheh CW, et al. HMGB1 release and redox regulates autophagy and apoptosis in cancer cells. Oncogene 2010; 29(38): 5299-310.
[138]
Garg AD, Krysko DV, Verfaillie T, et al. A novel pathway combining calreticulin exposure and ATP secretion in immunogenic cancer cell death. EMBO J 2012; 31(5): 1062-79.
[139]
Garg AD, Dudek AM, Ferreira GB, et al. ROS-induced autophagy in cancer cells assists in evasion from determinants of immunogenic cell death. Autophagy 2013; 9(9): 1292-307.
[140]
Dudek AM, Garg AD, Krysko DV, De Ruysscher D, Agostinis P. Inducers of immunogenic cancer cell death. Cytokine Growth Factor Rev 2013; 24(4): 319-33.
[141]
Du HY, Olivo M, Mahendran R, et al. Hypericin photoactivation triggers down-regulation of matrix metalloproteinase-9 expression in well-differentiated human nasopharyngeal cancer cells. Cell Mol Life Sci 2007; 64(7-8): 979-88.
[142]
Gollnick SO, Brackett CM. Enhancement of anti-tumor immunity by photodynamic therapy. Immunol Res 2010; 46(1-3): 216-26.
[143]
Matroule JY, Bonizzi G, MorliA"re P, et al. Pyropheophorbide-a methyl ester-mediated photosensitization activates transcription factor NF-kappaB through the interleukin-1 receptor-dependent signaling pathway. J Biol Chem 1999; 274(5): 2988-3000.
[144]
Kick G, Messer G, Goetz A, Plewig G, Kind P. Photodynamic therapy induces expression of interleukin 6 by activation of AP-1 but not NF-kappa B DNA binding. Cancer Res 1995; 55(11): 2373-9.
[145]
Casbon AJ, Reynaud D, Park C, et al. Invasive breast cancer reprograms early myeloid differentiation in the bone marrow to generate immunosuppressive neutrophils. Proc Natl Acad Sci USA 2015; 112(6): E566-75.
[146]
Rabinovich GA, Gabrilovich D, Sotomayor EM. Immunosuppressive strategies that are mediated by tumor cells. Annu Rev Immunol 2007; 25: 267-96.
[147]
Spary LK, Salimu J, Webber JP, Clayton A, Mason MD, Tabi Z. Tumor stroma-derived factors skew monocyte to dendritic cell differentiation toward a suppressive CD14+ PD-L1+ phenotype in prostate cancer. OncoImmunology 2014; 3(9): e955331.
[148]
Ghirelli C, Hagemann T. Targeting immunosuppression for cancer therapy. J Clin Invest 2013; 123(6): 2355-7.
[149]
Carta S, Castellani P, Delfino L, Tassi S, VenA" R, Rubartelli A. DAMPs and inflammatory processes: the role of redox in the different outcomes. J Leukoc Biol 2009; 86(3): 549-55.
[150]
Hernandez C, Huebener P, Schwabe RF. Damage-associated molecular patterns in cancer: A double-edged sword. Oncogene 2016; 35(46): 5931-41.
[151]
Mitra S, Foster TH. In vivo confocal fluorescence imaging of the intratumor distribution of the photosensitizer mono-L-aspartylchlorin-e6. Neoplasia 2008; 10(5): 429-38.
[152]
Fucikova J, Moserova I, Urbanova L, et al. Prognostic and Predictive Value of DAMPs and DAMP-Associated Processes in Cancer. Front Immunol 2015; 6: 402.
[153]
Sharma P, Allison JP. The future of immune checkpoint therapy. Science 2015; 348(6230): 56-61.
[154]
Wherry EJ, Kurachi M. Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol 2015; 15(8): 486-99.
[155]
Galluzzi L, Vacchelli E, Bravo-San Pedro JM, et al. Classification of current anticancer immunotherapies. Oncotarget 2014; 5(24): 12472-508.
[156]
Korbelik M, Zhang W, Merchant S. Involvement of damage-associated molecular patterns in tumor response to photodynamic therapy: surface expression of calreticulin and high-mobility group box-1 release. Cancer Immunol Immunother 2011; 60(10): 1431-7.
[157]
Korbelik M. Impact of cell death manipulation on the efficacy of photodynamic therapy-generated cancer vaccines. World J Immunol 2015; 5(3): 95-8.
[158]
Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB. Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med 2010; 49(11): 1603-16.
[159]
Plaks V, Kong N, Werb Z. The cancer stem cell niche: how essential is the niche in regulating stemness of tumor cells? Cell Stem Cell 2015; 16(3): 225-38.
[160]
Swanton C. Intratumor heterogeneity: evolution through space and time. Cancer Res 2012; 72(19): 4875-82.
[161]
Gorrini C, Harris IS, Mak TW. Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Discov 2013; 12(12): 931-47.
[162]
Ma Q. Role of nrf2 in oxidative stress and toxicity. Annu Rev Pharmacol Toxicol 2013; 53: 401-26.
[163]
Nguyen T, Sherratt PJ, Nioi P, Yang CS, Pickett CB. Nrf2 controls constitutive and inducible expression of ARE-driven genes through a dynamic pathway involving nucleocytoplasmic shuttling by Keap1. J Biol Chem 2005; 280(37): 32485-92.
[164]
Pajares M, Jim nez-Moreno N, Dias IH, et al. Redox control of protein degradation. Redox Biol 2015; 6: 409-20.
[165]
Hayes JD, Dinkova-Kostova AT. The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends Biochem Sci 2014; 39(4): 199-218.
[166]
Panieri E, Santoro MM. ROS homeostasis and metabolism: A dangerous liason in cancer cells. Cell Death Dis 2016; 7(6): e2253.
[167]
Schumacker PT. Reactive oxygen species in cancer cells: live by the sword, die by the sword. Cancer Cell 2006; 10(3): 175-6.
[168]
Ryoo IG, Lee SH, Kwak MK. Redox Modulating NRF2: A Potential Mediator of Cancer Stem Cell Resistance. Oxid Med Cell Longev 2016; 2016: 2428153.
[169]
Emmink BL, Verheem A, Van Houdt WJ, et al. The secretome of colon cancer stem cells contains drug-metabolizing enzymes. J Proteomics 2013; 91: 84-96.
[170]
DeNicola GM, Karreth FA, Humpton TJ, et al. Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature 2011; 475(7354): 106-9.
[171]
Mitsuishi Y, Taguchi K, Kawatani Y, et al. Nrf2 redirects glucose and glutamine into anabolic pathways in metabolic reprogramming. Cancer Cell 2012; 22(1): 66-79.
[172]
Rojo AI, Rada P, Mendiola M, et al. The PTEN/NRF2 axis promotes human carcinogenesis. Antioxid Redox Signal 2014; 21(18): 2498-514.
[173]
Eades G, Yang M, Yao Y, Zhang Y, Zhou Q. miR-200a regulates Nrf2 activation by targeting Keap1 mRNA in breast cancer cells. J Biol Chem 2011; 286(47): 40725-33.
[174]
Kim YR, Oh JE, Kim MS, et al. Oncogenic NRF2 mutations in squamous cell carcinomas of oesophagus and skin. J Pathol 2010; 220(4): 446-51.
[175]
Shibata T, Kokubu A, Saito S, et al. NRF2 mutation confers malignant potential and resistance to chemoradiation therapy in advanced esophageal squamous cancer. Neoplasia 2011; 13(9): 864-73.
[176]
Singh A, Misra V, Thimmulappa RK, et al. Dysfunctional KEAP1-NRF2 interaction in non-small-cell lung cancer. PLoS Med 2006; 3(10): e420.
[177]
Kerins MJ, Ooi A. A catalogue of somatic NRF2 gain-of-function mutations in cancer. Sci Rep 2018; 8(1): 12846.
[178]
McMahon M, Itoh K, Yamamoto M, Hayes JD. Keap1-dependent proteasomal degradation of transcription factor Nrf2 contributes to the negative regulation of antioxidant response element-driven gene expression. J Biol Chem 2003; 278(24): 21592-600.
[179]
Cuadrado A. 2015.
[180]
Rada P, Rojo AI, Chowdhry S, McMahon M, Hayes JD, Cuadrado A. SCF/beta-TrCP promotes glycogen synthase kinase 3-dependent degradation of the Nrf2 transcription factor in a Keap1-independent manner. Mol Cell Biol 2011; 31(6): 1121-33.
[181]
Rada P, Rojo AI, Evrard-Todeschi N, et al. Structural and functional characterization of Nrf2 degradation by the glycogen synthase kinase 3/I-TrCP axis. Mol Cell Biol 2012; 32(17): 3486-99.
[182]
Taguchi K, Motohashi H, Yamamoto M. Molecular mechanisms of the Keap1?"Nrf2 pathway in stress response and cancer evolution. Genes Cells 2011; 16(2): 123-40.
[183]
Chen W, Sun Z, Wang XJ, et al. Direct interaction between Nrf2 and p21(Cip1/WAF1) upregulates the Nrf2-mediated antioxidant response. Mol Cell 2009; 34(6): 663-73.
[184]
Katsuragi Y, Ichimura Y, Komatsu M. Regulation of the Keap1"Nrf2 pathway by p62/SQSTM1. Curr Opin Toxicol 2016; 1: 54-61.
[185]
Liu WJ, Ye L, Huang WF, et al. p62 links the autophagy pathway and the ubiqutin-proteasome system upon ubiquitinated protein degradation. Cell Mol Biol Lett 2016; 21: 29.
[186]
Pajares M, Jim nez-Moreno N, GarcA-a-Yage AJ, et al. Transcription factor NFE2L2/NRF2 is a regulator of macroautophagy genes. Autophagy 2016; 12(10): 1902-16.
[187]
Pajares M, Rojo AI, Arias E, DA-az-Carretero A, Cuervo AM, Cuadrado A. Transcription factor NFE2L2/NRF2 modulates chaperone-mediated autophagy through the regulation of LAMP2A. Autophagy 2018; 14(8): 1310-22.
[188]
Motohashi H, Katsuoka F, Engel JD, Yamamoto M. Small Maf proteins serve as transcriptional cofactors for keratinocyte differentiation in the Keap1-Nrf2 regulatory pathway. Proc Natl Acad Sci USA 2004; 101(17): 6379-84.
[189]
Dhakshinamoorthy S, Jain AK, Bloom DA, Jaiswal AK. Bach1 competes with Nrf2 leading to negative regulation of the antioxidant response element (ARE)-mediated NAD(P)H:quinone oxidoreductase 1 gene expression and induction in response to antioxidants. J Biol Chem 2005; 280(17): 16891-900.
[190]
Ziady AG, Sokolow A, Shank S, et al. Interaction with CREB binding protein modulates the activities of Nrf2 and NF-IB in cystic fibrosis airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 2012; 302(11): L1221-31.
[191]
Kobayashi EH, Suzuki T, Funayama R, et al. Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription. Nat Commun 2016; 7: 11624.
[192]
Beury DW, Carter KA, Nelson C, et al. Myeloid-Derived Suppressor Cell Survival and Function Are Regulated by the Transcription Factor Nrf2. J Immunol 2016; 196(8): 3470-8.
[193]
Kansanen E, Kuosmanen SM, Leinonen H, Levonen AL. The Keap1-Nrf2 pathway: Mechanisms of activation and dysregulation in cancer. Redox Biol 2013; 1: 45-9.
[194]
Milkovic L, Zarkovic N, Saso L. Controversy about pharmacological modulation of Nrf2 for cancer therapy. Redox Biol 2017; 12: 727-32.
[195]
Rojo de la Vega M, Chapman E, Zhang DD. NRF2 and the Hallmarks of Cancer. Cancer Cell 2018; 34(1): 21-43.
[196]
Trachootham D, Alexandre J, Huang P. Targeting cancer cells by ROS-mediated mechanisms: A radical therapeutic approach? Nat Rev Drug Discov 2009; 8(7): 579-91.
[197]
Klotz LO, SAnchez-Ramos C, Prieto-Arroyo I, UrbAnek P, Steinbrenner H, Monsalve M. Redox regulation of FoxO transcription factors. Redox Biol 2015; 6: 51-72.
[198]
Truong TH, Carroll KS. Redox regulation of epidermal growth factor receptor signaling through cysteine oxidation. Biochemistry 2012; 51(50): 9954-65.
[199]
Becks L, Prince M, Burson H, et al. Aggressive mammary carcinoma progression in Nrf2 knockout mice treated with 7,12-dimethylbenz[a]anthracene. BMC Cancer 2010; 10: 540.
[200]
Schmidt HH, Stocker R, Vollbracht C, et al. Antioxidants in Translational Medicine. Antioxid Redox Signal 2015; 23(14): 1130-43.
[201]
BarabAsi AL, Gulbahce N, Loscalzo J. Network medicine: A network-based approach to human disease. Nat Rev Genet 2011; 12(1): 56-68.
[202]
Poornima P, Kumar JD, Zhao Q, Blunder M, Efferth T. Network pharmacology of cancer: From understanding of complex interactomes to the design of multi-target specific therapeutics from nature. Pharmacol Res 2016; 111: 290-302.
[203]
Bomprezzi R. Dimethyl fumarate in the treatment of relapsing-remitting multiple sclerosis: An overview. Ther Adv Neurol Disorder 2015; 8(1): 20-30.
[204]
Dao VT, Casas AI, Maghzal GJ, et al. Pharmacology and Clinical Drug Candidates in Redox Medicine. Antioxid Redox Signal 2015; 23(14): 1113-29.
[205]
Kitamura H, Motohashi H. NRF2 addiction in cancer cells. Cancer Sci 2018; 109(4): 900-11.
[206]
Okano Y, Nezu U, Enokida Y, et al. SNP (-617C>A) in ARE-like loci of the NRF2 gene: A new biomarker for prognosis of lung adenocarcinoma in Japanese non-smoking women. PLoS One 2013; 8(9): e73794.
[207]
Ishikawa T, Kajimoto Y, Sun W, et al. Role of Nrf2 in cancer photodynamic therapy: regulation of human ABC transporter ABCG2. J Pharm Sci 2013; 102(9): 3058-69.
[208]
Zhou S, Ye W, Shao Q, Zhang M, Liang J. Nrf2 is a potential therapeutic target in radioresistance in human cancer. Crit Rev Oncol Hematol 2013; 88(3): 706-15.
[209]
Rojo de la Vega M, Dodson M, Chapman E, Zhang DD. NRF2-targeted therapeutics: New targets and modes of NRF2 regulation. Curr Opin Toxicol 2016; 1: 62-70.
[210]
Singh A, Venkannagari S, Oh KH, et al. Small Molecule Inhibitor of NRF2 Selectively Intervenes Therapeutic Resistance in KEAP1-Deficient NSCLC Tumors. ACS Chem Biol 2016; 11(11): 3214-25.
[211]
Olayanju A, Copple IM, Bryan HK, et al. Brusatol provokes a rapid and transient inhibition of Nrf2 signaling and sensitizes mammalian cells to chemical toxicity-implications for therapeutic targeting of Nrf2. Free Radic Biol Med 2015; 78: 202-12.
[212]
Sun X, Wang Q, Wang Y, Du L, Xu C, Liu Q. Brusatol Enhances the Radiosensitivity of A549 Cells by Promoting ROS Production and Enhancing DNA Damage. Int J Mol Sci 2016; 17(7): E997.
[213]
Vartanian S, Ma TP, Lee J, et al. Application of Mass Spectrometry Profiling to Establish Brusatol as an Inhibitor of Global Protein Synthesis. Mol Cell Proteomics 2016; 15(4): 1220-31.
[214]
Wang XJ, Hayes JD, Henderson CJ, Wolf CR. Identification of retinoic acid as an inhibitor of transcription factor Nrf2 through activation of retinoic acid receptor alpha. Proc Natl Acad Sci USA 2007; 104(49): 19589-94.
[215]
Magesh S, Chen Y, Hu L. Small molecule modulators of Keap1-Nrf2-ARE pathway as potential preventive and therapeutic agents. Med Res Rev 2012; 32(4): 687-726.
[216]
Manna A, De Sarkar S, De S, Bauri AK, Chattopadhyay S, Chatterjee M. The variable chemotherapeutic response of Malabaricone-A in leukemic and solid tumor cell lines depends on the degree of redox imbalance. Phytomedicine 2015; 22(7-8): 713-23.
[217]
Zhong H, Xiao M, Zarkovic K, et al. Mitochondrial control of apoptosis through modulation of cardiolipin oxidation in hepatocellular carcinoma: A novel link between oxidative stress and cancer. Free Radic Biol Med 2017; 102: 67-76.
[218]
Wang X, Campos CR, Peart JC, et al. Nrf2 upregulates ATP binding cassette transporter expression and activity at the blood-brain and blood-spinal cord barriers. J Neurosci 2014; 34(25): 8585-93.
[219]
Gao AM, Ke ZP, Wang JN, Yang JY, Chen SY, Chen H. Apigenin sensitizes doxorubicin-resistant hepatocellular carcinoma BEL-7402/ADM cells to doxorubicin via inhibiting PI3K/Akt/Nrf2 pathway. Carcinogenesis 2013; 34(8): 1806-14.
[220]
Lamberti MJ, Vittar NB, da Silva Fde C, Ferreira VF, Rivarola VA. Synergistic enhancement of antitumor effect of I-Lapachone by photodynamic induction of quinone oxidoreductase (NQO1). Phytomedicine 2013; 20(11): 1007-12.
[221]
Hagiya Y, Adachi T, Ogura S, et al. Nrf2-dependent induction of human ABC transporter ABCG2 and heme oxygenase-1 in HepG2 cells by photoactivation of porphyrins: biochemical implications for cancer cell response to photodynamic therapy. J Exp Ther Oncol 2008; 7(2): 153-67.
[222]
Choi BH, Ryoo IG, Kang HC, Kwak MK. The sensitivity of cancer cells to pheophorbide a-based photodynamic therapy is enhanced by Nrf2 silencing. PLoS One 2014; 9(9): e107158.
[223]
Kocanova S, Buytaert E, Matroule JY, et al. Induction of heme-oxygenase 1 requires the p38MAPK and PI3K pathways and suppresses apoptotic cell death following hypericin-mediated photodynamic therapy. Apoptosis 2007; 12(4): 731-41.
[224]
Masoud GN, Li W. HIF-1I pathway: role, regulation and intervention for cancer therapy. Acta Pharm Sin B 2015; 5(5): 378-89.
[225]
Reichard JF, Sartor MA, Puga A. BACH1 is a specific repressor of HMOX1 that is inactivated by arsenite. J Biol Chem 2008; 283(33): 22363-70.
[226]
Kapitulnik J. Bilirubin: An endogenous product of heme degradation with both cytotoxic and cytoprotective properties. Mol Pharmacol 2004; 66(4): 773-9.
[227]
Kapitulnik J, Maines MD. Pleiotropic functions of biliverdin reductase: cellular signaling and generation of cytoprotective and cytotoxic bilirubin. Trends Pharmacol Sci 2009; 30(3): 129-37.
[228]
Dudnik LB, Khrapova NG. Characterization of bilirubin inhibitory properties in free radical oxidation reactions. Membr Cell Biol 1998; 12(2): 233-40.
[229]
Bauer M, Bauer I. Heme oxygenase-1: redox regulation and role in the hepatic response to oxidative stress. Antioxid Redox Signal 2002; 4(5): 749-58.
[230]
Ishikawa T, Nakagawa H, Hagiya Y, Nonoguchi N, Miyatake S, Kuroiwa T. Key Role of Human ABC Transporter ABCG2 in Photodynamic Therapy and Photodynamic Diagnosis. Adv Pharmacol Sci 2010; 2010: 587306.
[231]
Singh A, Wu H, Zhang P, Happel C, Ma J, Biswal S. Expression of ABCG2 (BCRP) is regulated by Nrf2 in cancer cells that confers side population and chemoresistance phenotype. Mol Cancer Ther 2010; 9(8): 2365-76.
[232]
Liu W, Baer MR, Bowman MJ, et al. The tyrosine kinase inhibitor imatinib mesylate enhances the efficacy of photodynamic therapy by inhibiting ABCG2. Clin Cancer Res 2007; 13(8): 2463-70.
[233]
Lee SJ, Hwang HJ, Shin JI, Ahn JC, Chung PS. Enhancement of cytotoxic effect on human head and neck cancer cells by combination of photodynamic therapy and sulforaphane. Gen Physiol Biophys 2015; 34(1): 13-21.
[234]
Mikolajewska P, Juzeniene A, Moan J. Effect of (R)L-sulforaphane on 5-aminolevulinic acid-mediated photodynamic therapy. Transl Res 2008; 152(3): 128-33.
[235]
Kaczy"ska A, Herman-Antosiewicz A. Combination of lapatinib with isothiocyanates overcomes drug resistance and inhibits migration of HER2 positive breast cancer cells. Breast Cancer 2017; 24(2): 271-80.
[236]
Pawlik A, Wiczk A, Kaczy"ska A, Antosiewicz J, Herman-Antosiewicz A. Sulforaphane inhibits growth of phenotypically different breast cancer cells. Eur J Nutr 2013; 52(8): 1949-58.
[237]
Sakao K, Singh SVD. D,L-sulforaphane-induced apoptosis in human breast cancer cells is regulated by the adapter protein p66Shc. J Cell Biochem 2012; 113(2): 599-610.
[238]
Bennett Saidu NE, Bretagne M, Mansuet AL, et al. Dimethyl fumarate is highly cytotoxic in KRAS mutated cancer cells but spares non-tumorigenic cells. Oncotarget 2018; 9(10): 9088-99.
[239]
Theodossiou TA, Olsen CE, Jonsson M, Kubin A, Hothersall JS, Berg K. The diverse roles of glutathione-associated cell resistance against hypericin photodynamic therapy. Redox Biol 2017; 12: 191-7.
[240]
Yang H, Magilnick N, Lee C, et al. Nrf1 and Nrf2 regulate rat glutamate-cysteine ligase catalytic subunit transcription indirectly via NF-kappaB and AP-1. Mol Cell Biol 2005; 25(14): 5933-46.
[241]
Abrahamse H, Kruger CA, Kadanyo S, Mishra A. Nanoparticles for Advanced Photodynamic Therapy of Cancer. Photomed Laser Surg 2017; 35(11): 581-8.
[242]
Calixto GM, Bernegossi J, de Freitas LM, Fontana CR, Chorilli M. Nanotechnology-Based Drug Delivery Systems for Photodynamic Therapy of Cancer: A Review. Molecules 2016; 21(3): 342.
[243]
Kotagiri N, Sudlow GP, Akers WJ, Achilefu S. Breaking the depth dependency of phototherapy with Cerenkov radiation and low-radiance-responsive nanophotosensitizers. Nat Nanotechnol 2015; 10(4): 370-9.
[244]
Yuzhakova DV, Lermontova SA, Grigoryev IS, et al. In vivo multimodal tumor imaging and photodynamic therapy with novel theranostic agents based on the porphyrazine framework-chelated gadolinium (III) cation. Biochim Biophys Acta, Gen Subj 2017; 1861(12): 3120-30.
[245]
Jarvi MT, Niedre MJ, Patterson MS, Wilson BC. Singlet oxygen luminescence dosimetry (SOLD) for photodynamic therapy: current status, challenges and future prospects. Photochem Photobiol 2006; 82(5): 1198-210.
[246]
Kareliotis G, Liossi S, Makropoulou M. Assessment of singlet oxygen dosimetry concepts in photodynamic therapy through computational modeling. Photodiagn Photodyn Ther 2018; 21: 224-33.
[247]
Quirk BJ, Brandal G, Donlon S, et al. Photodynamic therapy (PDT) for malignant brain tumors--where do we stand? Photodiagn Photodyn Ther 2015; 12(3): 530-44.
[248]
Kamkaew A, Chen F, Zhan Y, Majewski RL, Cai W. Scintillating Nanoparticles as Energy Mediators for Enhanced Photodynamic Therapy. ACS Nano 2016; 10(4): 3918-35.
[249]
Babincová M, Sourivong P, Babinec P. Gene transfer-mediated intracellular photodynamic therapy. Med Hypotheses 2000; 52(2): 180-.
[250]
Sadanala KC, Chaturvedi PK, Seo YM, et al. Sono-photodynamic combination therapy: A review on sensitizers. Anticancer Res 2014; 34(9): 4657-64.
[251]
Guo Y, Sheng S, Zhang W, Lun M, Tsai S-M, Chin W-C, Eds. High energy photons excited photodynamic cancer therapy in vitro Optical Methods for Tumor Treatment and Detection: Mechanisms and Techniques in Photodynamic Therapy XXVII 2018.
[252]
Ai F, Ju Q, Zhang X, Chen X, Wang F, Zhu G. A core-shell-shell nanoplatform upconverting near-infrared light at 808 nm for luminescence imaging and photodynamic therapy of cancer. Sci Rep 2015; 5: 10785.
[253]
Akimoto J. Photodynamic Therapy for Malignant Brain Tumors. Neurol Med Chir (Tokyo) 2016; 56(4): 151-7.
[254]
Salem A, Asselin MC, Reymen B, et al. Targeting Hypoxia to Improve Non-Small Cell Lung Cancer Outcome. J Natl Cancer Inst 2018; 110(1)
[255]
Mitra S, Foster TH. Carbogen breathing significantly enhances the penetration of red light in murine tumours in vivo. Phys Med Biol 2004; 49(10): 1891-904.
[256]
Chen B, Roskams T, de Witte PA. Antivascular tumor eradication by hypericin-mediated photodynamic therapy. Photochem Photobiol 2002; 76(5): 509-13.
[257]
Elliott MR, Chekeni FB, Trampont PC, et al. Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature 2009; 461(7261): 282-6.
[258]
Amores-Iniesta J, BarberA -Cremades M, MartA-nez CM, et al. Extracellular ATP Activates the NLRP3 Inflammasome and Is an Early Danger Signal of Skin Allograft Rejection. Cell Reports 2017; 21(12): 3414-26.
[259]
Cruz CM, Rinna A, Forman HJ, Ventura AL, Persechini PM, Ojcius DM. ATP activates a reactive oxygen species-dependent oxidative stress response and secretion of proinflammatory cytokines in macrophages. J Biol Chem 2007; 282(5): 2871-9.
[260]
Menu P, Mayor A, Zhou R, et al. ER stress activates the NLRP3 inflammasome via an UPR-independent pathway. Cell Death Dis 2012; 3: e261.
[261]
Abais JM, Xia M, Zhang Y, Boini KM, Li PL. Redox regulation of NLRP3 inflammasomes: ROS as trigger or effector? Antioxid Redox Signal 2015; 22(13): 1111-29.
[262]
Shi Y, Zheng W, Rock KL. Cell injury releases endogenous adjuvants that stimulate cytotoxic T cell responses. Proc Natl Acad Sci USA 2000; 97(26): 14590-5.
[263]
Dostert C, P trilli V, Van Bruggen R, Steele C, Mossman BT, Tschopp J. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 2008; 320(5876): 674-7.
[264]
Gordon S, Pl ddemann A. Macrophage Clearance of Apoptotic Cells: A Critical Assessment. Front Immunol 2018; 9: 127.
[265]
Obeid M, Tesniere A, Ghiringhelli F, et al. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med 2007; 13(1): 54-61.
[266]
VanPatten S, Al-Abed Y. High Mobility Group Box-1 (HMGb1): Current Wisdom and Advancement as a Potential Drug Target. J Med Chem 2018; 61(12): 5093-107.
[267]
Andersson U, Wang H, Palmblad K, et al. High mobility group 1 protein (HMG-1) stimulates proinflammatory cytokine synthesis in human monocytes. J Exp Med 2000; 192(4): 565-70.
[268]
Manfredi AA, Capobianco A, Bianchi ME, Rovere-Querini P. Regulation of dendritic- and T-cell fate by injury-associated endogenous signals. Crit Rev Immunol 2009; 29(1): 69-86.
[269]
Wu T, Zhang W, Yang G, et al. HMGB1 overexpression as a prognostic factor for survival in cancer: A meta-analysis and systematic review. Oncotarget 2016; 7(31): 50417-27.
[270]
Shimada K, Crother TR, Karlin J, et al. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity 2012; 36(3): 401-14.
[271]
Zhang Q, Raoof M, Chen Y, et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 2010; 464(7285): 104-7.
[272]
Vandenberk L, Garg AD, Verschuere T, et al. Irradiation of necrotic cancer cells, employed for pulsing dendritic cells (DCs), potentiates DC vaccine-induced antitumor immunity against high-grade glioma. OncoImmunology 2015; 5(2): e1083669.
[273]
Knoops B, Argyropoulou V, Becker S, Fert L, Kuznetsova O. Multiple Roles of Peroxiredoxins in Inflammation. Mol Cells 2016; 39(1): 60-4.
[274]
Linke B, Abeler-DArner L, Jahndel V, et al. The tolerogenic function of annexins on apoptotic cells is mediated by the annexin core domain. J Immunol 2015; 194(11): 5233-42.
[275]
Yoon KW, Byun S, Kwon E, et al. Control of signaling-mediated clearance of apoptotic cells by the tumor suppressor p53. Science 2015; 349(6247): 1261669.
[276]
Weyd H, Abeler-DArner L, Linke B, et al. Annexin A1 on the surface of early apoptotic cells suppresses CD8+ T cell immunity. PLoS One 2013; 8(4): e62449.
[277]
Green DR, Ferguson T, Zitvogel L, Kroemer G. Immunogenic and tolerogenic cell death. Nat Rev Immunol 2009; 9(5): 353-63.
[278]
Maeda A, Schwarz A, Kernebeck K, et al. Intravenous infusion of syngeneic apoptotic cells by photopheresis induces antigen-specific regulatory T cells. J Immunol 2005; 174(10): 5968-76.
[279]
Kaczmarek A, Vandenabeele P, Krysko DV. Necroptosis: the release of damage-associated molecular patterns and its physiological relevance. Immunity 2013; 38(2): 209-23.
[280]
Kearney CJ, Cullen SP, Tynan GA, et al. Necroptosis suppresses inflammation via termination of TNF- or LPS-induced cytokine and chemokine production. Cell Death Differ 2015; 22(8): 1313-27.
[281]
Gong YN, Guy C, Olauson H, Becker JU, Yang M, Fitzgerald P, et al. ESCRT-III Acts Downstream of MLKL to Regulate Necroptotic Cell Death and Its Consequences 2017; 169(2): 286-300 e16.
[282]
Kepp O, Menger L, Vacchelli E, et al. Crosstalk between ER stress and immunogenic cell death. Cytokine Growth Factor Rev 2013; 24(4): 311-8.
[283]
Weiner LM, Lotze MT. Tumor-cell death, autophagy, and immunity. N Engl J Med 2012; 366(12): 1156-8.
[284]
Garg AD, De Ruysscher D, Agostinis P. Immunological metagene signatures derived from immunogenic cancer cell death associate with improved survival of patients with lung, breast or ovarian malignancies: A large-scale meta-analysis. OncoImmunology 2015; 5(2): e1069938.
[285]
Michaud M, Martins I, Sukkurwala AQ, et al. Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science 2011; 334(6062): 1573-7.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 24
ISSUE: 44
Year: 2018
Page: [5268 - 5295]
Pages: 28
DOI: 10.2174/1381612825666190122163832

Article Metrics

PDF: 34
HTML: 10
EPUB: 2
PRC: 2

Special-new-year-discount