Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Evaluation of Aflatoxin B1 - Acetylcholinesterase Dissociation Kinetic Using the Amperometric Biosensor Technology: Prospect for Toxicity Mechanism

Author(s): Miroslav Pohanka, Kamil Musilek and Kamil Kuca

Volume 17, Issue 3, 2010

Page: [340 - 342] Pages: 3

DOI: 10.2174/092986610790780396

Price: $65

Abstract

Aflatoxins are group of secondary metabolites from moulds. The main toxic effect of alfatoxins on body is based on metabolic activation on cytochrome P450 system. Recently, some studies appointed at anticholinergic properties of aflatoxins and inhibition of acetylcholinesterases (AChE) was described. Inhibition is reversible; however, some questions arose. Is the interaction firmly enough to prevent distribution of aflatoxins in body? Could be AChE considered as a scavenger of aflatoxins? Amperometric biosensor with immobilized acetylcholinesterase was used for evaluation of aflatoxin B1 (AFB1) - AChE complex spontaneous dissociation, where AFB1 acts as an inhibitor. Displacement of solution with substrate and AFB1 by the intact one enabled estimation of dissociation kinetics. The dissociation rate constant kdis was found 0.0047 ± 0.0005 s-1. The half time (t1/2) of complex dissociation was 146 s. The achieved data appoint at fact that AChE could allow to distribute aflatoxins in body instead acting as a scavenger. Analytical impact of study is discussed, too.

Keywords: Aflatoxin, cholinesterase, inhibition, mycotoxin, biosensor


Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy